mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
cfb81122cc
abstracting between a CallInst and an InvokeInst, both of which are IR concepts. llvm-svn: 202816
399 lines
14 KiB
C++
399 lines
14 KiB
C++
//===- ObjCARC.h - ObjC ARC Optimization --------------*- C++ -*-----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file defines common definitions/declarations used by the ObjC ARC
|
|
/// Optimizer. ARC stands for Automatic Reference Counting and is a system for
|
|
/// managing reference counts for objects in Objective C.
|
|
///
|
|
/// WARNING: This file knows about certain library functions. It recognizes them
|
|
/// by name, and hardwires knowledge of their semantics.
|
|
///
|
|
/// WARNING: This file knows about how certain Objective-C library functions are
|
|
/// used. Naive LLVM IR transformations which would otherwise be
|
|
/// behavior-preserving may break these assumptions.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TRANSFORMS_SCALAR_OBJCARC_H
|
|
#define LLVM_TRANSFORMS_SCALAR_OBJCARC_H
|
|
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/Passes.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Transforms/ObjCARC.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
namespace llvm {
|
|
class raw_ostream;
|
|
}
|
|
|
|
namespace llvm {
|
|
namespace objcarc {
|
|
|
|
/// \brief A handy option to enable/disable all ARC Optimizations.
|
|
extern bool EnableARCOpts;
|
|
|
|
/// \brief Test if the given module looks interesting to run ARC optimization
|
|
/// on.
|
|
static inline bool ModuleHasARC(const Module &M) {
|
|
return
|
|
M.getNamedValue("objc_retain") ||
|
|
M.getNamedValue("objc_release") ||
|
|
M.getNamedValue("objc_autorelease") ||
|
|
M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
|
|
M.getNamedValue("objc_retainBlock") ||
|
|
M.getNamedValue("objc_autoreleaseReturnValue") ||
|
|
M.getNamedValue("objc_autoreleasePoolPush") ||
|
|
M.getNamedValue("objc_loadWeakRetained") ||
|
|
M.getNamedValue("objc_loadWeak") ||
|
|
M.getNamedValue("objc_destroyWeak") ||
|
|
M.getNamedValue("objc_storeWeak") ||
|
|
M.getNamedValue("objc_initWeak") ||
|
|
M.getNamedValue("objc_moveWeak") ||
|
|
M.getNamedValue("objc_copyWeak") ||
|
|
M.getNamedValue("objc_retainedObject") ||
|
|
M.getNamedValue("objc_unretainedObject") ||
|
|
M.getNamedValue("objc_unretainedPointer") ||
|
|
M.getNamedValue("clang.arc.use");
|
|
}
|
|
|
|
/// \enum InstructionClass
|
|
/// \brief A simple classification for instructions.
|
|
enum InstructionClass {
|
|
IC_Retain, ///< objc_retain
|
|
IC_RetainRV, ///< objc_retainAutoreleasedReturnValue
|
|
IC_RetainBlock, ///< objc_retainBlock
|
|
IC_Release, ///< objc_release
|
|
IC_Autorelease, ///< objc_autorelease
|
|
IC_AutoreleaseRV, ///< objc_autoreleaseReturnValue
|
|
IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
|
|
IC_AutoreleasepoolPop, ///< objc_autoreleasePoolPop
|
|
IC_NoopCast, ///< objc_retainedObject, etc.
|
|
IC_FusedRetainAutorelease, ///< objc_retainAutorelease
|
|
IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
|
|
IC_LoadWeakRetained, ///< objc_loadWeakRetained (primitive)
|
|
IC_StoreWeak, ///< objc_storeWeak (primitive)
|
|
IC_InitWeak, ///< objc_initWeak (derived)
|
|
IC_LoadWeak, ///< objc_loadWeak (derived)
|
|
IC_MoveWeak, ///< objc_moveWeak (derived)
|
|
IC_CopyWeak, ///< objc_copyWeak (derived)
|
|
IC_DestroyWeak, ///< objc_destroyWeak (derived)
|
|
IC_StoreStrong, ///< objc_storeStrong (derived)
|
|
IC_IntrinsicUser, ///< clang.arc.use
|
|
IC_CallOrUser, ///< could call objc_release and/or "use" pointers
|
|
IC_Call, ///< could call objc_release
|
|
IC_User, ///< could "use" a pointer
|
|
IC_None ///< anything else
|
|
};
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const InstructionClass Class);
|
|
|
|
/// \brief Test if the given class is a kind of user.
|
|
inline static bool IsUser(InstructionClass Class) {
|
|
return Class == IC_User ||
|
|
Class == IC_CallOrUser ||
|
|
Class == IC_IntrinsicUser;
|
|
}
|
|
|
|
/// \brief Test if the given class is objc_retain or equivalent.
|
|
static inline bool IsRetain(InstructionClass Class) {
|
|
return Class == IC_Retain ||
|
|
Class == IC_RetainRV;
|
|
}
|
|
|
|
/// \brief Test if the given class is objc_autorelease or equivalent.
|
|
static inline bool IsAutorelease(InstructionClass Class) {
|
|
return Class == IC_Autorelease ||
|
|
Class == IC_AutoreleaseRV;
|
|
}
|
|
|
|
/// \brief Test if the given class represents instructions which return their
|
|
/// argument verbatim.
|
|
static inline bool IsForwarding(InstructionClass Class) {
|
|
return Class == IC_Retain ||
|
|
Class == IC_RetainRV ||
|
|
Class == IC_Autorelease ||
|
|
Class == IC_AutoreleaseRV ||
|
|
Class == IC_NoopCast;
|
|
}
|
|
|
|
/// \brief Test if the given class represents instructions which do nothing if
|
|
/// passed a null pointer.
|
|
static inline bool IsNoopOnNull(InstructionClass Class) {
|
|
return Class == IC_Retain ||
|
|
Class == IC_RetainRV ||
|
|
Class == IC_Release ||
|
|
Class == IC_Autorelease ||
|
|
Class == IC_AutoreleaseRV ||
|
|
Class == IC_RetainBlock;
|
|
}
|
|
|
|
/// \brief Test if the given class represents instructions which are always safe
|
|
/// to mark with the "tail" keyword.
|
|
static inline bool IsAlwaysTail(InstructionClass Class) {
|
|
// IC_RetainBlock may be given a stack argument.
|
|
return Class == IC_Retain ||
|
|
Class == IC_RetainRV ||
|
|
Class == IC_AutoreleaseRV;
|
|
}
|
|
|
|
/// \brief Test if the given class represents instructions which are never safe
|
|
/// to mark with the "tail" keyword.
|
|
static inline bool IsNeverTail(InstructionClass Class) {
|
|
/// It is never safe to tail call objc_autorelease since by tail calling
|
|
/// objc_autorelease, we also tail call -[NSObject autorelease] which supports
|
|
/// fast autoreleasing causing our object to be potentially reclaimed from the
|
|
/// autorelease pool which violates the semantics of __autoreleasing types in
|
|
/// ARC.
|
|
return Class == IC_Autorelease;
|
|
}
|
|
|
|
/// \brief Test if the given class represents instructions which are always safe
|
|
/// to mark with the nounwind attribute.
|
|
static inline bool IsNoThrow(InstructionClass Class) {
|
|
// objc_retainBlock is not nounwind because it calls user copy constructors
|
|
// which could theoretically throw.
|
|
return Class == IC_Retain ||
|
|
Class == IC_RetainRV ||
|
|
Class == IC_Release ||
|
|
Class == IC_Autorelease ||
|
|
Class == IC_AutoreleaseRV ||
|
|
Class == IC_AutoreleasepoolPush ||
|
|
Class == IC_AutoreleasepoolPop;
|
|
}
|
|
|
|
/// Test whether the given instruction can autorelease any pointer or cause an
|
|
/// autoreleasepool pop.
|
|
static inline bool
|
|
CanInterruptRV(InstructionClass Class) {
|
|
switch (Class) {
|
|
case IC_AutoreleasepoolPop:
|
|
case IC_CallOrUser:
|
|
case IC_Call:
|
|
case IC_Autorelease:
|
|
case IC_AutoreleaseRV:
|
|
case IC_FusedRetainAutorelease:
|
|
case IC_FusedRetainAutoreleaseRV:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// \brief Determine if F is one of the special known Functions. If it isn't,
|
|
/// return IC_CallOrUser.
|
|
InstructionClass GetFunctionClass(const Function *F);
|
|
|
|
/// \brief Determine which objc runtime call instruction class V belongs to.
|
|
///
|
|
/// This is similar to GetInstructionClass except that it only detects objc
|
|
/// runtime calls. This allows it to be faster.
|
|
///
|
|
static inline InstructionClass GetBasicInstructionClass(const Value *V) {
|
|
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
|
|
if (const Function *F = CI->getCalledFunction())
|
|
return GetFunctionClass(F);
|
|
// Otherwise, be conservative.
|
|
return IC_CallOrUser;
|
|
}
|
|
|
|
// Otherwise, be conservative.
|
|
return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
|
|
}
|
|
|
|
/// \brief Determine what kind of construct V is.
|
|
InstructionClass GetInstructionClass(const Value *V);
|
|
|
|
/// \brief This is a wrapper around getUnderlyingObject which also knows how to
|
|
/// look through objc_retain and objc_autorelease calls, which we know to return
|
|
/// their argument verbatim.
|
|
static inline const Value *GetUnderlyingObjCPtr(const Value *V) {
|
|
for (;;) {
|
|
V = GetUnderlyingObject(V);
|
|
if (!IsForwarding(GetBasicInstructionClass(V)))
|
|
break;
|
|
V = cast<CallInst>(V)->getArgOperand(0);
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
/// \brief This is a wrapper around Value::stripPointerCasts which also knows
|
|
/// how to look through objc_retain and objc_autorelease calls, which we know to
|
|
/// return their argument verbatim.
|
|
static inline const Value *StripPointerCastsAndObjCCalls(const Value *V) {
|
|
for (;;) {
|
|
V = V->stripPointerCasts();
|
|
if (!IsForwarding(GetBasicInstructionClass(V)))
|
|
break;
|
|
V = cast<CallInst>(V)->getArgOperand(0);
|
|
}
|
|
return V;
|
|
}
|
|
|
|
/// \brief This is a wrapper around Value::stripPointerCasts which also knows
|
|
/// how to look through objc_retain and objc_autorelease calls, which we know to
|
|
/// return their argument verbatim.
|
|
static inline Value *StripPointerCastsAndObjCCalls(Value *V) {
|
|
for (;;) {
|
|
V = V->stripPointerCasts();
|
|
if (!IsForwarding(GetBasicInstructionClass(V)))
|
|
break;
|
|
V = cast<CallInst>(V)->getArgOperand(0);
|
|
}
|
|
return V;
|
|
}
|
|
|
|
/// \brief Assuming the given instruction is one of the special calls such as
|
|
/// objc_retain or objc_release, return the argument value, stripped of no-op
|
|
/// casts and forwarding calls.
|
|
static inline Value *GetObjCArg(Value *Inst) {
|
|
return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
|
|
}
|
|
|
|
static inline bool IsNullOrUndef(const Value *V) {
|
|
return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
|
|
}
|
|
|
|
static inline bool IsNoopInstruction(const Instruction *I) {
|
|
return isa<BitCastInst>(I) ||
|
|
(isa<GetElementPtrInst>(I) &&
|
|
cast<GetElementPtrInst>(I)->hasAllZeroIndices());
|
|
}
|
|
|
|
|
|
/// \brief Erase the given instruction.
|
|
///
|
|
/// Many ObjC calls return their argument verbatim,
|
|
/// so if it's such a call and the return value has users, replace them with the
|
|
/// argument value.
|
|
///
|
|
static inline void EraseInstruction(Instruction *CI) {
|
|
Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
|
|
|
|
bool Unused = CI->use_empty();
|
|
|
|
if (!Unused) {
|
|
// Replace the return value with the argument.
|
|
assert((IsForwarding(GetBasicInstructionClass(CI)) ||
|
|
(IsNoopOnNull(GetBasicInstructionClass(CI)) &&
|
|
isa<ConstantPointerNull>(OldArg))) &&
|
|
"Can't delete non-forwarding instruction with users!");
|
|
CI->replaceAllUsesWith(OldArg);
|
|
}
|
|
|
|
CI->eraseFromParent();
|
|
|
|
if (Unused)
|
|
RecursivelyDeleteTriviallyDeadInstructions(OldArg);
|
|
}
|
|
|
|
/// \brief Test whether the given value is possible a retainable object pointer.
|
|
static inline bool IsPotentialRetainableObjPtr(const Value *Op) {
|
|
// Pointers to static or stack storage are not valid retainable object
|
|
// pointers.
|
|
if (isa<Constant>(Op) || isa<AllocaInst>(Op))
|
|
return false;
|
|
// Special arguments can not be a valid retainable object pointer.
|
|
if (const Argument *Arg = dyn_cast<Argument>(Op))
|
|
if (Arg->hasByValAttr() ||
|
|
Arg->hasInAllocaAttr() ||
|
|
Arg->hasNestAttr() ||
|
|
Arg->hasStructRetAttr())
|
|
return false;
|
|
// Only consider values with pointer types.
|
|
//
|
|
// It seemes intuitive to exclude function pointer types as well, since
|
|
// functions are never retainable object pointers, however clang occasionally
|
|
// bitcasts retainable object pointers to function-pointer type temporarily.
|
|
PointerType *Ty = dyn_cast<PointerType>(Op->getType());
|
|
if (!Ty)
|
|
return false;
|
|
// Conservatively assume anything else is a potential retainable object
|
|
// pointer.
|
|
return true;
|
|
}
|
|
|
|
static inline bool IsPotentialRetainableObjPtr(const Value *Op,
|
|
AliasAnalysis &AA) {
|
|
// First make the rudimentary check.
|
|
if (!IsPotentialRetainableObjPtr(Op))
|
|
return false;
|
|
|
|
// Objects in constant memory are not reference-counted.
|
|
if (AA.pointsToConstantMemory(Op))
|
|
return false;
|
|
|
|
// Pointers in constant memory are not pointing to reference-counted objects.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(Op))
|
|
if (AA.pointsToConstantMemory(LI->getPointerOperand()))
|
|
return false;
|
|
|
|
// Otherwise assume the worst.
|
|
return true;
|
|
}
|
|
|
|
/// \brief Helper for GetInstructionClass. Determines what kind of construct CS
|
|
/// is.
|
|
static inline InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
|
|
for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
|
|
I != E; ++I)
|
|
if (IsPotentialRetainableObjPtr(*I))
|
|
return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
|
|
|
|
return CS.onlyReadsMemory() ? IC_None : IC_Call;
|
|
}
|
|
|
|
/// \brief Return true if this value refers to a distinct and identifiable
|
|
/// object.
|
|
///
|
|
/// This is similar to AliasAnalysis's isIdentifiedObject, except that it uses
|
|
/// special knowledge of ObjC conventions.
|
|
static inline bool IsObjCIdentifiedObject(const Value *V) {
|
|
// Assume that call results and arguments have their own "provenance".
|
|
// Constants (including GlobalVariables) and Allocas are never
|
|
// reference-counted.
|
|
if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
|
|
isa<Argument>(V) || isa<Constant>(V) ||
|
|
isa<AllocaInst>(V))
|
|
return true;
|
|
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
|
|
const Value *Pointer =
|
|
StripPointerCastsAndObjCCalls(LI->getPointerOperand());
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
|
|
// A constant pointer can't be pointing to an object on the heap. It may
|
|
// be reference-counted, but it won't be deleted.
|
|
if (GV->isConstant())
|
|
return true;
|
|
StringRef Name = GV->getName();
|
|
// These special variables are known to hold values which are not
|
|
// reference-counted pointers.
|
|
if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
|
|
Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
|
|
Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
|
|
Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
|
|
Name.startswith("\01l_objc_msgSend_fixup_"))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
} // end namespace objcarc
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_TRANSFORMS_SCALAR_OBJCARC_H
|