1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 12:02:58 +02:00
llvm-mirror/lib/Target/Mips/MipsCallingConv.td
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

412 lines
18 KiB
TableGen

//===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This describes the calling conventions for Mips architecture.
//===----------------------------------------------------------------------===//
/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A, string Invert = "">
: CCIf<!strconcat(Invert,
"static_cast<const MipsSubtarget&>"
"(State.getMachineFunction().getSubtarget()).",
F),
A>;
// The inverse of CCIfSubtarget
class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">;
/// Match if the original argument (before lowering) was a float.
/// For example, this is true for i32's that were lowered from soft-float.
class CCIfOrigArgWasNotFloat<CCAction A>
: CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)",
A>;
/// Match if the original argument (before lowering) was a 128-bit float (i.e.
/// long double).
class CCIfOrigArgWasF128<CCAction A>
: CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>;
/// Match if this specific argument is a vararg.
/// This is slightly different fro CCIfIsVarArg which matches if any argument is
/// a vararg.
class CCIfArgIsVarArg<CCAction A>
: CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>;
/// Match if the return was a floating point vector.
class CCIfOrigArgWasNotVectorFloat<CCAction A>
: CCIf<"!static_cast<MipsCCState *>(&State)"
"->WasOriginalRetVectorFloat(ValNo)", A>;
/// Match if the special calling conv is the specified value.
class CCIfSpecialCallingConv<string CC, CCAction A>
: CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == "
"MipsCCState::" # CC, A>;
// For soft-float, f128 values are returned in A0_64 rather than V1_64.
def RetCC_F128SoftFloat : CallingConv<[
CCAssignToReg<[V0_64, A0_64]>
]>;
// For hard-float, f128 values are returned as a pair of f64's rather than a
// pair of i64's.
def RetCC_F128HardFloat : CallingConv<[
CCBitConvertToType<f64>,
// Contrary to the ABI documentation, a struct containing a long double is
// returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to
// match the de facto ABI as implemented by GCC.
CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>,
CCAssignToReg<[D0_64, D2_64]>
]>;
// Handle F128 specially since we can't identify the original type during the
// tablegen-erated code.
def RetCC_F128 : CallingConv<[
CCIfSubtarget<"useSoftFloat()",
CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>,
CCIfSubtargetNot<"useSoftFloat()",
CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>>
]>;
//===----------------------------------------------------------------------===//
// Mips O32 Calling Convention
//===----------------------------------------------------------------------===//
def CC_MipsO32 : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
// Integer values get stored in stack slots that are 4 bytes in
// size and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
// Integer values get stored in stack slots that are 8 bytes in
// size and 8-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 8>>
]>;
// Only the return rules are defined here for O32. The rules for argument
// passing are defined in MipsISelLowering.cpp.
def RetCC_MipsO32 : CallingConv<[
// Promote i1/i8/i16 return values to i32.
CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,
// i32 are returned in registers V0, V1, A0, A1, unless the original return
// type was a vector of floats.
CCIfOrigArgWasNotVectorFloat<CCIfType<[i32],
CCAssignToReg<[V0, V1, A0, A1]>>>,
// f32 are returned in registers F0, F2
CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
// f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or
// in D0 and D1 in FP32bit mode.
CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>,
CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>>
]>;
def CC_MipsO32_FP32 : CustomCallingConv;
def CC_MipsO32_FP64 : CustomCallingConv;
def CC_MipsO32_FP : CallingConv<[
CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>,
CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>>
]>;
//===----------------------------------------------------------------------===//
// Mips N32/64 Calling Convention
//===----------------------------------------------------------------------===//
def CC_MipsN_SoftFloat : CallingConv<[
CCAssignToRegWithShadow<[A0, A1, A2, A3,
T0, T1, T2, T3],
[D12_64, D13_64, D14_64, D15_64,
D16_64, D17_64, D18_64, D19_64]>,
CCAssignToStack<4, 8>
]>;
def CC_MipsN : CallingConv<[
CCIfType<[i8, i16, i32, i64],
CCIfSubtargetNot<"isLittle()",
CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
// All integers (except soft-float integers) are promoted to 64-bit.
CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>,
// The only i32's we have left are soft-float arguments.
CCIfSubtarget<"useSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>,
// Integer arguments are passed in integer registers.
CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64,
T0_64, T1_64, T2_64, T3_64],
[D12_64, D13_64, D14_64, D15_64,
D16_64, D17_64, D18_64, D19_64]>>,
// f32 arguments are passed in single precision FP registers.
CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15,
F16, F17, F18, F19],
[A0_64, A1_64, A2_64, A3_64,
T0_64, T1_64, T2_64, T3_64]>>,
// f64 arguments are passed in double precision FP registers.
CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64,
D16_64, D17_64, D18_64, D19_64],
[A0_64, A1_64, A2_64, A3_64,
T0_64, T1_64, T2_64, T3_64]>>,
// All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
CCIfType<[f32], CCAssignToStack<4, 8>>,
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
// N32/64 variable arguments.
// All arguments are passed in integer registers.
def CC_MipsN_VarArg : CallingConv<[
CCIfType<[i8, i16, i32, i64],
CCIfSubtargetNot<"isLittle()",
CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
// All integers are promoted to 64-bit.
CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>,
CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64,
T0_64, T1_64, T2_64, T3_64]>>,
// All stack parameter slots become 64-bit doublewords and are 8-byte aligned.
CCIfType<[f32], CCAssignToStack<4, 8>>,
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
def RetCC_MipsN : CallingConv<[
// f128 needs to be handled similarly to f32 and f64. However, f128 is not
// legal and is lowered to i128 which is further lowered to a pair of i64's.
// This presents us with a problem for the calling convention since hard-float
// still needs to pass them in FPU registers, and soft-float needs to use $v0,
// and $a0 instead of the usual $v0, and $v1. We therefore resort to a
// pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on
// whether the result was originally an f128 into the tablegen-erated code.
//
// f128 should only occur for the N64 ABI where long double is 128-bit. On
// N32, long double is equivalent to double.
CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>,
// Aggregate returns are positioned at the lowest address in the slot for
// both little and big-endian targets. When passing in registers, this
// requires that big-endian targets shift the value into the upper bits.
CCIfSubtarget<"isLittle()",
CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>,
CCIfSubtargetNot<"isLittle()",
CCIfType<[i8, i16, i32, i64],
CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>,
// i64 are returned in registers V0_64, V1_64
CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>,
// f32 are returned in registers F0, F2
CCIfType<[f32], CCAssignToReg<[F0, F2]>>,
// f64 are returned in registers D0, D2
CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>>
]>;
//===----------------------------------------------------------------------===//
// Mips FastCC Calling Convention
//===----------------------------------------------------------------------===//
def CC_MipsO32_FastCC : CallingConv<[
// f64 arguments are passed in double-precision floating pointer registers.
CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()",
CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6,
D7, D8, D9]>>>,
CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()",
CCAssignToReg<[D0_64, D1_64, D2_64, D3_64,
D4_64, D5_64, D6_64, D7_64,
D8_64, D9_64, D10_64, D11_64,
D12_64, D13_64, D14_64, D15_64,
D16_64, D17_64, D18_64,
D19_64]>>>>,
CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()",
CCAssignToReg<[D0_64, D2_64, D4_64, D6_64,
D8_64, D10_64, D12_64, D14_64,
D16_64, D18_64]>>>>,
// Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 8>>
]>;
def CC_MipsN_FastCC : CallingConv<[
// Integer arguments are passed in integer registers.
CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64,
T2_64, T3_64, T4_64, T5_64, T6_64, T7_64,
T8_64, V1_64]>>,
// f64 arguments are passed in double-precision floating pointer registers.
CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64,
D6_64, D7_64, D8_64, D9_64, D10_64, D11_64,
D12_64, D13_64, D14_64, D15_64, D16_64, D17_64,
D18_64, D19_64]>>,
// Stack parameter slots for i64 and f64 are 64-bit doublewords and
// 8-byte aligned.
CCIfType<[i64, f64], CCAssignToStack<8, 8>>
]>;
def CC_Mips_FastCC : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<4, 4>>,
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// Integer arguments are passed in integer registers. All scratch registers,
// except for AT, V0 and T9, are available to be used as argument registers.
CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()",
CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>,
// In NaCl, T6, T7 and T8 are reserved and not available as argument
// registers for fastcc. T6 contains the mask for sandboxing control flow
// (indirect jumps and calls). T7 contains the mask for sandboxing memory
// accesses (loads and stores). T8 contains the thread pointer.
CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()",
CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>,
// f32 arguments are passed in single-precision floating pointer registers.
CCIfType<[f32], CCIfSubtarget<"useOddSPReg()",
CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
F14, F15, F16, F17, F18, F19]>>>,
// Don't use odd numbered single-precision registers for -mno-odd-spreg.
CCIfType<[f32], CCIfSubtarget<"noOddSPReg()",
CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>,
// Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>,
CCDelegateTo<CC_MipsN_FastCC>
]>;
//===----------------------------------------------------------------------===//
// Mips Calling Convention Dispatch
//===----------------------------------------------------------------------===//
def RetCC_Mips : CallingConv<[
CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>,
CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>,
CCDelegateTo<RetCC_MipsO32>
]>;
def CC_Mips_ByVal : CallingConv<[
CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>,
CCIfByVal<CCPassByVal<8, 8>>
]>;
def CC_Mips16RetHelper : CallingConv<[
CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
// Integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>
]>;
def CC_Mips_FixedArg : CallingConv<[
// Mips16 needs special handling on some functions.
CCIf<"State.getCallingConv() != CallingConv::Fast",
CCIfSpecialCallingConv<"Mips16RetHelperConv",
CCDelegateTo<CC_Mips16RetHelper>>>,
CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
// f128 needs to be handled similarly to f32 and f64 on hard-float. However,
// f128 is not legal and is lowered to i128 which is further lowered to a pair
// of i64's.
// This presents us with a problem for the calling convention since hard-float
// still needs to pass them in FPU registers. We therefore resort to a
// pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on
// whether the argument was originally an f128 into the tablegen-erated code.
//
// f128 should only occur for the N64 ABI where long double is 128-bit. On
// N32, long double is equivalent to double.
CCIfType<[i64],
CCIfSubtargetNot<"useSoftFloat()",
CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>,
CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>,
CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
CCDelegateTo<CC_MipsN>
]>;
def CC_Mips_VarArg : CallingConv<[
CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>,
CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>,
CCDelegateTo<CC_MipsN_VarArg>
]>;
def CC_Mips : CallingConv<[
CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>,
CCDelegateTo<CC_Mips_FixedArg>
]>;
//===----------------------------------------------------------------------===//
// Callee-saved register lists.
//===----------------------------------------------------------------------===//
def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP,
(sequence "S%u", 7, 0))>;
def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
(sequence "S%u", 7, 0))> {
let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2));
}
def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP,
(sequence "S%u", 7, 0))>;
def CSR_O32_FP64 :
CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP,
(sequence "S%u", 7, 0))>;
def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64,
D30_64, RA_64, FP_64, GP_64,
(sequence "S%u_64", 7, 0))>;
def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64,
GP_64, (sequence "S%u_64", 7, 0))>;
def CSR_Mips16RetHelper :
CalleeSavedRegs<(add V0, V1, FP,
(sequence "A%u", 3, 0), (sequence "S%u", 7, 0),
(sequence "D%u", 15, 10))>;
def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
(sequence "S%u", 7, 0),
(sequence "V%u", 1, 0),
(sequence "T%u", 9, 0),
RA, FP, GP, AT)>;
def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0),
(sequence "S%u", 7, 0),
(sequence "V%u", 1, 0),
(sequence "T%u", 9, 0),
RA, FP, GP, AT, LO0, HI0)>;
def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
(sequence "V%u_64", 1, 0),
(sequence "S%u_64", 7, 0),
(sequence "T%u_64", 9, 0),
RA_64, FP_64, GP_64, AT_64)>;
def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0),
(sequence "S%u_64", 7, 0),
(sequence "T%u_64", 9, 0),
(sequence "V%u_64", 1, 0),
RA_64, FP_64, GP_64, AT_64,
LO0_64, HI0_64)>;