mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
449e2cbd5e
The original change was pushed in main as commit f7a23ecece52. It was then reverted by commit a04f01bab2 because it caused linker failures on buildbots that don't build the AMDGPU target. -- Some instructions are not defined well enough within the target’s scheduling model for llvm-mca to be able to properly simulate its behaviour. The ideal solution to this situation is to modify the scheduling model, but that’s not always a viable strategy. Maybe other parts of the backend depend on that instruction being modelled the way that it is. Or maybe the instruction is quite complex and it’s difficult to fully capture its behaviour with tablegen. The CustomBehaviour class (which I will refer to as CB frequently) is designed to provide intuitive scaffolding for developers to implement the correct modelling for these instructions. More details are available in the original commit log message (f7a23ecece52). Differential Revision: https://reviews.llvm.org/D104149
725 lines
25 KiB
C++
725 lines
25 KiB
C++
//===--------------------- Instruction.h ------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This file defines abstractions used by the Pipeline to model register reads,
|
|
/// register writes and instructions.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_MCA_INSTRUCTION_H
|
|
#define LLVM_MCA_INSTRUCTION_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/MC/MCRegister.h" // definition of MCPhysReg.
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
#ifndef NDEBUG
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#endif
|
|
|
|
#include <memory>
|
|
|
|
namespace llvm {
|
|
|
|
namespace mca {
|
|
|
|
constexpr int UNKNOWN_CYCLES = -512;
|
|
|
|
/// A representation of an mca::Instruction operand
|
|
/// for use in mca::CustomBehaviour.
|
|
class MCAOperand {
|
|
// This class is mostly copied from MCOperand within
|
|
// MCInst.h except that we don't keep track of
|
|
// expressions or sub-instructions.
|
|
enum MCAOperandType : unsigned char {
|
|
kInvalid, ///< Uninitialized, Relocatable immediate, or Sub-instruction.
|
|
kRegister, ///< Register operand.
|
|
kImmediate, ///< Immediate operand.
|
|
kSFPImmediate, ///< Single-floating-point immediate operand.
|
|
kDFPImmediate, ///< Double-Floating-point immediate operand.
|
|
};
|
|
MCAOperandType Kind = kInvalid;
|
|
|
|
union {
|
|
unsigned RegVal;
|
|
int64_t ImmVal;
|
|
uint32_t SFPImmVal;
|
|
uint64_t FPImmVal;
|
|
};
|
|
|
|
// We only store specific operands for specific instructions
|
|
// so an instruction's operand 3 may be stored within the list
|
|
// of MCAOperand as element 0. This Index attribute keeps track
|
|
// of the original index (3 for this example).
|
|
unsigned Index;
|
|
|
|
public:
|
|
MCAOperand() : FPImmVal(0) {}
|
|
|
|
bool isValid() const { return Kind != kInvalid; }
|
|
bool isReg() const { return Kind == kRegister; }
|
|
bool isImm() const { return Kind == kImmediate; }
|
|
bool isSFPImm() const { return Kind == kSFPImmediate; }
|
|
bool isDFPImm() const { return Kind == kDFPImmediate; }
|
|
|
|
/// Returns the register number.
|
|
unsigned getReg() const {
|
|
assert(isReg() && "This is not a register operand!");
|
|
return RegVal;
|
|
}
|
|
|
|
int64_t getImm() const {
|
|
assert(isImm() && "This is not an immediate");
|
|
return ImmVal;
|
|
}
|
|
|
|
uint32_t getSFPImm() const {
|
|
assert(isSFPImm() && "This is not an SFP immediate");
|
|
return SFPImmVal;
|
|
}
|
|
|
|
uint64_t getDFPImm() const {
|
|
assert(isDFPImm() && "This is not an FP immediate");
|
|
return FPImmVal;
|
|
}
|
|
|
|
void setIndex(const unsigned Idx) { Index = Idx; }
|
|
|
|
unsigned getIndex() const { return Index; }
|
|
|
|
static MCAOperand createReg(unsigned Reg) {
|
|
MCAOperand Op;
|
|
Op.Kind = kRegister;
|
|
Op.RegVal = Reg;
|
|
return Op;
|
|
}
|
|
|
|
static MCAOperand createImm(int64_t Val) {
|
|
MCAOperand Op;
|
|
Op.Kind = kImmediate;
|
|
Op.ImmVal = Val;
|
|
return Op;
|
|
}
|
|
|
|
static MCAOperand createSFPImm(uint32_t Val) {
|
|
MCAOperand Op;
|
|
Op.Kind = kSFPImmediate;
|
|
Op.SFPImmVal = Val;
|
|
return Op;
|
|
}
|
|
|
|
static MCAOperand createDFPImm(uint64_t Val) {
|
|
MCAOperand Op;
|
|
Op.Kind = kDFPImmediate;
|
|
Op.FPImmVal = Val;
|
|
return Op;
|
|
}
|
|
|
|
static MCAOperand createInvalid() {
|
|
MCAOperand Op;
|
|
Op.Kind = kInvalid;
|
|
Op.FPImmVal = 0;
|
|
return Op;
|
|
}
|
|
};
|
|
|
|
/// A register write descriptor.
|
|
struct WriteDescriptor {
|
|
// Operand index. The index is negative for implicit writes only.
|
|
// For implicit writes, the actual operand index is computed performing
|
|
// a bitwise not of the OpIndex.
|
|
int OpIndex;
|
|
// Write latency. Number of cycles before write-back stage.
|
|
unsigned Latency;
|
|
// This field is set to a value different than zero only if this
|
|
// is an implicit definition.
|
|
MCPhysReg RegisterID;
|
|
// Instruction itineraries would set this field to the SchedClass ID.
|
|
// Otherwise, it defaults to the WriteResourceID from the MCWriteLatencyEntry
|
|
// element associated to this write.
|
|
// When computing read latencies, this value is matched against the
|
|
// "ReadAdvance" information. The hardware backend may implement
|
|
// dedicated forwarding paths to quickly propagate write results to dependent
|
|
// instructions waiting in the reservation station (effectively bypassing the
|
|
// write-back stage).
|
|
unsigned SClassOrWriteResourceID;
|
|
// True only if this is a write obtained from an optional definition.
|
|
// Optional definitions are allowed to reference regID zero (i.e. "no
|
|
// register").
|
|
bool IsOptionalDef;
|
|
|
|
bool isImplicitWrite() const { return OpIndex < 0; };
|
|
};
|
|
|
|
/// A register read descriptor.
|
|
struct ReadDescriptor {
|
|
// A MCOperand index. This is used by the Dispatch logic to identify register
|
|
// reads. Implicit reads have negative indices. The actual operand index of an
|
|
// implicit read is the bitwise not of field OpIndex.
|
|
int OpIndex;
|
|
// The actual "UseIdx". This is used to query the ReadAdvance table. Explicit
|
|
// uses always come first in the sequence of uses.
|
|
unsigned UseIndex;
|
|
// This field is only set if this is an implicit read.
|
|
MCPhysReg RegisterID;
|
|
// Scheduling Class Index. It is used to query the scheduling model for the
|
|
// MCSchedClassDesc object.
|
|
unsigned SchedClassID;
|
|
|
|
bool isImplicitRead() const { return OpIndex < 0; };
|
|
};
|
|
|
|
class ReadState;
|
|
|
|
/// A critical data dependency descriptor.
|
|
///
|
|
/// Field RegID is set to the invalid register for memory dependencies.
|
|
struct CriticalDependency {
|
|
unsigned IID;
|
|
MCPhysReg RegID;
|
|
unsigned Cycles;
|
|
};
|
|
|
|
/// Tracks uses of a register definition (e.g. register write).
|
|
///
|
|
/// Each implicit/explicit register write is associated with an instance of
|
|
/// this class. A WriteState object tracks the dependent users of a
|
|
/// register write. It also tracks how many cycles are left before the write
|
|
/// back stage.
|
|
class WriteState {
|
|
const WriteDescriptor *WD;
|
|
// On instruction issue, this field is set equal to the write latency.
|
|
// Before instruction issue, this field defaults to -512, a special
|
|
// value that represents an "unknown" number of cycles.
|
|
int CyclesLeft;
|
|
|
|
// Actual register defined by this write. This field is only used
|
|
// to speedup queries on the register file.
|
|
// For implicit writes, this field always matches the value of
|
|
// field RegisterID from WD.
|
|
MCPhysReg RegisterID;
|
|
|
|
// Physical register file that serves register RegisterID.
|
|
unsigned PRFID;
|
|
|
|
// True if this write implicitly clears the upper portion of RegisterID's
|
|
// super-registers.
|
|
bool ClearsSuperRegs;
|
|
|
|
// True if this write is from a dependency breaking zero-idiom instruction.
|
|
bool WritesZero;
|
|
|
|
// True if this write has been eliminated at register renaming stage.
|
|
// Example: a register move doesn't consume scheduler/pipleline resources if
|
|
// it is eliminated at register renaming stage. It still consumes
|
|
// decode bandwidth, and ROB entries.
|
|
bool IsEliminated;
|
|
|
|
// This field is set if this is a partial register write, and it has a false
|
|
// dependency on any previous write of the same register (or a portion of it).
|
|
// DependentWrite must be able to complete before this write completes, so
|
|
// that we don't break the WAW, and the two writes can be merged together.
|
|
const WriteState *DependentWrite;
|
|
|
|
// A partial write that is in a false dependency with this write.
|
|
WriteState *PartialWrite;
|
|
unsigned DependentWriteCyclesLeft;
|
|
|
|
// Critical register dependency for this write.
|
|
CriticalDependency CRD;
|
|
|
|
// A list of dependent reads. Users is a set of dependent
|
|
// reads. A dependent read is added to the set only if CyclesLeft
|
|
// is "unknown". As soon as CyclesLeft is 'known', each user in the set
|
|
// gets notified with the actual CyclesLeft.
|
|
|
|
// The 'second' element of a pair is a "ReadAdvance" number of cycles.
|
|
SmallVector<std::pair<ReadState *, int>, 4> Users;
|
|
|
|
public:
|
|
WriteState(const WriteDescriptor &Desc, MCPhysReg RegID,
|
|
bool clearsSuperRegs = false, bool writesZero = false)
|
|
: WD(&Desc), CyclesLeft(UNKNOWN_CYCLES), RegisterID(RegID), PRFID(0),
|
|
ClearsSuperRegs(clearsSuperRegs), WritesZero(writesZero),
|
|
IsEliminated(false), DependentWrite(nullptr), PartialWrite(nullptr),
|
|
DependentWriteCyclesLeft(0), CRD() {}
|
|
|
|
WriteState(const WriteState &Other) = default;
|
|
WriteState &operator=(const WriteState &Other) = default;
|
|
|
|
int getCyclesLeft() const { return CyclesLeft; }
|
|
unsigned getWriteResourceID() const { return WD->SClassOrWriteResourceID; }
|
|
MCPhysReg getRegisterID() const { return RegisterID; }
|
|
void setRegisterID(const MCPhysReg RegID) { RegisterID = RegID; }
|
|
unsigned getRegisterFileID() const { return PRFID; }
|
|
unsigned getLatency() const { return WD->Latency; }
|
|
unsigned getDependentWriteCyclesLeft() const {
|
|
return DependentWriteCyclesLeft;
|
|
}
|
|
const WriteState *getDependentWrite() const { return DependentWrite; }
|
|
const CriticalDependency &getCriticalRegDep() const { return CRD; }
|
|
|
|
// This method adds Use to the set of data dependent reads. IID is the
|
|
// instruction identifier associated with this write. ReadAdvance is the
|
|
// number of cycles to subtract from the latency of this data dependency.
|
|
// Use is in a RAW dependency with this write.
|
|
void addUser(unsigned IID, ReadState *Use, int ReadAdvance);
|
|
|
|
// Use is a younger register write that is in a false dependency with this
|
|
// write. IID is the instruction identifier associated with this write.
|
|
void addUser(unsigned IID, WriteState *Use);
|
|
|
|
unsigned getNumUsers() const {
|
|
unsigned NumUsers = Users.size();
|
|
if (PartialWrite)
|
|
++NumUsers;
|
|
return NumUsers;
|
|
}
|
|
|
|
bool clearsSuperRegisters() const { return ClearsSuperRegs; }
|
|
bool isWriteZero() const { return WritesZero; }
|
|
bool isEliminated() const { return IsEliminated; }
|
|
|
|
bool isReady() const {
|
|
if (DependentWrite)
|
|
return false;
|
|
unsigned CyclesLeft = getDependentWriteCyclesLeft();
|
|
return !CyclesLeft || CyclesLeft < getLatency();
|
|
}
|
|
|
|
bool isExecuted() const {
|
|
return CyclesLeft != UNKNOWN_CYCLES && CyclesLeft <= 0;
|
|
}
|
|
|
|
void setDependentWrite(const WriteState *Other) { DependentWrite = Other; }
|
|
void writeStartEvent(unsigned IID, MCPhysReg RegID, unsigned Cycles);
|
|
void setWriteZero() { WritesZero = true; }
|
|
void setEliminated() {
|
|
assert(Users.empty() && "Write is in an inconsistent state.");
|
|
CyclesLeft = 0;
|
|
IsEliminated = true;
|
|
}
|
|
|
|
void setPRF(unsigned PRF) { PRFID = PRF; }
|
|
|
|
// On every cycle, update CyclesLeft and notify dependent users.
|
|
void cycleEvent();
|
|
void onInstructionIssued(unsigned IID);
|
|
|
|
#ifndef NDEBUG
|
|
void dump() const;
|
|
#endif
|
|
};
|
|
|
|
/// Tracks register operand latency in cycles.
|
|
///
|
|
/// A read may be dependent on more than one write. This occurs when some
|
|
/// writes only partially update the register associated to this read.
|
|
class ReadState {
|
|
const ReadDescriptor *RD;
|
|
// Physical register identified associated to this read.
|
|
MCPhysReg RegisterID;
|
|
// Physical register file that serves register RegisterID.
|
|
unsigned PRFID;
|
|
// Number of writes that contribute to the definition of RegisterID.
|
|
// In the absence of partial register updates, the number of DependentWrites
|
|
// cannot be more than one.
|
|
unsigned DependentWrites;
|
|
// Number of cycles left before RegisterID can be read. This value depends on
|
|
// the latency of all the dependent writes. It defaults to UNKNOWN_CYCLES.
|
|
// It gets set to the value of field TotalCycles only when the 'CyclesLeft' of
|
|
// every dependent write is known.
|
|
int CyclesLeft;
|
|
// This field is updated on every writeStartEvent(). When the number of
|
|
// dependent writes (i.e. field DependentWrite) is zero, this value is
|
|
// propagated to field CyclesLeft.
|
|
unsigned TotalCycles;
|
|
// Longest register dependency.
|
|
CriticalDependency CRD;
|
|
// This field is set to true only if there are no dependent writes, and
|
|
// there are no `CyclesLeft' to wait.
|
|
bool IsReady;
|
|
// True if this is a read from a known zero register.
|
|
bool IsZero;
|
|
// True if this register read is from a dependency-breaking instruction.
|
|
bool IndependentFromDef;
|
|
|
|
public:
|
|
ReadState(const ReadDescriptor &Desc, MCPhysReg RegID)
|
|
: RD(&Desc), RegisterID(RegID), PRFID(0), DependentWrites(0),
|
|
CyclesLeft(UNKNOWN_CYCLES), TotalCycles(0), CRD(), IsReady(true),
|
|
IsZero(false), IndependentFromDef(false) {}
|
|
|
|
const ReadDescriptor &getDescriptor() const { return *RD; }
|
|
unsigned getSchedClass() const { return RD->SchedClassID; }
|
|
MCPhysReg getRegisterID() const { return RegisterID; }
|
|
unsigned getRegisterFileID() const { return PRFID; }
|
|
const CriticalDependency &getCriticalRegDep() const { return CRD; }
|
|
|
|
bool isPending() const { return !IndependentFromDef && CyclesLeft > 0; }
|
|
bool isReady() const { return IsReady; }
|
|
bool isImplicitRead() const { return RD->isImplicitRead(); }
|
|
|
|
bool isIndependentFromDef() const { return IndependentFromDef; }
|
|
void setIndependentFromDef() { IndependentFromDef = true; }
|
|
|
|
void cycleEvent();
|
|
void writeStartEvent(unsigned IID, MCPhysReg RegID, unsigned Cycles);
|
|
void setDependentWrites(unsigned Writes) {
|
|
DependentWrites = Writes;
|
|
IsReady = !Writes;
|
|
}
|
|
|
|
bool isReadZero() const { return IsZero; }
|
|
void setReadZero() { IsZero = true; }
|
|
void setPRF(unsigned ID) { PRFID = ID; }
|
|
};
|
|
|
|
/// A sequence of cycles.
|
|
///
|
|
/// This class can be used as a building block to construct ranges of cycles.
|
|
class CycleSegment {
|
|
unsigned Begin; // Inclusive.
|
|
unsigned End; // Exclusive.
|
|
bool Reserved; // Resources associated to this segment must be reserved.
|
|
|
|
public:
|
|
CycleSegment(unsigned StartCycle, unsigned EndCycle, bool IsReserved = false)
|
|
: Begin(StartCycle), End(EndCycle), Reserved(IsReserved) {}
|
|
|
|
bool contains(unsigned Cycle) const { return Cycle >= Begin && Cycle < End; }
|
|
bool startsAfter(const CycleSegment &CS) const { return End <= CS.Begin; }
|
|
bool endsBefore(const CycleSegment &CS) const { return Begin >= CS.End; }
|
|
bool overlaps(const CycleSegment &CS) const {
|
|
return !startsAfter(CS) && !endsBefore(CS);
|
|
}
|
|
bool isExecuting() const { return Begin == 0 && End != 0; }
|
|
bool isExecuted() const { return End == 0; }
|
|
bool operator<(const CycleSegment &Other) const {
|
|
return Begin < Other.Begin;
|
|
}
|
|
CycleSegment &operator--(void) {
|
|
if (Begin)
|
|
Begin--;
|
|
if (End)
|
|
End--;
|
|
return *this;
|
|
}
|
|
|
|
bool isValid() const { return Begin <= End; }
|
|
unsigned size() const { return End - Begin; };
|
|
void subtract(unsigned Cycles) {
|
|
assert(End >= Cycles);
|
|
End -= Cycles;
|
|
}
|
|
|
|
unsigned begin() const { return Begin; }
|
|
unsigned end() const { return End; }
|
|
void setEnd(unsigned NewEnd) { End = NewEnd; }
|
|
bool isReserved() const { return Reserved; }
|
|
void setReserved() { Reserved = true; }
|
|
};
|
|
|
|
/// Helper used by class InstrDesc to describe how hardware resources
|
|
/// are used.
|
|
///
|
|
/// This class describes how many resource units of a specific resource kind
|
|
/// (and how many cycles) are "used" by an instruction.
|
|
struct ResourceUsage {
|
|
CycleSegment CS;
|
|
unsigned NumUnits;
|
|
ResourceUsage(CycleSegment Cycles, unsigned Units = 1)
|
|
: CS(Cycles), NumUnits(Units) {}
|
|
unsigned size() const { return CS.size(); }
|
|
bool isReserved() const { return CS.isReserved(); }
|
|
void setReserved() { CS.setReserved(); }
|
|
};
|
|
|
|
/// An instruction descriptor
|
|
struct InstrDesc {
|
|
SmallVector<WriteDescriptor, 2> Writes; // Implicit writes are at the end.
|
|
SmallVector<ReadDescriptor, 4> Reads; // Implicit reads are at the end.
|
|
|
|
// For every resource used by an instruction of this kind, this vector
|
|
// reports the number of "consumed cycles".
|
|
SmallVector<std::pair<uint64_t, ResourceUsage>, 4> Resources;
|
|
|
|
// A bitmask of used hardware buffers.
|
|
uint64_t UsedBuffers;
|
|
|
|
// A bitmask of used processor resource units.
|
|
uint64_t UsedProcResUnits;
|
|
|
|
// A bitmask of implicit uses of processor resource units.
|
|
uint64_t ImplicitlyUsedProcResUnits;
|
|
|
|
// A bitmask of used processor resource groups.
|
|
uint64_t UsedProcResGroups;
|
|
|
|
unsigned MaxLatency;
|
|
// Number of MicroOps for this instruction.
|
|
unsigned NumMicroOps;
|
|
// SchedClassID used to construct this InstrDesc.
|
|
// This information is currently used by views to do fast queries on the
|
|
// subtarget when computing the reciprocal throughput.
|
|
unsigned SchedClassID;
|
|
|
|
unsigned MayLoad : 1;
|
|
unsigned MayStore : 1;
|
|
unsigned HasSideEffects : 1;
|
|
unsigned BeginGroup : 1;
|
|
unsigned EndGroup : 1;
|
|
unsigned RetireOOO : 1;
|
|
|
|
// True if all buffered resources are in-order, and there is at least one
|
|
// buffer which is a dispatch hazard (BufferSize = 0).
|
|
unsigned MustIssueImmediately : 1;
|
|
|
|
// A zero latency instruction doesn't consume any scheduler resources.
|
|
bool isZeroLatency() const { return !MaxLatency && Resources.empty(); }
|
|
|
|
InstrDesc() = default;
|
|
InstrDesc(const InstrDesc &Other) = delete;
|
|
InstrDesc &operator=(const InstrDesc &Other) = delete;
|
|
};
|
|
|
|
/// Base class for instructions consumed by the simulation pipeline.
|
|
///
|
|
/// This class tracks data dependencies as well as generic properties
|
|
/// of the instruction.
|
|
class InstructionBase {
|
|
const InstrDesc &Desc;
|
|
|
|
// This field is set for instructions that are candidates for move
|
|
// elimination. For more information about move elimination, see the
|
|
// definition of RegisterMappingTracker in RegisterFile.h
|
|
bool IsOptimizableMove;
|
|
|
|
// Output dependencies.
|
|
// One entry per each implicit and explicit register definition.
|
|
SmallVector<WriteState, 2> Defs;
|
|
|
|
// Input dependencies.
|
|
// One entry per each implicit and explicit register use.
|
|
SmallVector<ReadState, 4> Uses;
|
|
|
|
// List of operands which can be used by mca::CustomBehaviour
|
|
std::vector<MCAOperand> Operands;
|
|
|
|
// Instruction opcode which can be used by mca::CustomBehaviour
|
|
unsigned Opcode;
|
|
|
|
public:
|
|
InstructionBase(const InstrDesc &D, const unsigned Opcode)
|
|
: Desc(D), IsOptimizableMove(false), Operands(0), Opcode(Opcode) {}
|
|
|
|
SmallVectorImpl<WriteState> &getDefs() { return Defs; }
|
|
ArrayRef<WriteState> getDefs() const { return Defs; }
|
|
SmallVectorImpl<ReadState> &getUses() { return Uses; }
|
|
ArrayRef<ReadState> getUses() const { return Uses; }
|
|
const InstrDesc &getDesc() const { return Desc; }
|
|
|
|
unsigned getLatency() const { return Desc.MaxLatency; }
|
|
unsigned getNumMicroOps() const { return Desc.NumMicroOps; }
|
|
unsigned getOpcode() const { return Opcode; }
|
|
|
|
/// Return the MCAOperand which corresponds to index Idx within the original
|
|
/// MCInst.
|
|
const MCAOperand *getOperand(const unsigned Idx) const {
|
|
auto It = std::find_if(
|
|
Operands.begin(), Operands.end(),
|
|
[&Idx](const MCAOperand &Op) { return Op.getIndex() == Idx; });
|
|
if (It == Operands.end())
|
|
return nullptr;
|
|
return &(*It);
|
|
}
|
|
unsigned getNumOperands() const { return Operands.size(); }
|
|
void addOperand(const MCAOperand Op) { Operands.push_back(Op); }
|
|
|
|
bool hasDependentUsers() const {
|
|
return any_of(Defs,
|
|
[](const WriteState &Def) { return Def.getNumUsers() > 0; });
|
|
}
|
|
|
|
unsigned getNumUsers() const {
|
|
unsigned NumUsers = 0;
|
|
for (const WriteState &Def : Defs)
|
|
NumUsers += Def.getNumUsers();
|
|
return NumUsers;
|
|
}
|
|
|
|
// Returns true if this instruction is a candidate for move elimination.
|
|
bool isOptimizableMove() const { return IsOptimizableMove; }
|
|
void setOptimizableMove() { IsOptimizableMove = true; }
|
|
bool isMemOp() const { return Desc.MayLoad || Desc.MayStore; }
|
|
};
|
|
|
|
/// An instruction propagated through the simulated instruction pipeline.
|
|
///
|
|
/// This class is used to monitor changes to the internal state of instructions
|
|
/// that are sent to the various components of the simulated hardware pipeline.
|
|
class Instruction : public InstructionBase {
|
|
enum InstrStage {
|
|
IS_INVALID, // Instruction in an invalid state.
|
|
IS_DISPATCHED, // Instruction dispatched but operands are not ready.
|
|
IS_PENDING, // Instruction is not ready, but operand latency is known.
|
|
IS_READY, // Instruction dispatched and operands ready.
|
|
IS_EXECUTING, // Instruction issued.
|
|
IS_EXECUTED, // Instruction executed. Values are written back.
|
|
IS_RETIRED // Instruction retired.
|
|
};
|
|
|
|
// The current instruction stage.
|
|
enum InstrStage Stage;
|
|
|
|
// This value defaults to the instruction latency. This instruction is
|
|
// considered executed when field CyclesLeft goes to zero.
|
|
int CyclesLeft;
|
|
|
|
// Retire Unit token ID for this instruction.
|
|
unsigned RCUTokenID;
|
|
|
|
// LS token ID for this instruction.
|
|
// This field is set to the invalid null token if this is not a memory
|
|
// operation.
|
|
unsigned LSUTokenID;
|
|
|
|
// A resource mask which identifies buffered resources consumed by this
|
|
// instruction at dispatch stage. In the absence of macro-fusion, this value
|
|
// should always match the value of field `UsedBuffers` from the instruction
|
|
// descriptor (see field InstrBase::Desc).
|
|
uint64_t UsedBuffers;
|
|
|
|
// Critical register dependency.
|
|
CriticalDependency CriticalRegDep;
|
|
|
|
// Critical memory dependency.
|
|
CriticalDependency CriticalMemDep;
|
|
|
|
// A bitmask of busy processor resource units.
|
|
// This field is set to zero only if execution is not delayed during this
|
|
// cycle because of unavailable pipeline resources.
|
|
uint64_t CriticalResourceMask;
|
|
|
|
// True if this instruction has been optimized at register renaming stage.
|
|
bool IsEliminated;
|
|
|
|
public:
|
|
Instruction(const InstrDesc &D, const unsigned Opcode)
|
|
: InstructionBase(D, Opcode), Stage(IS_INVALID),
|
|
CyclesLeft(UNKNOWN_CYCLES), RCUTokenID(0), LSUTokenID(0),
|
|
UsedBuffers(D.UsedBuffers), CriticalRegDep(), CriticalMemDep(),
|
|
CriticalResourceMask(0), IsEliminated(false) {}
|
|
|
|
unsigned getRCUTokenID() const { return RCUTokenID; }
|
|
unsigned getLSUTokenID() const { return LSUTokenID; }
|
|
void setLSUTokenID(unsigned LSUTok) { LSUTokenID = LSUTok; }
|
|
|
|
uint64_t getUsedBuffers() const { return UsedBuffers; }
|
|
void setUsedBuffers(uint64_t Mask) { UsedBuffers = Mask; }
|
|
void clearUsedBuffers() { UsedBuffers = 0ULL; }
|
|
|
|
int getCyclesLeft() const { return CyclesLeft; }
|
|
|
|
// Transition to the dispatch stage, and assign a RCUToken to this
|
|
// instruction. The RCUToken is used to track the completion of every
|
|
// register write performed by this instruction.
|
|
void dispatch(unsigned RCUTokenID);
|
|
|
|
// Instruction issued. Transition to the IS_EXECUTING state, and update
|
|
// all the register definitions.
|
|
void execute(unsigned IID);
|
|
|
|
// Force a transition from the IS_DISPATCHED state to the IS_READY or
|
|
// IS_PENDING state. State transitions normally occur either at the beginning
|
|
// of a new cycle (see method cycleEvent()), or as a result of another issue
|
|
// event. This method is called every time the instruction might have changed
|
|
// in state. It internally delegates to method updateDispatched() and
|
|
// updateWaiting().
|
|
void update();
|
|
bool updateDispatched();
|
|
bool updatePending();
|
|
|
|
bool isDispatched() const { return Stage == IS_DISPATCHED; }
|
|
bool isPending() const { return Stage == IS_PENDING; }
|
|
bool isReady() const { return Stage == IS_READY; }
|
|
bool isExecuting() const { return Stage == IS_EXECUTING; }
|
|
bool isExecuted() const { return Stage == IS_EXECUTED; }
|
|
bool isRetired() const { return Stage == IS_RETIRED; }
|
|
bool isEliminated() const { return IsEliminated; }
|
|
|
|
// Forces a transition from state IS_DISPATCHED to state IS_EXECUTED.
|
|
void forceExecuted();
|
|
void setEliminated() { IsEliminated = true; }
|
|
|
|
void retire() {
|
|
assert(isExecuted() && "Instruction is in an invalid state!");
|
|
Stage = IS_RETIRED;
|
|
}
|
|
|
|
const CriticalDependency &getCriticalRegDep() const { return CriticalRegDep; }
|
|
const CriticalDependency &getCriticalMemDep() const { return CriticalMemDep; }
|
|
const CriticalDependency &computeCriticalRegDep();
|
|
void setCriticalMemDep(const CriticalDependency &MemDep) {
|
|
CriticalMemDep = MemDep;
|
|
}
|
|
|
|
uint64_t getCriticalResourceMask() const { return CriticalResourceMask; }
|
|
void setCriticalResourceMask(uint64_t ResourceMask) {
|
|
CriticalResourceMask = ResourceMask;
|
|
}
|
|
|
|
void cycleEvent();
|
|
};
|
|
|
|
/// An InstRef contains both a SourceMgr index and Instruction pair. The index
|
|
/// is used as a unique identifier for the instruction. MCA will make use of
|
|
/// this index as a key throughout MCA.
|
|
class InstRef {
|
|
std::pair<unsigned, Instruction *> Data;
|
|
|
|
public:
|
|
InstRef() : Data(std::make_pair(0, nullptr)) {}
|
|
InstRef(unsigned Index, Instruction *I) : Data(std::make_pair(Index, I)) {}
|
|
|
|
bool operator==(const InstRef &Other) const { return Data == Other.Data; }
|
|
bool operator!=(const InstRef &Other) const { return Data != Other.Data; }
|
|
bool operator<(const InstRef &Other) const {
|
|
return Data.first < Other.Data.first;
|
|
}
|
|
|
|
unsigned getSourceIndex() const { return Data.first; }
|
|
Instruction *getInstruction() { return Data.second; }
|
|
const Instruction *getInstruction() const { return Data.second; }
|
|
|
|
/// Returns true if this references a valid instruction.
|
|
explicit operator bool() const { return Data.second != nullptr; }
|
|
|
|
/// Invalidate this reference.
|
|
void invalidate() { Data.second = nullptr; }
|
|
|
|
#ifndef NDEBUG
|
|
void print(raw_ostream &OS) const { OS << getSourceIndex(); }
|
|
#endif
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const InstRef &IR) {
|
|
IR.print(OS);
|
|
return OS;
|
|
}
|
|
#endif
|
|
|
|
} // namespace mca
|
|
} // namespace llvm
|
|
|
|
#endif // LLVM_MCA_INSTRUCTION_H
|