1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-30 23:42:52 +01:00
llvm-mirror/lib/MC/MCAssembler.cpp
2013-08-07 18:51:09 +00:00

1188 lines
40 KiB
C++

//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "assembler"
#include "llvm/MC/MCAssembler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
namespace stats {
STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
STATISTIC(EmittedRelaxableFragments,
"Number of emitted assembler fragments - relaxable");
STATISTIC(EmittedDataFragments,
"Number of emitted assembler fragments - data");
STATISTIC(EmittedCompactEncodedInstFragments,
"Number of emitted assembler fragments - compact encoded inst");
STATISTIC(EmittedAlignFragments,
"Number of emitted assembler fragments - align");
STATISTIC(EmittedFillFragments,
"Number of emitted assembler fragments - fill");
STATISTIC(EmittedOrgFragments,
"Number of emitted assembler fragments - org");
STATISTIC(evaluateFixup, "Number of evaluated fixups");
STATISTIC(FragmentLayouts, "Number of fragment layouts");
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
}
}
// FIXME FIXME FIXME: There are number of places in this file where we convert
// what is a 64-bit assembler value used for computation into a value in the
// object file, which may truncate it. We should detect that truncation where
// invalid and report errors back.
/* *** */
MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
: Assembler(Asm), LastValidFragment()
{
// Compute the section layout order. Virtual sections must go last.
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
if (!it->getSection().isVirtualSection())
SectionOrder.push_back(&*it);
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
if (it->getSection().isVirtualSection())
SectionOrder.push_back(&*it);
}
bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
const MCSectionData &SD = *F->getParent();
const MCFragment *LastValid = LastValidFragment.lookup(&SD);
if (!LastValid)
return false;
assert(LastValid->getParent() == F->getParent());
return F->getLayoutOrder() <= LastValid->getLayoutOrder();
}
void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
// If this fragment wasn't already valid, we don't need to do anything.
if (!isFragmentValid(F))
return;
// Otherwise, reset the last valid fragment to the previous fragment
// (if this is the first fragment, it will be NULL).
const MCSectionData &SD = *F->getParent();
LastValidFragment[&SD] = F->getPrevNode();
}
void MCAsmLayout::ensureValid(const MCFragment *F) const {
MCSectionData &SD = *F->getParent();
MCFragment *Cur = LastValidFragment[&SD];
if (!Cur)
Cur = &*SD.begin();
else
Cur = Cur->getNextNode();
// Advance the layout position until the fragment is valid.
while (!isFragmentValid(F)) {
assert(Cur && "Layout bookkeeping error");
const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
Cur = Cur->getNextNode();
}
}
uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
ensureValid(F);
assert(F->Offset != ~UINT64_C(0) && "Address not set!");
return F->Offset;
}
uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
const MCSymbol &S = SD->getSymbol();
// If this is a variable, then recursively evaluate now.
if (S.isVariable()) {
MCValue Target;
if (!S.getVariableValue()->EvaluateAsRelocatable(Target, *this))
report_fatal_error("unable to evaluate offset for variable '" +
S.getName() + "'");
// Verify that any used symbols are defined.
if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined())
report_fatal_error("unable to evaluate offset to undefined symbol '" +
Target.getSymA()->getSymbol().getName() + "'");
if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined())
report_fatal_error("unable to evaluate offset to undefined symbol '" +
Target.getSymB()->getSymbol().getName() + "'");
uint64_t Offset = Target.getConstant();
if (Target.getSymA())
Offset += getSymbolOffset(&Assembler.getSymbolData(
Target.getSymA()->getSymbol()));
if (Target.getSymB())
Offset -= getSymbolOffset(&Assembler.getSymbolData(
Target.getSymB()->getSymbol()));
return Offset;
}
assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!");
return getFragmentOffset(SD->getFragment()) + SD->getOffset();
}
uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
// The size is the last fragment's end offset.
const MCFragment &F = SD->getFragmentList().back();
return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
}
uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
// Virtual sections have no file size.
if (SD->getSection().isVirtualSection())
return 0;
// Otherwise, the file size is the same as the address space size.
return getSectionAddressSize(SD);
}
uint64_t MCAsmLayout::computeBundlePadding(const MCFragment *F,
uint64_t FOffset, uint64_t FSize) {
uint64_t BundleSize = Assembler.getBundleAlignSize();
assert(BundleSize > 0 &&
"computeBundlePadding should only be called if bundling is enabled");
uint64_t BundleMask = BundleSize - 1;
uint64_t OffsetInBundle = FOffset & BundleMask;
uint64_t EndOfFragment = OffsetInBundle + FSize;
// There are two kinds of bundling restrictions:
//
// 1) For alignToBundleEnd(), add padding to ensure that the fragment will
// *end* on a bundle boundary.
// 2) Otherwise, check if the fragment would cross a bundle boundary. If it
// would, add padding until the end of the bundle so that the fragment
// will start in a new one.
if (F->alignToBundleEnd()) {
// Three possibilities here:
//
// A) The fragment just happens to end at a bundle boundary, so we're good.
// B) The fragment ends before the current bundle boundary: pad it just
// enough to reach the boundary.
// C) The fragment ends after the current bundle boundary: pad it until it
// reaches the end of the next bundle boundary.
//
// Note: this code could be made shorter with some modulo trickery, but it's
// intentionally kept in its more explicit form for simplicity.
if (EndOfFragment == BundleSize)
return 0;
else if (EndOfFragment < BundleSize)
return BundleSize - EndOfFragment;
else { // EndOfFragment > BundleSize
return 2 * BundleSize - EndOfFragment;
}
} else if (EndOfFragment > BundleSize)
return BundleSize - OffsetInBundle;
else
return 0;
}
/* *** */
MCFragment::MCFragment() : Kind(FragmentType(~0)) {
}
MCFragment::~MCFragment() {
}
MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
: Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0))
{
if (Parent)
Parent->getFragmentList().push_back(this);
}
/* *** */
MCEncodedFragment::~MCEncodedFragment() {
}
/* *** */
MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() {
}
/* *** */
MCSectionData::MCSectionData() : Section(0) {}
MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
: Section(&_Section),
Ordinal(~UINT32_C(0)),
Alignment(1),
BundleLockState(NotBundleLocked), BundleGroupBeforeFirstInst(false),
HasInstructions(false)
{
if (A)
A->getSectionList().push_back(this);
}
MCSectionData::iterator
MCSectionData::getSubsectionInsertionPoint(unsigned Subsection) {
if (Subsection == 0 && SubsectionFragmentMap.empty())
return end();
SmallVectorImpl<std::pair<unsigned, MCFragment *> >::iterator MI =
std::lower_bound(SubsectionFragmentMap.begin(), SubsectionFragmentMap.end(),
std::make_pair(Subsection, (MCFragment *)0));
bool ExactMatch = false;
if (MI != SubsectionFragmentMap.end()) {
ExactMatch = MI->first == Subsection;
if (ExactMatch)
++MI;
}
iterator IP;
if (MI == SubsectionFragmentMap.end())
IP = end();
else
IP = MI->second;
if (!ExactMatch && Subsection != 0) {
// The GNU as documentation claims that subsections have an alignment of 4,
// although this appears not to be the case.
MCFragment *F = new MCDataFragment();
SubsectionFragmentMap.insert(MI, std::make_pair(Subsection, F));
getFragmentList().insert(IP, F);
F->setParent(this);
}
return IP;
}
/* *** */
MCSymbolData::MCSymbolData() : Symbol(0) {}
MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
uint64_t _Offset, MCAssembler *A)
: Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
IsExternal(false), IsPrivateExtern(false),
CommonSize(0), SymbolSize(0), CommonAlign(0),
Flags(0), Index(0)
{
if (A)
A->getSymbolList().push_back(this);
}
/* *** */
MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
raw_ostream &OS_)
: Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
OS(OS_), BundleAlignSize(0), RelaxAll(false), NoExecStack(false),
SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
}
MCAssembler::~MCAssembler() {
}
void MCAssembler::reset() {
Sections.clear();
Symbols.clear();
SectionMap.clear();
SymbolMap.clear();
IndirectSymbols.clear();
DataRegions.clear();
ThumbFuncs.clear();
RelaxAll = false;
NoExecStack = false;
SubsectionsViaSymbols = false;
ELFHeaderEFlags = 0;
// reset objects owned by us
getBackend().reset();
getEmitter().reset();
getWriter().reset();
}
bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
// Non-temporary labels should always be visible to the linker.
if (!Symbol.isTemporary())
return true;
// Absolute temporary labels are never visible.
if (!Symbol.isInSection())
return false;
// Otherwise, check if the section requires symbols even for temporary labels.
return getBackend().doesSectionRequireSymbols(Symbol.getSection());
}
const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
// Linker visible symbols define atoms.
if (isSymbolLinkerVisible(SD->getSymbol()))
return SD;
// Absolute and undefined symbols have no defining atom.
if (!SD->getFragment())
return 0;
// Non-linker visible symbols in sections which can't be atomized have no
// defining atom.
if (!getBackend().isSectionAtomizable(
SD->getFragment()->getParent()->getSection()))
return 0;
// Otherwise, return the atom for the containing fragment.
return SD->getFragment()->getAtom();
}
bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
const MCFixup &Fixup, const MCFragment *DF,
MCValue &Target, uint64_t &Value) const {
++stats::evaluateFixup;
if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout))
getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
bool IsPCRel = Backend.getFixupKindInfo(
Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
bool IsResolved;
if (IsPCRel) {
if (Target.getSymB()) {
IsResolved = false;
} else if (!Target.getSymA()) {
IsResolved = false;
} else {
const MCSymbolRefExpr *A = Target.getSymA();
const MCSymbol &SA = A->getSymbol();
if (A->getKind() != MCSymbolRefExpr::VK_None ||
SA.AliasedSymbol().isUndefined()) {
IsResolved = false;
} else {
const MCSymbolData &DataA = getSymbolData(SA);
IsResolved =
getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
*DF, false, true);
}
}
} else {
IsResolved = Target.isAbsolute();
}
Value = Target.getConstant();
if (const MCSymbolRefExpr *A = Target.getSymA()) {
const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
if (Sym.isDefined())
Value += Layout.getSymbolOffset(&getSymbolData(Sym));
}
if (const MCSymbolRefExpr *B = Target.getSymB()) {
const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
if (Sym.isDefined())
Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
}
bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
assert((ShouldAlignPC ? IsPCRel : true) &&
"FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
if (IsPCRel) {
uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
// A number of ARM fixups in Thumb mode require that the effective PC
// address be determined as the 32-bit aligned version of the actual offset.
if (ShouldAlignPC) Offset &= ~0x3;
Value -= Offset;
}
// Let the backend adjust the fixup value if necessary, including whether
// we need a relocation.
Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
IsResolved);
return IsResolved;
}
uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
const MCFragment &F) const {
switch (F.getKind()) {
case MCFragment::FT_Data:
case MCFragment::FT_Relaxable:
case MCFragment::FT_CompactEncodedInst:
return cast<MCEncodedFragment>(F).getContents().size();
case MCFragment::FT_Fill:
return cast<MCFillFragment>(F).getSize();
case MCFragment::FT_LEB:
return cast<MCLEBFragment>(F).getContents().size();
case MCFragment::FT_Align: {
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
unsigned Offset = Layout.getFragmentOffset(&AF);
unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
// If we are padding with nops, force the padding to be larger than the
// minimum nop size.
if (Size > 0 && AF.hasEmitNops()) {
while (Size % getBackend().getMinimumNopSize())
Size += AF.getAlignment();
}
if (Size > AF.getMaxBytesToEmit())
return 0;
return Size;
}
case MCFragment::FT_Org: {
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
int64_t TargetLocation;
if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
report_fatal_error("expected assembly-time absolute expression");
// FIXME: We need a way to communicate this error.
uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
int64_t Size = TargetLocation - FragmentOffset;
if (Size < 0 || Size >= 0x40000000)
report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
"' (at offset '" + Twine(FragmentOffset) + "')");
return Size;
}
case MCFragment::FT_Dwarf:
return cast<MCDwarfLineAddrFragment>(F).getContents().size();
case MCFragment::FT_DwarfFrame:
return cast<MCDwarfCallFrameFragment>(F).getContents().size();
}
llvm_unreachable("invalid fragment kind");
}
void MCAsmLayout::layoutFragment(MCFragment *F) {
MCFragment *Prev = F->getPrevNode();
// We should never try to recompute something which is valid.
assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
// We should never try to compute the fragment layout if its predecessor
// isn't valid.
assert((!Prev || isFragmentValid(Prev)) &&
"Attempt to compute fragment before its predecessor!");
++stats::FragmentLayouts;
// Compute fragment offset and size.
if (Prev)
F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
else
F->Offset = 0;
LastValidFragment[F->getParent()] = F;
// If bundling is enabled and this fragment has instructions in it, it has to
// obey the bundling restrictions. With padding, we'll have:
//
//
// BundlePadding
// |||
// -------------------------------------
// Prev |##########| F |
// -------------------------------------
// ^
// |
// F->Offset
//
// The fragment's offset will point to after the padding, and its computed
// size won't include the padding.
//
if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
assert(isa<MCEncodedFragment>(F) &&
"Only MCEncodedFragment implementations have instructions");
uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
if (FSize > Assembler.getBundleAlignSize())
report_fatal_error("Fragment can't be larger than a bundle size");
uint64_t RequiredBundlePadding = computeBundlePadding(F, F->Offset, FSize);
if (RequiredBundlePadding > UINT8_MAX)
report_fatal_error("Padding cannot exceed 255 bytes");
F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
F->Offset += RequiredBundlePadding;
}
}
/// \brief Write the contents of a fragment to the given object writer. Expects
/// a MCEncodedFragment.
static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) {
const MCEncodedFragment &EF = cast<MCEncodedFragment>(F);
OW->WriteBytes(EF.getContents());
}
/// \brief Write the fragment \p F to the output file.
static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment &F) {
MCObjectWriter *OW = &Asm.getWriter();
// FIXME: Embed in fragments instead?
uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
// Should NOP padding be written out before this fragment?
unsigned BundlePadding = F.getBundlePadding();
if (BundlePadding > 0) {
assert(Asm.isBundlingEnabled() &&
"Writing bundle padding with disabled bundling");
assert(F.hasInstructions() &&
"Writing bundle padding for a fragment without instructions");
unsigned TotalLength = BundlePadding + static_cast<unsigned>(FragmentSize);
if (F.alignToBundleEnd() && TotalLength > Asm.getBundleAlignSize()) {
// If the padding itself crosses a bundle boundary, it must be emitted
// in 2 pieces, since even nop instructions must not cross boundaries.
// v--------------v <- BundleAlignSize
// v---------v <- BundlePadding
// ----------------------------
// | Prev |####|####| F |
// ----------------------------
// ^-------------------^ <- TotalLength
unsigned DistanceToBoundary = TotalLength - Asm.getBundleAlignSize();
if (!Asm.getBackend().writeNopData(DistanceToBoundary, OW))
report_fatal_error("unable to write NOP sequence of " +
Twine(DistanceToBoundary) + " bytes");
BundlePadding -= DistanceToBoundary;
}
if (!Asm.getBackend().writeNopData(BundlePadding, OW))
report_fatal_error("unable to write NOP sequence of " +
Twine(BundlePadding) + " bytes");
}
// This variable (and its dummy usage) is to participate in the assert at
// the end of the function.
uint64_t Start = OW->getStream().tell();
(void) Start;
++stats::EmittedFragments;
switch (F.getKind()) {
case MCFragment::FT_Align: {
++stats::EmittedAlignFragments;
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
uint64_t Count = FragmentSize / AF.getValueSize();
// FIXME: This error shouldn't actually occur (the front end should emit
// multiple .align directives to enforce the semantics it wants), but is
// severe enough that we want to report it. How to handle this?
if (Count * AF.getValueSize() != FragmentSize)
report_fatal_error("undefined .align directive, value size '" +
Twine(AF.getValueSize()) +
"' is not a divisor of padding size '" +
Twine(FragmentSize) + "'");
// See if we are aligning with nops, and if so do that first to try to fill
// the Count bytes. Then if that did not fill any bytes or there are any
// bytes left to fill use the Value and ValueSize to fill the rest.
// If we are aligning with nops, ask that target to emit the right data.
if (AF.hasEmitNops()) {
if (!Asm.getBackend().writeNopData(Count, OW))
report_fatal_error("unable to write nop sequence of " +
Twine(Count) + " bytes");
break;
}
// Otherwise, write out in multiples of the value size.
for (uint64_t i = 0; i != Count; ++i) {
switch (AF.getValueSize()) {
default: llvm_unreachable("Invalid size!");
case 1: OW->Write8 (uint8_t (AF.getValue())); break;
case 2: OW->Write16(uint16_t(AF.getValue())); break;
case 4: OW->Write32(uint32_t(AF.getValue())); break;
case 8: OW->Write64(uint64_t(AF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Data:
++stats::EmittedDataFragments;
writeFragmentContents(F, OW);
break;
case MCFragment::FT_Relaxable:
++stats::EmittedRelaxableFragments;
writeFragmentContents(F, OW);
break;
case MCFragment::FT_CompactEncodedInst:
++stats::EmittedCompactEncodedInstFragments;
writeFragmentContents(F, OW);
break;
case MCFragment::FT_Fill: {
++stats::EmittedFillFragments;
const MCFillFragment &FF = cast<MCFillFragment>(F);
assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
switch (FF.getValueSize()) {
default: llvm_unreachable("Invalid size!");
case 1: OW->Write8 (uint8_t (FF.getValue())); break;
case 2: OW->Write16(uint16_t(FF.getValue())); break;
case 4: OW->Write32(uint32_t(FF.getValue())); break;
case 8: OW->Write64(uint64_t(FF.getValue())); break;
}
}
break;
}
case MCFragment::FT_LEB: {
const MCLEBFragment &LF = cast<MCLEBFragment>(F);
OW->WriteBytes(LF.getContents().str());
break;
}
case MCFragment::FT_Org: {
++stats::EmittedOrgFragments;
const MCOrgFragment &OF = cast<MCOrgFragment>(F);
for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
OW->Write8(uint8_t(OF.getValue()));
break;
}
case MCFragment::FT_Dwarf: {
const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
OW->WriteBytes(OF.getContents().str());
break;
}
case MCFragment::FT_DwarfFrame: {
const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
OW->WriteBytes(CF.getContents().str());
break;
}
}
assert(OW->getStream().tell() - Start == FragmentSize &&
"The stream should advance by fragment size");
}
void MCAssembler::writeSectionData(const MCSectionData *SD,
const MCAsmLayout &Layout) const {
// Ignore virtual sections.
if (SD->getSection().isVirtualSection()) {
assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
// Check that contents are only things legal inside a virtual section.
for (MCSectionData::const_iterator it = SD->begin(),
ie = SD->end(); it != ie; ++it) {
switch (it->getKind()) {
default: llvm_unreachable("Invalid fragment in virtual section!");
case MCFragment::FT_Data: {
// Check that we aren't trying to write a non-zero contents (or fixups)
// into a virtual section. This is to support clients which use standard
// directives to fill the contents of virtual sections.
const MCDataFragment &DF = cast<MCDataFragment>(*it);
assert(DF.fixup_begin() == DF.fixup_end() &&
"Cannot have fixups in virtual section!");
for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
assert(DF.getContents()[i] == 0 &&
"Invalid data value for virtual section!");
break;
}
case MCFragment::FT_Align:
// Check that we aren't trying to write a non-zero value into a virtual
// section.
assert((cast<MCAlignFragment>(it)->getValueSize() == 0 ||
cast<MCAlignFragment>(it)->getValue() == 0) &&
"Invalid align in virtual section!");
break;
case MCFragment::FT_Fill:
assert((cast<MCFillFragment>(it)->getValueSize() == 0 ||
cast<MCFillFragment>(it)->getValue() == 0) &&
"Invalid fill in virtual section!");
break;
}
}
return;
}
uint64_t Start = getWriter().getStream().tell();
(void)Start;
for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end();
it != ie; ++it)
writeFragment(*this, Layout, *it);
assert(getWriter().getStream().tell() - Start ==
Layout.getSectionAddressSize(SD));
}
uint64_t MCAssembler::handleFixup(const MCAsmLayout &Layout,
MCFragment &F,
const MCFixup &Fixup) {
// Evaluate the fixup.
MCValue Target;
uint64_t FixedValue;
if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
// The fixup was unresolved, we need a relocation. Inform the object
// writer of the relocation, and give it an opportunity to adjust the
// fixup value if need be.
getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
}
return FixedValue;
}
void MCAssembler::Finish() {
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - pre-layout\n--\n";
dump(); });
// Create the layout object.
MCAsmLayout Layout(*this);
// Create dummy fragments and assign section ordinals.
unsigned SectionIndex = 0;
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
// Create dummy fragments to eliminate any empty sections, this simplifies
// layout.
if (it->getFragmentList().empty())
new MCDataFragment(it);
it->setOrdinal(SectionIndex++);
}
// Assign layout order indices to sections and fragments.
for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
MCSectionData *SD = Layout.getSectionOrder()[i];
SD->setLayoutOrder(i);
unsigned FragmentIndex = 0;
for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end();
iFrag != iFragEnd; ++iFrag)
iFrag->setLayoutOrder(FragmentIndex++);
}
// Layout until everything fits.
while (layoutOnce(Layout))
continue;
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - post-relaxation\n--\n";
dump(); });
// Finalize the layout, including fragment lowering.
finishLayout(Layout);
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - final-layout\n--\n";
dump(); });
uint64_t StartOffset = OS.tell();
// Allow the object writer a chance to perform post-layout binding (for
// example, to set the index fields in the symbol data).
getWriter().ExecutePostLayoutBinding(*this, Layout);
// Evaluate and apply the fixups, generating relocation entries as necessary.
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
for (MCSectionData::iterator it2 = it->begin(),
ie2 = it->end(); it2 != ie2; ++it2) {
MCEncodedFragmentWithFixups *F =
dyn_cast<MCEncodedFragmentWithFixups>(it2);
if (F) {
for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(),
ie3 = F->fixup_end(); it3 != ie3; ++it3) {
MCFixup &Fixup = *it3;
uint64_t FixedValue = handleFixup(Layout, *F, Fixup);
getBackend().applyFixup(Fixup, F->getContents().data(),
F->getContents().size(), FixedValue);
}
}
}
}
// Write the object file.
getWriter().WriteObject(*this, Layout);
stats::ObjectBytes += OS.tell() - StartOffset;
}
bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
const MCRelaxableFragment *DF,
const MCAsmLayout &Layout) const {
// If we cannot resolve the fixup value, it requires relaxation.
MCValue Target;
uint64_t Value;
if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
return true;
return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
}
bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
const MCAsmLayout &Layout) const {
// If this inst doesn't ever need relaxation, ignore it. This occurs when we
// are intentionally pushing out inst fragments, or because we relaxed a
// previous instruction to one that doesn't need relaxation.
if (!getBackend().mayNeedRelaxation(F->getInst()))
return false;
for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
ie = F->fixup_end(); it != ie; ++it)
if (fixupNeedsRelaxation(*it, F, Layout))
return true;
return false;
}
bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
MCRelaxableFragment &F) {
if (!fragmentNeedsRelaxation(&F, Layout))
return false;
++stats::RelaxedInstructions;
// FIXME-PERF: We could immediately lower out instructions if we can tell
// they are fully resolved, to avoid retesting on later passes.
// Relax the fragment.
MCInst Relaxed;
getBackend().relaxInstruction(F.getInst(), Relaxed);
// Encode the new instruction.
//
// FIXME-PERF: If it matters, we could let the target do this. It can
// probably do so more efficiently in many cases.
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
VecOS.flush();
// Update the fragment.
F.setInst(Relaxed);
F.getContents() = Code;
F.getFixups() = Fixups;
return true;
}
bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
int64_t Value = 0;
uint64_t OldSize = LF.getContents().size();
bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout);
(void)IsAbs;
assert(IsAbs);
SmallString<8> &Data = LF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
if (LF.isSigned())
encodeSLEB128(Value, OSE);
else
encodeULEB128(Value, OSE);
OSE.flush();
return OldSize != LF.getContents().size();
}
bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
MCDwarfLineAddrFragment &DF) {
MCContext &Context = Layout.getAssembler().getContext();
int64_t AddrDelta = 0;
uint64_t OldSize = DF.getContents().size();
bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
(void)IsAbs;
assert(IsAbs);
int64_t LineDelta;
LineDelta = DF.getLineDelta();
SmallString<8> &Data = DF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
MCDwarfLineAddr::Encode(Context, LineDelta, AddrDelta, OSE);
OSE.flush();
return OldSize != Data.size();
}
bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
MCDwarfCallFrameFragment &DF) {
MCContext &Context = Layout.getAssembler().getContext();
int64_t AddrDelta = 0;
uint64_t OldSize = DF.getContents().size();
bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
(void)IsAbs;
assert(IsAbs);
SmallString<8> &Data = DF.getContents();
Data.clear();
raw_svector_ostream OSE(Data);
MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
OSE.flush();
return OldSize != Data.size();
}
bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) {
// Holds the first fragment which needed relaxing during this layout. It will
// remain NULL if none were relaxed.
// When a fragment is relaxed, all the fragments following it should get
// invalidated because their offset is going to change.
MCFragment *FirstRelaxedFragment = NULL;
// Attempt to relax all the fragments in the section.
for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) {
// Check if this is a fragment that needs relaxation.
bool RelaxedFrag = false;
switch(I->getKind()) {
default:
break;
case MCFragment::FT_Relaxable:
assert(!getRelaxAll() &&
"Did not expect a MCRelaxableFragment in RelaxAll mode");
RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
break;
case MCFragment::FT_Dwarf:
RelaxedFrag = relaxDwarfLineAddr(Layout,
*cast<MCDwarfLineAddrFragment>(I));
break;
case MCFragment::FT_DwarfFrame:
RelaxedFrag =
relaxDwarfCallFrameFragment(Layout,
*cast<MCDwarfCallFrameFragment>(I));
break;
case MCFragment::FT_LEB:
RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
break;
}
if (RelaxedFrag && !FirstRelaxedFragment)
FirstRelaxedFragment = I;
}
if (FirstRelaxedFragment) {
Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
return true;
}
return false;
}
bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
++stats::RelaxationSteps;
bool WasRelaxed = false;
for (iterator it = begin(), ie = end(); it != ie; ++it) {
MCSectionData &SD = *it;
while (layoutSectionOnce(Layout, SD))
WasRelaxed = true;
}
return WasRelaxed;
}
void MCAssembler::finishLayout(MCAsmLayout &Layout) {
// The layout is done. Mark every fragment as valid.
for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
}
}
// Debugging methods
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
OS << "<MCFixup" << " Offset:" << AF.getOffset()
<< " Value:" << *AF.getValue()
<< " Kind:" << AF.getKind() << ">";
return OS;
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void MCFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<";
switch (getKind()) {
case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
case MCFragment::FT_Data: OS << "MCDataFragment"; break;
case MCFragment::FT_CompactEncodedInst:
OS << "MCCompactEncodedInstFragment"; break;
case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
case MCFragment::FT_Relaxable: OS << "MCRelaxableFragment"; break;
case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
case MCFragment::FT_LEB: OS << "MCLEBFragment"; break;
}
OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
<< " Offset:" << Offset
<< " HasInstructions:" << hasInstructions()
<< " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
switch (getKind()) {
case MCFragment::FT_Align: {
const MCAlignFragment *AF = cast<MCAlignFragment>(this);
if (AF->hasEmitNops())
OS << " (emit nops)";
OS << "\n ";
OS << " Alignment:" << AF->getAlignment()
<< " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
<< " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
break;
}
case MCFragment::FT_Data: {
const MCDataFragment *DF = cast<MCDataFragment>(this);
OS << "\n ";
OS << " Contents:[";
const SmallVectorImpl<char> &Contents = DF->getContents();
for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
if (i) OS << ",";
OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
}
OS << "] (" << Contents.size() << " bytes)";
if (DF->fixup_begin() != DF->fixup_end()) {
OS << ",\n ";
OS << " Fixups:[";
for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
ie = DF->fixup_end(); it != ie; ++it) {
if (it != DF->fixup_begin()) OS << ",\n ";
OS << *it;
}
OS << "]";
}
break;
}
case MCFragment::FT_CompactEncodedInst: {
const MCCompactEncodedInstFragment *CEIF =
cast<MCCompactEncodedInstFragment>(this);
OS << "\n ";
OS << " Contents:[";
const SmallVectorImpl<char> &Contents = CEIF->getContents();
for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
if (i) OS << ",";
OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
}
OS << "] (" << Contents.size() << " bytes)";
break;
}
case MCFragment::FT_Fill: {
const MCFillFragment *FF = cast<MCFillFragment>(this);
OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
<< " Size:" << FF->getSize();
break;
}
case MCFragment::FT_Relaxable: {
const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
OS << "\n ";
OS << " Inst:";
F->getInst().dump_pretty(OS);
break;
}
case MCFragment::FT_Org: {
const MCOrgFragment *OF = cast<MCOrgFragment>(this);
OS << "\n ";
OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
break;
}
case MCFragment::FT_Dwarf: {
const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
OS << "\n ";
OS << " AddrDelta:" << OF->getAddrDelta()
<< " LineDelta:" << OF->getLineDelta();
break;
}
case MCFragment::FT_DwarfFrame: {
const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
OS << "\n ";
OS << " AddrDelta:" << CF->getAddrDelta();
break;
}
case MCFragment::FT_LEB: {
const MCLEBFragment *LF = cast<MCLEBFragment>(this);
OS << "\n ";
OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
break;
}
}
OS << ">";
}
void MCSectionData::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCSectionData";
OS << " Alignment:" << getAlignment()
<< " Fragments:[\n ";
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (it != begin()) OS << ",\n ";
it->dump();
}
OS << "]>";
}
void MCSymbolData::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCSymbolData Symbol:" << getSymbol()
<< " Fragment:" << getFragment() << " Offset:" << getOffset()
<< " Flags:" << getFlags() << " Index:" << getIndex();
if (isCommon())
OS << " (common, size:" << getCommonSize()
<< " align: " << getCommonAlignment() << ")";
if (isExternal())
OS << " (external)";
if (isPrivateExtern())
OS << " (private extern)";
OS << ">";
}
void MCAssembler::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCAssembler\n";
OS << " Sections:[\n ";
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (it != begin()) OS << ",\n ";
it->dump();
}
OS << "],\n";
OS << " Symbols:[";
for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
if (it != symbol_begin()) OS << ",\n ";
it->dump();
}
OS << "]>\n";
}
#endif
// anchors for MC*Fragment vtables
void MCEncodedFragment::anchor() { }
void MCEncodedFragmentWithFixups::anchor() { }
void MCDataFragment::anchor() { }
void MCCompactEncodedInstFragment::anchor() { }
void MCRelaxableFragment::anchor() { }
void MCAlignFragment::anchor() { }
void MCFillFragment::anchor() { }
void MCOrgFragment::anchor() { }
void MCLEBFragment::anchor() { }
void MCDwarfLineAddrFragment::anchor() { }
void MCDwarfCallFrameFragment::anchor() { }