1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Target/Sparc/SparcInstrInfo.td
2011-02-21 03:42:44 +00:00

826 lines
33 KiB
TableGen

//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Sparc instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "SparcInstrFormats.td"
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
// HasV9 - This predicate is true when the target processor supports V9
// instructions. Note that the machine may be running in 32-bit mode.
def HasV9 : Predicate<"Subtarget.isV9()">;
// HasNoV9 - This predicate is true when the target doesn't have V9
// instructions. Use of this is just a hack for the isel not having proper
// costs for V8 instructions that are more expensive than their V9 ones.
def HasNoV9 : Predicate<"!Subtarget.isV9()">;
// HasVIS - This is true when the target processor has VIS extensions.
def HasVIS : Predicate<"Subtarget.isVIS()">;
// UseDeprecatedInsts - This predicate is true when the target processor is a
// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
// to use when appropriate. In either of these cases, the instruction selector
// will pick deprecated instructions.
def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//
def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
def LO10 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
MVT::i32);
}]>;
def HI22 : SDNodeXForm<imm, [{
// Transformation function: shift the immediate value down into the low bits.
return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
}]>;
def SETHIimm : PatLeaf<(imm), [{
return (((unsigned)N->getZExtValue() >> 10) << 10) ==
(unsigned)N->getZExtValue();
}], HI22>;
// Addressing modes.
def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
// Address operands
def MEMrr : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops IntRegs, IntRegs);
}
def MEMri : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops IntRegs, i32imm);
}
// Branch targets have OtherVT type.
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;
// Operand for printing out a condition code.
let PrintMethod = "printCCOperand" in
def CCOp : Operand<i32>;
def SDTSPcmpfcc :
SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
def SDTSPbrcc :
SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
def SDTSPselectcc :
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
def SDTSPFTOI :
SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
def SDTSPITOF :
SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
// These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
def call : SDNode<"SPISD::CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
[SDNPHasChain, SDNPOptInGlue]>;
def flushw : SDNode<"SPISD::FLUSHW", SDTNone,
[SDNPHasChain]>;
def getPCX : Operand<i32> {
let PrintMethod = "printGetPCX";
}
//===----------------------------------------------------------------------===//
// SPARC Flag Conditions
//===----------------------------------------------------------------------===//
// Note that these values must be kept in sync with the CCOp::CondCode enum
// values.
class ICC_VAL<int N> : PatLeaf<(i32 N)>;
def ICC_NE : ICC_VAL< 9>; // Not Equal
def ICC_E : ICC_VAL< 1>; // Equal
def ICC_G : ICC_VAL<10>; // Greater
def ICC_LE : ICC_VAL< 2>; // Less or Equal
def ICC_GE : ICC_VAL<11>; // Greater or Equal
def ICC_L : ICC_VAL< 3>; // Less
def ICC_GU : ICC_VAL<12>; // Greater Unsigned
def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
def ICC_POS : ICC_VAL<14>; // Positive
def ICC_NEG : ICC_VAL< 6>; // Negative
def ICC_VC : ICC_VAL<15>; // Overflow Clear
def ICC_VS : ICC_VAL< 7>; // Overflow Set
class FCC_VAL<int N> : PatLeaf<(i32 N)>;
def FCC_U : FCC_VAL<23>; // Unordered
def FCC_G : FCC_VAL<22>; // Greater
def FCC_UG : FCC_VAL<21>; // Unordered or Greater
def FCC_L : FCC_VAL<20>; // Less
def FCC_UL : FCC_VAL<19>; // Unordered or Less
def FCC_LG : FCC_VAL<18>; // Less or Greater
def FCC_NE : FCC_VAL<17>; // Not Equal
def FCC_E : FCC_VAL<25>; // Equal
def FCC_UE : FCC_VAL<24>; // Unordered or Equal
def FCC_GE : FCC_VAL<25>; // Greater or Equal
def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal
def FCC_LE : FCC_VAL<27>; // Less or Equal
def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal
def FCC_O : FCC_VAL<29>; // Ordered
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//
/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
def rr : F3_1<2, Op3Val,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
!strconcat(OpcStr, " $b, $c, $dst"),
[(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
def ri : F3_2<2, Op3Val,
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
!strconcat(OpcStr, " $b, $c, $dst"),
[(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
}
/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
/// pattern.
multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
def rr : F3_1<2, Op3Val,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
!strconcat(OpcStr, " $b, $c, $dst"), []>;
def ri : F3_2<2, Op3Val,
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
!strconcat(OpcStr, " $b, $c, $dst"), []>;
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
// Pseudo instructions.
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSP<outs, ins, asmstr, pattern>;
// GETPCX for PIC
let Defs = [O7] in {
def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
}
let Defs = [O6], Uses = [O6] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
"!ADJCALLSTACKDOWN $amt",
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
"!ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
let hasSideEffects = 1, mayStore = 1 in {
let rd = 0, rs1 = 0, rs2 = 0 in
def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
"flushw",
[(flushw)]>, Requires<[HasV9]>;
let rd = 0, rs1 = 1, simm13 = 3 in
def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
"ta 3",
[(flushw)]>;
}
def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
"unimp $val", []>;
// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the
// fpmover pass.
let Predicates = [HasNoV9] in { // Only emit these in V8 mode.
def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
"!FpMOVD $src, $dst", []>;
def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
"!FpNEGD $src, $dst",
[(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
"!FpABSD $src, $dst",
[(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
}
// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
// instruction selection into a branch sequence. This has to handle all
// permutations of selection between i32/f32/f64 on ICC and FCC.
// Expanded after instruction selection.
let Uses = [ICC], usesCustomInserter = 1 in {
def SELECT_CC_Int_ICC
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
"; SELECT_CC_Int_ICC PSEUDO!",
[(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
imm:$Cond))]>;
def SELECT_CC_FP_ICC
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
"; SELECT_CC_FP_ICC PSEUDO!",
[(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
imm:$Cond))]>;
def SELECT_CC_DFP_ICC
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_DFP_ICC PSEUDO!",
[(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
imm:$Cond))]>;
}
let usesCustomInserter = 1, Uses = [FCC] in {
def SELECT_CC_Int_FCC
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
"; SELECT_CC_Int_FCC PSEUDO!",
[(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
imm:$Cond))]>;
def SELECT_CC_FP_FCC
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
"; SELECT_CC_FP_FCC PSEUDO!",
[(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
imm:$Cond))]>;
def SELECT_CC_DFP_FCC
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_DFP_FCC PSEUDO!",
[(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
imm:$Cond))]>;
}
// Section A.3 - Synthetic Instructions, p. 85
// special cases of JMPL:
let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
let rd = O7.Num, rs1 = G0.Num in
def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
"jmp %o7+$val", [(retflag simm13:$val)]>;
let rd = I7.Num, rs1 = G0.Num in
def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
"jmp %i7+$val", []>;
}
// Section B.1 - Load Integer Instructions, p. 90
def LDSBrr : F3_1<3, 0b001001,
(outs IntRegs:$dst), (ins MEMrr:$addr),
"ldsb [$addr], $dst",
[(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
def LDSBri : F3_2<3, 0b001001,
(outs IntRegs:$dst), (ins MEMri:$addr),
"ldsb [$addr], $dst",
[(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
def LDSHrr : F3_1<3, 0b001010,
(outs IntRegs:$dst), (ins MEMrr:$addr),
"ldsh [$addr], $dst",
[(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
def LDSHri : F3_2<3, 0b001010,
(outs IntRegs:$dst), (ins MEMri:$addr),
"ldsh [$addr], $dst",
[(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
def LDUBrr : F3_1<3, 0b000001,
(outs IntRegs:$dst), (ins MEMrr:$addr),
"ldub [$addr], $dst",
[(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
def LDUBri : F3_2<3, 0b000001,
(outs IntRegs:$dst), (ins MEMri:$addr),
"ldub [$addr], $dst",
[(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
def LDUHrr : F3_1<3, 0b000010,
(outs IntRegs:$dst), (ins MEMrr:$addr),
"lduh [$addr], $dst",
[(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
def LDUHri : F3_2<3, 0b000010,
(outs IntRegs:$dst), (ins MEMri:$addr),
"lduh [$addr], $dst",
[(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
def LDrr : F3_1<3, 0b000000,
(outs IntRegs:$dst), (ins MEMrr:$addr),
"ld [$addr], $dst",
[(set IntRegs:$dst, (load ADDRrr:$addr))]>;
def LDri : F3_2<3, 0b000000,
(outs IntRegs:$dst), (ins MEMri:$addr),
"ld [$addr], $dst",
[(set IntRegs:$dst, (load ADDRri:$addr))]>;
// Section B.2 - Load Floating-point Instructions, p. 92
def LDFrr : F3_1<3, 0b100000,
(outs FPRegs:$dst), (ins MEMrr:$addr),
"ld [$addr], $dst",
[(set FPRegs:$dst, (load ADDRrr:$addr))]>;
def LDFri : F3_2<3, 0b100000,
(outs FPRegs:$dst), (ins MEMri:$addr),
"ld [$addr], $dst",
[(set FPRegs:$dst, (load ADDRri:$addr))]>;
def LDDFrr : F3_1<3, 0b100011,
(outs DFPRegs:$dst), (ins MEMrr:$addr),
"ldd [$addr], $dst",
[(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
def LDDFri : F3_2<3, 0b100011,
(outs DFPRegs:$dst), (ins MEMri:$addr),
"ldd [$addr], $dst",
[(set DFPRegs:$dst, (load ADDRri:$addr))]>;
// Section B.4 - Store Integer Instructions, p. 95
def STBrr : F3_1<3, 0b000101,
(outs), (ins MEMrr:$addr, IntRegs:$src),
"stb $src, [$addr]",
[(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
def STBri : F3_2<3, 0b000101,
(outs), (ins MEMri:$addr, IntRegs:$src),
"stb $src, [$addr]",
[(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
def STHrr : F3_1<3, 0b000110,
(outs), (ins MEMrr:$addr, IntRegs:$src),
"sth $src, [$addr]",
[(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
def STHri : F3_2<3, 0b000110,
(outs), (ins MEMri:$addr, IntRegs:$src),
"sth $src, [$addr]",
[(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
def STrr : F3_1<3, 0b000100,
(outs), (ins MEMrr:$addr, IntRegs:$src),
"st $src, [$addr]",
[(store IntRegs:$src, ADDRrr:$addr)]>;
def STri : F3_2<3, 0b000100,
(outs), (ins MEMri:$addr, IntRegs:$src),
"st $src, [$addr]",
[(store IntRegs:$src, ADDRri:$addr)]>;
// Section B.5 - Store Floating-point Instructions, p. 97
def STFrr : F3_1<3, 0b100100,
(outs), (ins MEMrr:$addr, FPRegs:$src),
"st $src, [$addr]",
[(store FPRegs:$src, ADDRrr:$addr)]>;
def STFri : F3_2<3, 0b100100,
(outs), (ins MEMri:$addr, FPRegs:$src),
"st $src, [$addr]",
[(store FPRegs:$src, ADDRri:$addr)]>;
def STDFrr : F3_1<3, 0b100111,
(outs), (ins MEMrr:$addr, DFPRegs:$src),
"std $src, [$addr]",
[(store DFPRegs:$src, ADDRrr:$addr)]>;
def STDFri : F3_2<3, 0b100111,
(outs), (ins MEMri:$addr, DFPRegs:$src),
"std $src, [$addr]",
[(store DFPRegs:$src, ADDRri:$addr)]>;
// Section B.9 - SETHI Instruction, p. 104
def SETHIi: F2_1<0b100,
(outs IntRegs:$dst), (ins i32imm:$src),
"sethi $src, $dst",
[(set IntRegs:$dst, SETHIimm:$src)]>;
// Section B.10 - NOP Instruction, p. 105
// (It's a special case of SETHI)
let rd = 0, imm22 = 0 in
def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
// Section B.11 - Logical Instructions, p. 106
defm AND : F3_12<"and", 0b000001, and>;
def ANDNrr : F3_1<2, 0b000101,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
"andn $b, $c, $dst",
[(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
def ANDNri : F3_2<2, 0b000101,
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
"andn $b, $c, $dst", []>;
defm OR : F3_12<"or", 0b000010, or>;
def ORNrr : F3_1<2, 0b000110,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
"orn $b, $c, $dst",
[(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
def ORNri : F3_2<2, 0b000110,
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
"orn $b, $c, $dst", []>;
defm XOR : F3_12<"xor", 0b000011, xor>;
def XNORrr : F3_1<2, 0b000111,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
"xnor $b, $c, $dst",
[(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
def XNORri : F3_2<2, 0b000111,
(outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
"xnor $b, $c, $dst", []>;
// Section B.12 - Shift Instructions, p. 107
defm SLL : F3_12<"sll", 0b100101, shl>;
defm SRL : F3_12<"srl", 0b100110, srl>;
defm SRA : F3_12<"sra", 0b100111, sra>;
// Section B.13 - Add Instructions, p. 108
defm ADD : F3_12<"add", 0b000000, add>;
// "LEA" forms of add (patterns to make tblgen happy)
def LEA_ADDri : F3_2<2, 0b000000,
(outs IntRegs:$dst), (ins MEMri:$addr),
"add ${addr:arith}, $dst",
[(set IntRegs:$dst, ADDRri:$addr)]>;
let Defs = [ICC] in
defm ADDCC : F3_12<"addcc", 0b010000, addc>;
let Uses = [ICC] in
defm ADDX : F3_12<"addx", 0b001000, adde>;
// Section B.15 - Subtract Instructions, p. 110
defm SUB : F3_12 <"sub" , 0b000100, sub>;
let Uses = [ICC] in
defm SUBX : F3_12 <"subx" , 0b001100, sube>;
let Defs = [ICC] in
defm SUBCC : F3_12 <"subcc", 0b010100, SPcmpicc>;
let Uses = [ICC], Defs = [ICC] in
def SUBXCCrr: F3_1<2, 0b011100,
(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
"subxcc $b, $c, $dst", []>;
// Section B.18 - Multiply Instructions, p. 113
let Defs = [Y] in {
defm UMUL : F3_12np<"umul", 0b001010>;
defm SMUL : F3_12 <"smul", 0b001011, mul>;
}
// Section B.19 - Divide Instructions, p. 115
let Defs = [Y] in {
defm UDIV : F3_12np<"udiv", 0b001110>;
defm SDIV : F3_12np<"sdiv", 0b001111>;
}
// Section B.20 - SAVE and RESTORE, p. 117
defm SAVE : F3_12np<"save" , 0b111100>;
defm RESTORE : F3_12np<"restore", 0b111101>;
// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
// conditional branch class:
class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
: F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
}
let isBarrier = 1 in
def BA : BranchSP<0b1000, (ins brtarget:$dst),
"ba $dst",
[(br bb:$dst)]>;
// FIXME: the encoding for the JIT should look at the condition field.
let Uses = [ICC] in
def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
"b$cc $dst",
[(SPbricc bb:$dst, imm:$cc)]>;
// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
// floating-point conditional branch class:
class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
: F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
}
// FIXME: the encoding for the JIT should look at the condition field.
let Uses = [FCC] in
def FBCOND : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
"fb$cc $dst",
[(SPbrfcc bb:$dst, imm:$cc)]>;
// Section B.24 - Call and Link Instruction, p. 125
// This is the only Format 1 instruction
let Uses = [O6],
hasDelaySlot = 1, isCall = 1,
Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
ICC, FCC, Y] in {
def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
"call $dst", []> {
bits<30> disp;
let op = 1;
let Inst{29-0} = disp;
}
// indirect calls
def JMPLrr : F3_1<2, 0b111000,
(outs), (ins MEMrr:$ptr, variable_ops),
"call $ptr",
[(call ADDRrr:$ptr)]>;
def JMPLri : F3_2<2, 0b111000,
(outs), (ins MEMri:$ptr, variable_ops),
"call $ptr",
[(call ADDRri:$ptr)]>;
}
// Section B.28 - Read State Register Instructions
let Uses = [Y] in
def RDY : F3_1<2, 0b101000,
(outs IntRegs:$dst), (ins),
"rd %y, $dst", []>;
// Section B.29 - Write State Register Instructions
let Defs = [Y] in {
def WRYrr : F3_1<2, 0b110000,
(outs), (ins IntRegs:$b, IntRegs:$c),
"wr $b, $c, %y", []>;
def WRYri : F3_2<2, 0b110000,
(outs), (ins IntRegs:$b, i32imm:$c),
"wr $b, $c, %y", []>;
}
// Convert Integer to Floating-point Instructions, p. 141
def FITOS : F3_3<2, 0b110100, 0b011000100,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fitos $src, $dst",
[(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
def FITOD : F3_3<2, 0b110100, 0b011001000,
(outs DFPRegs:$dst), (ins FPRegs:$src),
"fitod $src, $dst",
[(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
// Convert Floating-point to Integer Instructions, p. 142
def FSTOI : F3_3<2, 0b110100, 0b011010001,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fstoi $src, $dst",
[(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
def FDTOI : F3_3<2, 0b110100, 0b011010010,
(outs FPRegs:$dst), (ins DFPRegs:$src),
"fdtoi $src, $dst",
[(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
// Convert between Floating-point Formats Instructions, p. 143
def FSTOD : F3_3<2, 0b110100, 0b011001001,
(outs DFPRegs:$dst), (ins FPRegs:$src),
"fstod $src, $dst",
[(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
def FDTOS : F3_3<2, 0b110100, 0b011000110,
(outs FPRegs:$dst), (ins DFPRegs:$src),
"fdtos $src, $dst",
[(set FPRegs:$dst, (fround DFPRegs:$src))]>;
// Floating-point Move Instructions, p. 144
def FMOVS : F3_3<2, 0b110100, 0b000000001,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fmovs $src, $dst", []>;
def FNEGS : F3_3<2, 0b110100, 0b000000101,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fnegs $src, $dst",
[(set FPRegs:$dst, (fneg FPRegs:$src))]>;
def FABSS : F3_3<2, 0b110100, 0b000001001,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fabss $src, $dst",
[(set FPRegs:$dst, (fabs FPRegs:$src))]>;
// Floating-point Square Root Instructions, p.145
def FSQRTS : F3_3<2, 0b110100, 0b000101001,
(outs FPRegs:$dst), (ins FPRegs:$src),
"fsqrts $src, $dst",
[(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
def FSQRTD : F3_3<2, 0b110100, 0b000101010,
(outs DFPRegs:$dst), (ins DFPRegs:$src),
"fsqrtd $src, $dst",
[(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
// Floating-point Add and Subtract Instructions, p. 146
def FADDS : F3_3<2, 0b110100, 0b001000001,
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
"fadds $src1, $src2, $dst",
[(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
def FADDD : F3_3<2, 0b110100, 0b001000010,
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
"faddd $src1, $src2, $dst",
[(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
def FSUBS : F3_3<2, 0b110100, 0b001000101,
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
"fsubs $src1, $src2, $dst",
[(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
def FSUBD : F3_3<2, 0b110100, 0b001000110,
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
"fsubd $src1, $src2, $dst",
[(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
// Floating-point Multiply and Divide Instructions, p. 147
def FMULS : F3_3<2, 0b110100, 0b001001001,
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
"fmuls $src1, $src2, $dst",
[(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
def FMULD : F3_3<2, 0b110100, 0b001001010,
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
"fmuld $src1, $src2, $dst",
[(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
def FSMULD : F3_3<2, 0b110100, 0b001101001,
(outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
"fsmuld $src1, $src2, $dst",
[(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
(fextend FPRegs:$src2)))]>;
def FDIVS : F3_3<2, 0b110100, 0b001001101,
(outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
"fdivs $src1, $src2, $dst",
[(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
def FDIVD : F3_3<2, 0b110100, 0b001001110,
(outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
"fdivd $src1, $src2, $dst",
[(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
// Floating-point Compare Instructions, p. 148
// Note: the 2nd template arg is different for these guys.
// Note 2: the result of a FCMP is not available until the 2nd cycle
// after the instr is retired, but there is no interlock. This behavior
// is modelled with a forced noop after the instruction.
let Defs = [FCC] in {
def FCMPS : F3_3<2, 0b110101, 0b001010001,
(outs), (ins FPRegs:$src1, FPRegs:$src2),
"fcmps $src1, $src2\n\tnop",
[(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
def FCMPD : F3_3<2, 0b110101, 0b001010010,
(outs), (ins DFPRegs:$src1, DFPRegs:$src2),
"fcmpd $src1, $src2\n\tnop",
[(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
}
//===----------------------------------------------------------------------===//
// V9 Instructions
//===----------------------------------------------------------------------===//
// V9 Conditional Moves.
let Predicates = [HasV9], Constraints = "$T = $dst" in {
// Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
// FIXME: Add instruction encodings for the JIT some day.
let Uses = [ICC] in {
def MOVICCrr
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
"mov$cc %icc, $F, $dst",
[(set IntRegs:$dst,
(SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
def MOVICCri
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
"mov$cc %icc, $F, $dst",
[(set IntRegs:$dst,
(SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
}
let Uses = [FCC] in {
def MOVFCCrr
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
"mov$cc %fcc0, $F, $dst",
[(set IntRegs:$dst,
(SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
def MOVFCCri
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
"mov$cc %fcc0, $F, $dst",
[(set IntRegs:$dst,
(SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
}
let Uses = [ICC] in {
def FMOVS_ICC
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
"fmovs$cc %icc, $F, $dst",
[(set FPRegs:$dst,
(SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
def FMOVD_ICC
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
"fmovd$cc %icc, $F, $dst",
[(set DFPRegs:$dst,
(SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
}
let Uses = [FCC] in {
def FMOVS_FCC
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
"fmovs$cc %fcc0, $F, $dst",
[(set FPRegs:$dst,
(SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
def FMOVD_FCC
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
"fmovd$cc %fcc0, $F, $dst",
[(set DFPRegs:$dst,
(SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
}
}
// Floating-Point Move Instructions, p. 164 of the V9 manual.
let Predicates = [HasV9] in {
def FMOVD : F3_3<2, 0b110100, 0b000000010,
(outs DFPRegs:$dst), (ins DFPRegs:$src),
"fmovd $src, $dst", []>;
def FNEGD : F3_3<2, 0b110100, 0b000000110,
(outs DFPRegs:$dst), (ins DFPRegs:$src),
"fnegd $src, $dst",
[(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
def FABSD : F3_3<2, 0b110100, 0b000001010,
(outs DFPRegs:$dst), (ins DFPRegs:$src),
"fabsd $src, $dst",
[(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
}
// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
// the top 32-bits before using it. To do this clearing, we use a SLLri X,0.
def POPCrr : F3_1<2, 0b101110,
(outs IntRegs:$dst), (ins IntRegs:$src),
"popc $src, $dst", []>, Requires<[HasV9]>;
def : Pat<(ctpop IntRegs:$src),
(POPCrr (SLLri IntRegs:$src, 0))>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// Small immediates.
def : Pat<(i32 simm13:$val),
(ORri G0, imm:$val)>;
// Arbitrary immediates.
def : Pat<(i32 imm:$val),
(ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
// subc
def : Pat<(subc IntRegs:$b, IntRegs:$c),
(SUBCCrr IntRegs:$b, IntRegs:$c)>;
def : Pat<(subc IntRegs:$b, simm13:$val),
(SUBCCri IntRegs:$b, imm:$val)>;
// Global addresses, constant pool entries
def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
// Add reg, lo. This is used when taking the addr of a global/constpool entry.
def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
(ADDri IntRegs:$r, tglobaladdr:$in)>;
def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
(ADDri IntRegs:$r, tconstpool:$in)>;
// Calls:
def : Pat<(call tglobaladdr:$dst),
(CALL tglobaladdr:$dst)>;
def : Pat<(call texternalsym:$dst),
(CALL texternalsym:$dst)>;
// Map integer extload's to zextloads.
def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
// zextload bool -> zextload byte
def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;