mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
fcc8ea3de2
The EXPECT_XY comparison functions all rely upon using the existing TypeSize comparison operators, which we are deprecating in favour of isKnownXY. I've changed all such cases to compare either the known minimum size or the fixed size. Differential Revision: https://reviews.llvm.org/D89531
187 lines
7.1 KiB
C++
187 lines
7.1 KiB
C++
//===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/TypeSize.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
TEST(ScalableVectorMVTsTest, IntegerMVTs) {
|
|
for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) {
|
|
ASSERT_TRUE(VecTy.isValid());
|
|
ASSERT_TRUE(VecTy.isInteger());
|
|
ASSERT_TRUE(VecTy.isVector());
|
|
ASSERT_TRUE(VecTy.isScalableVector());
|
|
ASSERT_TRUE(VecTy.getScalarType().isValid());
|
|
|
|
ASSERT_FALSE(VecTy.isFloatingPoint());
|
|
}
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, FloatMVTs) {
|
|
for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) {
|
|
ASSERT_TRUE(VecTy.isValid());
|
|
ASSERT_TRUE(VecTy.isFloatingPoint());
|
|
ASSERT_TRUE(VecTy.isVector());
|
|
ASSERT_TRUE(VecTy.isScalableVector());
|
|
ASSERT_TRUE(VecTy.getScalarType().isValid());
|
|
|
|
ASSERT_FALSE(VecTy.isInteger());
|
|
}
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, HelperFuncs) {
|
|
LLVMContext Ctx;
|
|
|
|
// Create with scalable flag
|
|
EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true);
|
|
ASSERT_TRUE(Vnx4i32.isScalableVector());
|
|
|
|
// Create with separate llvm::ElementCount
|
|
auto EltCnt = ElementCount::getScalable(2);
|
|
EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt);
|
|
ASSERT_TRUE(Vnx2i32.isScalableVector());
|
|
|
|
// Create with inline llvm::ElementCount
|
|
EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, ElementCount::getScalable(2));
|
|
ASSERT_TRUE(Vnx2i64.isScalableVector());
|
|
|
|
// Check that changing scalar types/element count works
|
|
EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64);
|
|
EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32);
|
|
|
|
// Check that operators work
|
|
EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64);
|
|
EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt.divideCoefficientBy(2)),
|
|
MVT::nxv1i64);
|
|
|
|
// Check that float->int conversion works
|
|
EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, ElementCount::getScalable(2));
|
|
EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64);
|
|
|
|
// Check fields inside llvm::ElementCount
|
|
EltCnt = Vnx4i32.getVectorElementCount();
|
|
EXPECT_EQ(EltCnt.getKnownMinValue(), 4U);
|
|
ASSERT_TRUE(EltCnt.isScalable());
|
|
|
|
// Check that fixed-length vector types aren't scalable.
|
|
EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8);
|
|
ASSERT_FALSE(V8i32.isScalableVector());
|
|
EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, ElementCount::getFixed(4));
|
|
ASSERT_FALSE(V4f64.isScalableVector());
|
|
|
|
// Check that llvm::ElementCount works for fixed-length types.
|
|
EltCnt = V8i32.getVectorElementCount();
|
|
EXPECT_EQ(EltCnt.getKnownMinValue(), 8U);
|
|
ASSERT_FALSE(EltCnt.isScalable());
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, IRToVTTranslation) {
|
|
LLVMContext Ctx;
|
|
|
|
Type *Int64Ty = Type::getInt64Ty(Ctx);
|
|
VectorType *ScV8Int64Ty =
|
|
VectorType::get(Int64Ty, ElementCount::getScalable(8));
|
|
|
|
// Check that we can map a scalable IR type to an MVT
|
|
MVT Mnxv8i64 = MVT::getVT(ScV8Int64Ty);
|
|
ASSERT_TRUE(Mnxv8i64.isScalableVector());
|
|
ASSERT_EQ(ScV8Int64Ty->getElementCount(), Mnxv8i64.getVectorElementCount());
|
|
ASSERT_EQ(MVT::getVT(ScV8Int64Ty->getElementType()),
|
|
Mnxv8i64.getScalarType());
|
|
|
|
// Check that we can map a scalable IR type to an EVT
|
|
EVT Enxv8i64 = EVT::getEVT(ScV8Int64Ty);
|
|
ASSERT_TRUE(Enxv8i64.isScalableVector());
|
|
ASSERT_EQ(ScV8Int64Ty->getElementCount(), Enxv8i64.getVectorElementCount());
|
|
ASSERT_EQ(EVT::getEVT(ScV8Int64Ty->getElementType()),
|
|
Enxv8i64.getScalarType());
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, VTToIRTranslation) {
|
|
LLVMContext Ctx;
|
|
|
|
EVT Enxv4f64 = EVT::getVectorVT(Ctx, MVT::f64, ElementCount::getScalable(4));
|
|
|
|
Type *Ty = Enxv4f64.getTypeForEVT(Ctx);
|
|
VectorType *ScV4Float64Ty = cast<VectorType>(Ty);
|
|
ASSERT_TRUE(isa<ScalableVectorType>(ScV4Float64Ty));
|
|
ASSERT_EQ(Enxv4f64.getVectorElementCount(), ScV4Float64Ty->getElementCount());
|
|
ASSERT_EQ(Enxv4f64.getScalarType().getTypeForEVT(Ctx),
|
|
ScV4Float64Ty->getElementType());
|
|
}
|
|
|
|
TEST(ScalableVectorMVTsTest, SizeQueries) {
|
|
LLVMContext Ctx;
|
|
|
|
EVT nxv4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/ true);
|
|
EVT nxv2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2, /*Scalable=*/ true);
|
|
EVT nxv2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2, /*Scalable=*/ true);
|
|
EVT nxv2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2, /*Scalable=*/ true);
|
|
|
|
EVT v4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4);
|
|
EVT v2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2);
|
|
EVT v2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2);
|
|
EVT v2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2);
|
|
|
|
// Check equivalence and ordering on scalable types.
|
|
EXPECT_EQ(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits());
|
|
EXPECT_EQ(nxv2f64.getSizeInBits(), nxv2i64.getSizeInBits());
|
|
EXPECT_NE(nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
|
|
EXPECT_LT(nxv2i32.getSizeInBits().getKnownMinSize(),
|
|
nxv2i64.getSizeInBits().getKnownMinSize());
|
|
EXPECT_LE(nxv4i32.getSizeInBits().getKnownMinSize(),
|
|
nxv2i64.getSizeInBits().getKnownMinSize());
|
|
EXPECT_GT(nxv4i32.getSizeInBits().getKnownMinSize(),
|
|
nxv2i32.getSizeInBits().getKnownMinSize());
|
|
EXPECT_GE(nxv2i64.getSizeInBits().getKnownMinSize(),
|
|
nxv4i32.getSizeInBits().getKnownMinSize());
|
|
|
|
// Check equivalence and ordering on fixed types.
|
|
EXPECT_EQ(v4i32.getSizeInBits(), v2i64.getSizeInBits());
|
|
EXPECT_EQ(v2f64.getSizeInBits(), v2i64.getSizeInBits());
|
|
EXPECT_NE(v2i32.getSizeInBits(), v4i32.getSizeInBits());
|
|
EXPECT_LT(v2i32.getFixedSizeInBits(), v2i64.getFixedSizeInBits());
|
|
EXPECT_LE(v4i32.getFixedSizeInBits(), v2i64.getFixedSizeInBits());
|
|
EXPECT_GT(v4i32.getFixedSizeInBits(), v2i32.getFixedSizeInBits());
|
|
EXPECT_GE(v2i64.getFixedSizeInBits(), v4i32.getFixedSizeInBits());
|
|
|
|
// Check that scalable and non-scalable types with the same minimum size
|
|
// are not considered equal.
|
|
ASSERT_TRUE(v4i32.getSizeInBits() != nxv4i32.getSizeInBits());
|
|
ASSERT_FALSE(v2i64.getSizeInBits() == nxv2f64.getSizeInBits());
|
|
|
|
// Check that we can obtain a known-exact size from a non-scalable type.
|
|
EXPECT_EQ(v4i32.getFixedSizeInBits(), 128U);
|
|
EXPECT_EQ(v2i64.getFixedSizeInBits(), 128U);
|
|
|
|
// Check that we can query the known minimum size for both scalable and
|
|
// fixed length types.
|
|
EXPECT_EQ(nxv2i32.getSizeInBits().getKnownMinSize(), 64U);
|
|
EXPECT_EQ(nxv2f64.getSizeInBits().getKnownMinSize(), 128U);
|
|
EXPECT_EQ(v2i32.getSizeInBits().getKnownMinSize(),
|
|
nxv2i32.getSizeInBits().getKnownMinSize());
|
|
|
|
// Check scalable property.
|
|
ASSERT_FALSE(v4i32.getSizeInBits().isScalable());
|
|
ASSERT_TRUE(nxv4i32.getSizeInBits().isScalable());
|
|
|
|
// Check convenience size scaling methods.
|
|
EXPECT_EQ(v2i32.getSizeInBits() * 2, v4i32.getSizeInBits());
|
|
EXPECT_EQ(2 * nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits());
|
|
EXPECT_EQ(nxv2f64.getSizeInBits() / 2, nxv2i32.getSizeInBits());
|
|
}
|
|
|
|
} // end anonymous namespace
|