1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/include/llvm/CodeGen/MachineFunction.h
Jeremy Morse 2a2a79e361 [DebugInstrRef][1/3] Track PHI values through register allocation
This patch introduces "DBG_PHI" instructions, a marker of where a PHI
instruction used to be, before PHI elimination. Under the instruction
referencing model, we want to know where every value in the function is
defined -- and a PHI, even if implicit, is such a place.

Just like instruction numbers, we can use this to identify a value to be
used as a variable value, but we don't need to know what instruction
defines that value, for example:

bb1:
   DBG_PHI $rax, 1
   [... more insts ... ]
bb2:
   DBG_INSTR_REF 1, 0, !1234, !DIExpression()

This specifies that on entry to bb1, whatever value is in $rax is known
as value number one -- and the later DBG_INSTR_REF marks the position
where variable !1234 should take on value number one.

PHI locations are stored in MachineFunction for the duration of the
regalloc phase in the DebugPHIPositions map. The map is populated by
PHIElimination, and then flushed back into the instruction stream by
virtregrewriter. A small amount of maintenence is needed in
LiveDebugVariables to account for registers being split, but only for
individual positions, not for entire ranges of blocks.

Differential Revision: https://reviews.llvm.org/D86812
2021-05-26 20:24:00 +01:00

1228 lines
47 KiB
C++

//===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Collect native machine code for a function. This class contains a list of
// MachineBasicBlock instances that make up the current compiled function.
//
// This class also contains pointers to various classes which hold
// target-specific information about the generated code.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEFUNCTION_H
#define LLVM_CODEGEN_MACHINEFUNCTION_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Recycler.h"
#include "llvm/Target/TargetOptions.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
namespace llvm {
class BasicBlock;
class BlockAddress;
class DataLayout;
class DebugLoc;
struct DenormalMode;
class DIExpression;
class DILocalVariable;
class DILocation;
class Function;
class GISelChangeObserver;
class GlobalValue;
class LLVMTargetMachine;
class MachineConstantPool;
class MachineFrameInfo;
class MachineFunction;
class MachineJumpTableInfo;
class MachineModuleInfo;
class MachineRegisterInfo;
class MCContext;
class MCInstrDesc;
class MCSymbol;
class MCSection;
class Pass;
class PseudoSourceValueManager;
class raw_ostream;
class SlotIndexes;
class StringRef;
class TargetRegisterClass;
class TargetSubtargetInfo;
struct WasmEHFuncInfo;
struct WinEHFuncInfo;
template <> struct ilist_alloc_traits<MachineBasicBlock> {
void deleteNode(MachineBasicBlock *MBB);
};
template <> struct ilist_callback_traits<MachineBasicBlock> {
void addNodeToList(MachineBasicBlock* N);
void removeNodeFromList(MachineBasicBlock* N);
template <class Iterator>
void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) {
assert(this == &OldList && "never transfer MBBs between functions");
}
};
/// MachineFunctionInfo - This class can be derived from and used by targets to
/// hold private target-specific information for each MachineFunction. Objects
/// of type are accessed/created with MF::getInfo and destroyed when the
/// MachineFunction is destroyed.
struct MachineFunctionInfo {
virtual ~MachineFunctionInfo();
/// Factory function: default behavior is to call new using the
/// supplied allocator.
///
/// This function can be overridden in a derive class.
template<typename Ty>
static Ty *create(BumpPtrAllocator &Allocator, MachineFunction &MF) {
return new (Allocator.Allocate<Ty>()) Ty(MF);
}
};
/// Properties which a MachineFunction may have at a given point in time.
/// Each of these has checking code in the MachineVerifier, and passes can
/// require that a property be set.
class MachineFunctionProperties {
// Possible TODO: Allow targets to extend this (perhaps by allowing the
// constructor to specify the size of the bit vector)
// Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be
// stated as the negative of "has vregs"
public:
// The properties are stated in "positive" form; i.e. a pass could require
// that the property hold, but not that it does not hold.
// Property descriptions:
// IsSSA: True when the machine function is in SSA form and virtual registers
// have a single def.
// NoPHIs: The machine function does not contain any PHI instruction.
// TracksLiveness: True when tracking register liveness accurately.
// While this property is set, register liveness information in basic block
// live-in lists and machine instruction operands (e.g. implicit defs) is
// accurate, kill flags are conservatively accurate (kill flag correctly
// indicates the last use of a register, an operand without kill flag may or
// may not be the last use of a register). This means it can be used to
// change the code in ways that affect the values in registers, for example
// by the register scavenger.
// When this property is cleared at a very late time, liveness is no longer
// reliable.
// NoVRegs: The machine function does not use any virtual registers.
// Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic
// instructions have been legalized; i.e., all instructions are now one of:
// - generic and always legal (e.g., COPY)
// - target-specific
// - legal pre-isel generic instructions.
// RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic
// virtual registers have been assigned to a register bank.
// Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel
// generic instructions have been eliminated; i.e., all instructions are now
// target-specific or non-pre-isel generic instructions (e.g., COPY).
// Since only pre-isel generic instructions can have generic virtual register
// operands, this also means that all generic virtual registers have been
// constrained to virtual registers (assigned to register classes) and that
// all sizes attached to them have been eliminated.
// TiedOpsRewritten: The twoaddressinstruction pass will set this flag, it
// means that tied-def have been rewritten to meet the RegConstraint.
enum class Property : unsigned {
IsSSA,
NoPHIs,
TracksLiveness,
NoVRegs,
FailedISel,
Legalized,
RegBankSelected,
Selected,
TiedOpsRewritten,
LastProperty = TiedOpsRewritten,
};
bool hasProperty(Property P) const {
return Properties[static_cast<unsigned>(P)];
}
MachineFunctionProperties &set(Property P) {
Properties.set(static_cast<unsigned>(P));
return *this;
}
MachineFunctionProperties &reset(Property P) {
Properties.reset(static_cast<unsigned>(P));
return *this;
}
/// Reset all the properties.
MachineFunctionProperties &reset() {
Properties.reset();
return *this;
}
MachineFunctionProperties &set(const MachineFunctionProperties &MFP) {
Properties |= MFP.Properties;
return *this;
}
MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) {
Properties.reset(MFP.Properties);
return *this;
}
// Returns true if all properties set in V (i.e. required by a pass) are set
// in this.
bool verifyRequiredProperties(const MachineFunctionProperties &V) const {
return !V.Properties.test(Properties);
}
/// Print the MachineFunctionProperties in human-readable form.
void print(raw_ostream &OS) const;
private:
BitVector Properties =
BitVector(static_cast<unsigned>(Property::LastProperty)+1);
};
struct SEHHandler {
/// Filter or finally function. Null indicates a catch-all.
const Function *FilterOrFinally;
/// Address of block to recover at. Null for a finally handler.
const BlockAddress *RecoverBA;
};
/// This structure is used to retain landing pad info for the current function.
struct LandingPadInfo {
MachineBasicBlock *LandingPadBlock; // Landing pad block.
SmallVector<MCSymbol *, 1> BeginLabels; // Labels prior to invoke.
SmallVector<MCSymbol *, 1> EndLabels; // Labels after invoke.
SmallVector<SEHHandler, 1> SEHHandlers; // SEH handlers active at this lpad.
MCSymbol *LandingPadLabel = nullptr; // Label at beginning of landing pad.
std::vector<int> TypeIds; // List of type ids (filters negative).
explicit LandingPadInfo(MachineBasicBlock *MBB)
: LandingPadBlock(MBB) {}
};
class MachineFunction {
Function &F;
const LLVMTargetMachine &Target;
const TargetSubtargetInfo *STI;
MCContext &Ctx;
MachineModuleInfo &MMI;
// RegInfo - Information about each register in use in the function.
MachineRegisterInfo *RegInfo;
// Used to keep track of target-specific per-machine function information for
// the target implementation.
MachineFunctionInfo *MFInfo;
// Keep track of objects allocated on the stack.
MachineFrameInfo *FrameInfo;
// Keep track of constants which are spilled to memory
MachineConstantPool *ConstantPool;
// Keep track of jump tables for switch instructions
MachineJumpTableInfo *JumpTableInfo;
// Keep track of the function section.
MCSection *Section = nullptr;
// Keeps track of Wasm exception handling related data. This will be null for
// functions that aren't using a wasm EH personality.
WasmEHFuncInfo *WasmEHInfo = nullptr;
// Keeps track of Windows exception handling related data. This will be null
// for functions that aren't using a funclet-based EH personality.
WinEHFuncInfo *WinEHInfo = nullptr;
// Function-level unique numbering for MachineBasicBlocks. When a
// MachineBasicBlock is inserted into a MachineFunction is it automatically
// numbered and this vector keeps track of the mapping from ID's to MBB's.
std::vector<MachineBasicBlock*> MBBNumbering;
// Unary encoding of basic block symbols is used to reduce size of ".strtab".
// Basic block number 'i' gets a prefix of length 'i'. The ith character also
// denotes the type of basic block number 'i'. Return blocks are marked with
// 'r', landing pads with 'l' and regular blocks with 'a'.
std::vector<char> BBSectionsSymbolPrefix;
// Pool-allocate MachineFunction-lifetime and IR objects.
BumpPtrAllocator Allocator;
// Allocation management for instructions in function.
Recycler<MachineInstr> InstructionRecycler;
// Allocation management for operand arrays on instructions.
ArrayRecycler<MachineOperand> OperandRecycler;
// Allocation management for basic blocks in function.
Recycler<MachineBasicBlock> BasicBlockRecycler;
// List of machine basic blocks in function
using BasicBlockListType = ilist<MachineBasicBlock>;
BasicBlockListType BasicBlocks;
/// FunctionNumber - This provides a unique ID for each function emitted in
/// this translation unit.
///
unsigned FunctionNumber;
/// Alignment - The alignment of the function.
Align Alignment;
/// ExposesReturnsTwice - True if the function calls setjmp or related
/// functions with attribute "returns twice", but doesn't have
/// the attribute itself.
/// This is used to limit optimizations which cannot reason
/// about the control flow of such functions.
bool ExposesReturnsTwice = false;
/// True if the function includes any inline assembly.
bool HasInlineAsm = false;
/// True if any WinCFI instruction have been emitted in this function.
bool HasWinCFI = false;
/// Current high-level properties of the IR of the function (e.g. is in SSA
/// form or whether registers have been allocated)
MachineFunctionProperties Properties;
// Allocation management for pseudo source values.
std::unique_ptr<PseudoSourceValueManager> PSVManager;
/// List of moves done by a function's prolog. Used to construct frame maps
/// by debug and exception handling consumers.
std::vector<MCCFIInstruction> FrameInstructions;
/// List of basic blocks immediately following calls to _setjmp. Used to
/// construct a table of valid longjmp targets for Windows Control Flow Guard.
std::vector<MCSymbol *> LongjmpTargets;
/// List of basic blocks that are the target of catchrets. Used to construct
/// a table of valid targets for Windows EHCont Guard.
std::vector<MCSymbol *> CatchretTargets;
/// \name Exception Handling
/// \{
/// List of LandingPadInfo describing the landing pad information.
std::vector<LandingPadInfo> LandingPads;
/// Map a landing pad's EH symbol to the call site indexes.
DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap;
/// Map a landing pad to its index.
DenseMap<const MachineBasicBlock *, unsigned> WasmLPadToIndexMap;
/// Map of invoke call site index values to associated begin EH_LABEL.
DenseMap<MCSymbol*, unsigned> CallSiteMap;
/// CodeView label annotations.
std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations;
bool CallsEHReturn = false;
bool CallsUnwindInit = false;
bool HasEHCatchret = false;
bool HasEHScopes = false;
bool HasEHFunclets = false;
/// Section Type for basic blocks, only relevant with basic block sections.
BasicBlockSection BBSectionsType = BasicBlockSection::None;
/// List of C++ TypeInfo used.
std::vector<const GlobalValue *> TypeInfos;
/// List of typeids encoding filters used.
std::vector<unsigned> FilterIds;
/// List of the indices in FilterIds corresponding to filter terminators.
std::vector<unsigned> FilterEnds;
EHPersonality PersonalityTypeCache = EHPersonality::Unknown;
/// \}
/// Clear all the members of this MachineFunction, but the ones used
/// to initialize again the MachineFunction.
/// More specifically, this deallocates all the dynamically allocated
/// objects and get rid of all the XXXInfo data structure, but keep
/// unchanged the references to Fn, Target, MMI, and FunctionNumber.
void clear();
/// Allocate and initialize the different members.
/// In particular, the XXXInfo data structure.
/// \pre Fn, Target, MMI, and FunctionNumber are properly set.
void init();
public:
struct VariableDbgInfo {
const DILocalVariable *Var;
const DIExpression *Expr;
// The Slot can be negative for fixed stack objects.
int Slot;
const DILocation *Loc;
VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
int Slot, const DILocation *Loc)
: Var(Var), Expr(Expr), Slot(Slot), Loc(Loc) {}
};
class Delegate {
virtual void anchor();
public:
virtual ~Delegate() = default;
/// Callback after an insertion. This should not modify the MI directly.
virtual void MF_HandleInsertion(MachineInstr &MI) = 0;
/// Callback before a removal. This should not modify the MI directly.
virtual void MF_HandleRemoval(MachineInstr &MI) = 0;
};
/// Structure used to represent pair of argument number after call lowering
/// and register used to transfer that argument.
/// For now we support only cases when argument is transferred through one
/// register.
struct ArgRegPair {
Register Reg;
uint16_t ArgNo;
ArgRegPair(Register R, unsigned Arg) : Reg(R), ArgNo(Arg) {
assert(Arg < (1 << 16) && "Arg out of range");
}
};
/// Vector of call argument and its forwarding register.
using CallSiteInfo = SmallVector<ArgRegPair, 1>;
using CallSiteInfoImpl = SmallVectorImpl<ArgRegPair>;
private:
Delegate *TheDelegate = nullptr;
GISelChangeObserver *Observer = nullptr;
using CallSiteInfoMap = DenseMap<const MachineInstr *, CallSiteInfo>;
/// Map a call instruction to call site arguments forwarding info.
CallSiteInfoMap CallSitesInfo;
/// A helper function that returns call site info for a give call
/// instruction if debug entry value support is enabled.
CallSiteInfoMap::iterator getCallSiteInfo(const MachineInstr *MI);
// Callbacks for insertion and removal.
void handleInsertion(MachineInstr &MI);
void handleRemoval(MachineInstr &MI);
friend struct ilist_traits<MachineInstr>;
public:
using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>;
VariableDbgInfoMapTy VariableDbgInfos;
/// A count of how many instructions in the function have had numbers
/// assigned to them. Used for debug value tracking, to determine the
/// next instruction number.
unsigned DebugInstrNumberingCount = 0;
/// Set value of DebugInstrNumberingCount field. Avoid using this unless
/// you're deserializing this data.
void setDebugInstrNumberingCount(unsigned Num);
/// Pair of instruction number and operand number.
using DebugInstrOperandPair = std::pair<unsigned, unsigned>;
/// Substitution map: from one <inst,operand> pair to another. Used to
/// record changes in where a value is defined, so that debug variable
/// locations can find it later.
std::map<DebugInstrOperandPair, DebugInstrOperandPair>
DebugValueSubstitutions;
/// Location of a PHI instruction that is also a debug-info variable value,
/// for the duration of register allocation. Loaded by the PHI-elimination
/// pass, and emitted as DBG_PHI instructions during VirtRegRewriter, with
/// maintenance applied by intermediate passes that edit registers (such as
/// coalescing and the allocator passes).
class DebugPHIRegallocPos {
public:
MachineBasicBlock *MBB; ///< Block where this PHI was originally located.
Register Reg; ///< VReg where the control-flow-merge happens.
unsigned SubReg; ///< Optional subreg qualifier within Reg.
DebugPHIRegallocPos(MachineBasicBlock *MBB, Register Reg, unsigned SubReg)
: MBB(MBB), Reg(Reg), SubReg(SubReg) {}
};
/// Map of debug instruction numbers to the position of their PHI instructions
/// during register allocation. See DebugPHIRegallocPos.
DenseMap<unsigned, DebugPHIRegallocPos> DebugPHIPositions;
/// Create a substitution between one <instr,operand> value to a different,
/// new value.
void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair);
/// Create substitutions for any tracked values in \p Old, to point at
/// \p New. Needed when we re-create an instruction during optimization,
/// which has the same signature (i.e., def operands in the same place) but
/// a modified instruction type, flags, or otherwise. An example: X86 moves
/// are sometimes transformed into equivalent LEAs.
/// If the two instructions are not the same opcode, limit which operands to
/// examine for substitutions to the first N operands by setting
/// \p MaxOperand.
void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New,
unsigned MaxOperand = UINT_MAX);
MachineFunction(Function &F, const LLVMTargetMachine &Target,
const TargetSubtargetInfo &STI, unsigned FunctionNum,
MachineModuleInfo &MMI);
MachineFunction(const MachineFunction &) = delete;
MachineFunction &operator=(const MachineFunction &) = delete;
~MachineFunction();
/// Reset the instance as if it was just created.
void reset() {
clear();
init();
}
/// Reset the currently registered delegate - otherwise assert.
void resetDelegate(Delegate *delegate) {
assert(TheDelegate == delegate &&
"Only the current delegate can perform reset!");
TheDelegate = nullptr;
}
/// Set the delegate. resetDelegate must be called before attempting
/// to set.
void setDelegate(Delegate *delegate) {
assert(delegate && !TheDelegate &&
"Attempted to set delegate to null, or to change it without "
"first resetting it!");
TheDelegate = delegate;
}
void setObserver(GISelChangeObserver *O) { Observer = O; }
GISelChangeObserver *getObserver() const { return Observer; }
MachineModuleInfo &getMMI() const { return MMI; }
MCContext &getContext() const { return Ctx; }
/// Returns the Section this function belongs to.
MCSection *getSection() const { return Section; }
/// Indicates the Section this function belongs to.
void setSection(MCSection *S) { Section = S; }
PseudoSourceValueManager &getPSVManager() const { return *PSVManager; }
/// Return the DataLayout attached to the Module associated to this MF.
const DataLayout &getDataLayout() const;
/// Return the LLVM function that this machine code represents
Function &getFunction() { return F; }
/// Return the LLVM function that this machine code represents
const Function &getFunction() const { return F; }
/// getName - Return the name of the corresponding LLVM function.
StringRef getName() const;
/// getFunctionNumber - Return a unique ID for the current function.
unsigned getFunctionNumber() const { return FunctionNumber; }
/// Returns true if this function has basic block sections enabled.
bool hasBBSections() const {
return (BBSectionsType == BasicBlockSection::All ||
BBSectionsType == BasicBlockSection::List ||
BBSectionsType == BasicBlockSection::Preset);
}
/// Returns true if basic block labels are to be generated for this function.
bool hasBBLabels() const {
return BBSectionsType == BasicBlockSection::Labels;
}
void setBBSectionsType(BasicBlockSection V) { BBSectionsType = V; }
/// Assign IsBeginSection IsEndSection fields for basic blocks in this
/// function.
void assignBeginEndSections();
/// getTarget - Return the target machine this machine code is compiled with
const LLVMTargetMachine &getTarget() const { return Target; }
/// getSubtarget - Return the subtarget for which this machine code is being
/// compiled.
const TargetSubtargetInfo &getSubtarget() const { return *STI; }
/// getSubtarget - This method returns a pointer to the specified type of
/// TargetSubtargetInfo. In debug builds, it verifies that the object being
/// returned is of the correct type.
template<typename STC> const STC &getSubtarget() const {
return *static_cast<const STC *>(STI);
}
/// getRegInfo - Return information about the registers currently in use.
MachineRegisterInfo &getRegInfo() { return *RegInfo; }
const MachineRegisterInfo &getRegInfo() const { return *RegInfo; }
/// getFrameInfo - Return the frame info object for the current function.
/// This object contains information about objects allocated on the stack
/// frame of the current function in an abstract way.
MachineFrameInfo &getFrameInfo() { return *FrameInfo; }
const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; }
/// getJumpTableInfo - Return the jump table info object for the current
/// function. This object contains information about jump tables in the
/// current function. If the current function has no jump tables, this will
/// return null.
const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; }
MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; }
/// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
/// does already exist, allocate one.
MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind);
/// getConstantPool - Return the constant pool object for the current
/// function.
MachineConstantPool *getConstantPool() { return ConstantPool; }
const MachineConstantPool *getConstantPool() const { return ConstantPool; }
/// getWasmEHFuncInfo - Return information about how the current function uses
/// Wasm exception handling. Returns null for functions that don't use wasm
/// exception handling.
const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; }
WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; }
/// getWinEHFuncInfo - Return information about how the current function uses
/// Windows exception handling. Returns null for functions that don't use
/// funclets for exception handling.
const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; }
WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; }
/// getAlignment - Return the alignment of the function.
Align getAlignment() const { return Alignment; }
/// setAlignment - Set the alignment of the function.
void setAlignment(Align A) { Alignment = A; }
/// ensureAlignment - Make sure the function is at least A bytes aligned.
void ensureAlignment(Align A) {
if (Alignment < A)
Alignment = A;
}
/// exposesReturnsTwice - Returns true if the function calls setjmp or
/// any other similar functions with attribute "returns twice" without
/// having the attribute itself.
bool exposesReturnsTwice() const {
return ExposesReturnsTwice;
}
/// setCallsSetJmp - Set a flag that indicates if there's a call to
/// a "returns twice" function.
void setExposesReturnsTwice(bool B) {
ExposesReturnsTwice = B;
}
/// Returns true if the function contains any inline assembly.
bool hasInlineAsm() const {
return HasInlineAsm;
}
/// Set a flag that indicates that the function contains inline assembly.
void setHasInlineAsm(bool B) {
HasInlineAsm = B;
}
bool hasWinCFI() const {
return HasWinCFI;
}
void setHasWinCFI(bool v) { HasWinCFI = v; }
/// True if this function needs frame moves for debug or exceptions.
bool needsFrameMoves() const;
/// Get the function properties
const MachineFunctionProperties &getProperties() const { return Properties; }
MachineFunctionProperties &getProperties() { return Properties; }
/// getInfo - Keep track of various per-function pieces of information for
/// backends that would like to do so.
///
template<typename Ty>
Ty *getInfo() {
if (!MFInfo)
MFInfo = Ty::template create<Ty>(Allocator, *this);
return static_cast<Ty*>(MFInfo);
}
template<typename Ty>
const Ty *getInfo() const {
return const_cast<MachineFunction*>(this)->getInfo<Ty>();
}
/// Returns the denormal handling type for the default rounding mode of the
/// function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const;
/// getBlockNumbered - MachineBasicBlocks are automatically numbered when they
/// are inserted into the machine function. The block number for a machine
/// basic block can be found by using the MBB::getNumber method, this method
/// provides the inverse mapping.
MachineBasicBlock *getBlockNumbered(unsigned N) const {
assert(N < MBBNumbering.size() && "Illegal block number");
assert(MBBNumbering[N] && "Block was removed from the machine function!");
return MBBNumbering[N];
}
/// Should we be emitting segmented stack stuff for the function
bool shouldSplitStack() const;
/// getNumBlockIDs - Return the number of MBB ID's allocated.
unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); }
/// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
/// recomputes them. This guarantees that the MBB numbers are sequential,
/// dense, and match the ordering of the blocks within the function. If a
/// specific MachineBasicBlock is specified, only that block and those after
/// it are renumbered.
void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr);
/// print - Print out the MachineFunction in a format suitable for debugging
/// to the specified stream.
void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
/// viewCFG - This function is meant for use from the debugger. You can just
/// say 'call F->viewCFG()' and a ghostview window should pop up from the
/// program, displaying the CFG of the current function with the code for each
/// basic block inside. This depends on there being a 'dot' and 'gv' program
/// in your path.
void viewCFG() const;
/// viewCFGOnly - This function is meant for use from the debugger. It works
/// just like viewCFG, but it does not include the contents of basic blocks
/// into the nodes, just the label. If you are only interested in the CFG
/// this can make the graph smaller.
///
void viewCFGOnly() const;
/// dump - Print the current MachineFunction to cerr, useful for debugger use.
void dump() const;
/// Run the current MachineFunction through the machine code verifier, useful
/// for debugger use.
/// \returns true if no problems were found.
bool verify(Pass *p = nullptr, const char *Banner = nullptr,
bool AbortOnError = true) const;
// Provide accessors for the MachineBasicBlock list...
using iterator = BasicBlockListType::iterator;
using const_iterator = BasicBlockListType::const_iterator;
using const_reverse_iterator = BasicBlockListType::const_reverse_iterator;
using reverse_iterator = BasicBlockListType::reverse_iterator;
/// Support for MachineBasicBlock::getNextNode().
static BasicBlockListType MachineFunction::*
getSublistAccess(MachineBasicBlock *) {
return &MachineFunction::BasicBlocks;
}
/// addLiveIn - Add the specified physical register as a live-in value and
/// create a corresponding virtual register for it.
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC);
//===--------------------------------------------------------------------===//
// BasicBlock accessor functions.
//
iterator begin() { return BasicBlocks.begin(); }
const_iterator begin() const { return BasicBlocks.begin(); }
iterator end () { return BasicBlocks.end(); }
const_iterator end () const { return BasicBlocks.end(); }
reverse_iterator rbegin() { return BasicBlocks.rbegin(); }
const_reverse_iterator rbegin() const { return BasicBlocks.rbegin(); }
reverse_iterator rend () { return BasicBlocks.rend(); }
const_reverse_iterator rend () const { return BasicBlocks.rend(); }
unsigned size() const { return (unsigned)BasicBlocks.size();}
bool empty() const { return BasicBlocks.empty(); }
const MachineBasicBlock &front() const { return BasicBlocks.front(); }
MachineBasicBlock &front() { return BasicBlocks.front(); }
const MachineBasicBlock & back() const { return BasicBlocks.back(); }
MachineBasicBlock & back() { return BasicBlocks.back(); }
void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); }
void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); }
void insert(iterator MBBI, MachineBasicBlock *MBB) {
BasicBlocks.insert(MBBI, MBB);
}
void splice(iterator InsertPt, iterator MBBI) {
BasicBlocks.splice(InsertPt, BasicBlocks, MBBI);
}
void splice(iterator InsertPt, MachineBasicBlock *MBB) {
BasicBlocks.splice(InsertPt, BasicBlocks, MBB);
}
void splice(iterator InsertPt, iterator MBBI, iterator MBBE) {
BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE);
}
void remove(iterator MBBI) { BasicBlocks.remove(MBBI); }
void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); }
void erase(iterator MBBI) { BasicBlocks.erase(MBBI); }
void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); }
template <typename Comp>
void sort(Comp comp) {
BasicBlocks.sort(comp);
}
/// Return the number of \p MachineInstrs in this \p MachineFunction.
unsigned getInstructionCount() const {
unsigned InstrCount = 0;
for (const MachineBasicBlock &MBB : BasicBlocks)
InstrCount += MBB.size();
return InstrCount;
}
//===--------------------------------------------------------------------===//
// Internal functions used to automatically number MachineBasicBlocks
/// Adds the MBB to the internal numbering. Returns the unique number
/// assigned to the MBB.
unsigned addToMBBNumbering(MachineBasicBlock *MBB) {
MBBNumbering.push_back(MBB);
return (unsigned)MBBNumbering.size()-1;
}
/// removeFromMBBNumbering - Remove the specific machine basic block from our
/// tracker, this is only really to be used by the MachineBasicBlock
/// implementation.
void removeFromMBBNumbering(unsigned N) {
assert(N < MBBNumbering.size() && "Illegal basic block #");
MBBNumbering[N] = nullptr;
}
/// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
/// of `new MachineInstr'.
MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, const DebugLoc &DL,
bool NoImplicit = false);
/// Create a new MachineInstr which is a copy of \p Orig, identical in all
/// ways except the instruction has no parent, prev, or next. Bundling flags
/// are reset.
///
/// Note: Clones a single instruction, not whole instruction bundles.
/// Does not perform target specific adjustments; consider using
/// TargetInstrInfo::duplicate() instead.
MachineInstr *CloneMachineInstr(const MachineInstr *Orig);
/// Clones instruction or the whole instruction bundle \p Orig and insert
/// into \p MBB before \p InsertBefore.
///
/// Note: Does not perform target specific adjustments; consider using
/// TargetInstrInfo::duplicate() intead.
MachineInstr &CloneMachineInstrBundle(MachineBasicBlock &MBB,
MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig);
/// DeleteMachineInstr - Delete the given MachineInstr.
void DeleteMachineInstr(MachineInstr *MI);
/// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
/// instead of `new MachineBasicBlock'.
MachineBasicBlock *CreateMachineBasicBlock(const BasicBlock *bb = nullptr);
/// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
void DeleteMachineBasicBlock(MachineBasicBlock *MBB);
/// getMachineMemOperand - Allocate a new MachineMemOperand.
/// MachineMemOperands are owned by the MachineFunction and need not be
/// explicitly deallocated.
MachineMemOperand *getMachineMemOperand(
MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System,
AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
/// getMachineMemOperand - Allocate a new MachineMemOperand by copying
/// an existing one, adjusting by an offset and using the given size.
/// MachineMemOperands are owned by the MachineFunction and need not be
/// explicitly deallocated.
MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
int64_t Offset, uint64_t Size);
/// getMachineMemOperand - Allocate a new MachineMemOperand by copying
/// an existing one, replacing only the MachinePointerInfo and size.
/// MachineMemOperands are owned by the MachineFunction and need not be
/// explicitly deallocated.
MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
MachinePointerInfo &PtrInfo,
uint64_t Size);
/// Allocate a new MachineMemOperand by copying an existing one,
/// replacing only AliasAnalysis information. MachineMemOperands are owned
/// by the MachineFunction and need not be explicitly deallocated.
MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
const AAMDNodes &AAInfo);
/// Allocate a new MachineMemOperand by copying an existing one,
/// replacing the flags. MachineMemOperands are owned
/// by the MachineFunction and need not be explicitly deallocated.
MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
MachineMemOperand::Flags Flags);
using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
/// Allocate an array of MachineOperands. This is only intended for use by
/// internal MachineInstr functions.
MachineOperand *allocateOperandArray(OperandCapacity Cap) {
return OperandRecycler.allocate(Cap, Allocator);
}
/// Dellocate an array of MachineOperands and recycle the memory. This is
/// only intended for use by internal MachineInstr functions.
/// Cap must be the same capacity that was used to allocate the array.
void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) {
OperandRecycler.deallocate(Cap, Array);
}
/// Allocate and initialize a register mask with @p NumRegister bits.
uint32_t *allocateRegMask();
ArrayRef<int> allocateShuffleMask(ArrayRef<int> Mask);
/// Allocate and construct an extra info structure for a `MachineInstr`.
///
/// This is allocated on the function's allocator and so lives the life of
/// the function.
MachineInstr::ExtraInfo *createMIExtraInfo(
ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr,
MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr);
/// Allocate a string and populate it with the given external symbol name.
const char *createExternalSymbolName(StringRef Name);
//===--------------------------------------------------------------------===//
// Label Manipulation.
/// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
/// normal 'L' label is returned.
MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx,
bool isLinkerPrivate = false) const;
/// getPICBaseSymbol - Return a function-local symbol to represent the PIC
/// base.
MCSymbol *getPICBaseSymbol() const;
/// Returns a reference to a list of cfi instructions in the function's
/// prologue. Used to construct frame maps for debug and exception handling
/// comsumers.
const std::vector<MCCFIInstruction> &getFrameInstructions() const {
return FrameInstructions;
}
LLVM_NODISCARD unsigned addFrameInst(const MCCFIInstruction &Inst);
/// Returns a reference to a list of symbols immediately following calls to
/// _setjmp in the function. Used to construct the longjmp target table used
/// by Windows Control Flow Guard.
const std::vector<MCSymbol *> &getLongjmpTargets() const {
return LongjmpTargets;
}
/// Add the specified symbol to the list of valid longjmp targets for Windows
/// Control Flow Guard.
void addLongjmpTarget(MCSymbol *Target) { LongjmpTargets.push_back(Target); }
/// Returns a reference to a list of symbols that we have catchrets.
/// Used to construct the catchret target table used by Windows EHCont Guard.
const std::vector<MCSymbol *> &getCatchretTargets() const {
return CatchretTargets;
}
/// Add the specified symbol to the list of valid catchret targets for Windows
/// EHCont Guard.
void addCatchretTarget(MCSymbol *Target) {
CatchretTargets.push_back(Target);
}
/// \name Exception Handling
/// \{
bool callsEHReturn() const { return CallsEHReturn; }
void setCallsEHReturn(bool b) { CallsEHReturn = b; }
bool callsUnwindInit() const { return CallsUnwindInit; }
void setCallsUnwindInit(bool b) { CallsUnwindInit = b; }
bool hasEHCatchret() const { return HasEHCatchret; }
void setHasEHCatchret(bool V) { HasEHCatchret = V; }
bool hasEHScopes() const { return HasEHScopes; }
void setHasEHScopes(bool V) { HasEHScopes = V; }
bool hasEHFunclets() const { return HasEHFunclets; }
void setHasEHFunclets(bool V) { HasEHFunclets = V; }
/// Find or create an LandingPadInfo for the specified MachineBasicBlock.
LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad);
/// Remap landing pad labels and remove any deleted landing pads.
void tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap = nullptr,
bool TidyIfNoBeginLabels = true);
/// Return a reference to the landing pad info for the current function.
const std::vector<LandingPadInfo> &getLandingPads() const {
return LandingPads;
}
/// Provide the begin and end labels of an invoke style call and associate it
/// with a try landing pad block.
void addInvoke(MachineBasicBlock *LandingPad,
MCSymbol *BeginLabel, MCSymbol *EndLabel);
/// Add a new panding pad, and extract the exception handling information from
/// the landingpad instruction. Returns the label ID for the landing pad
/// entry.
MCSymbol *addLandingPad(MachineBasicBlock *LandingPad);
/// Provide the catch typeinfo for a landing pad.
void addCatchTypeInfo(MachineBasicBlock *LandingPad,
ArrayRef<const GlobalValue *> TyInfo);
/// Provide the filter typeinfo for a landing pad.
void addFilterTypeInfo(MachineBasicBlock *LandingPad,
ArrayRef<const GlobalValue *> TyInfo);
/// Add a cleanup action for a landing pad.
void addCleanup(MachineBasicBlock *LandingPad);
void addSEHCatchHandler(MachineBasicBlock *LandingPad, const Function *Filter,
const BlockAddress *RecoverBA);
void addSEHCleanupHandler(MachineBasicBlock *LandingPad,
const Function *Cleanup);
/// Return the type id for the specified typeinfo. This is function wide.
unsigned getTypeIDFor(const GlobalValue *TI);
/// Return the id of the filter encoded by TyIds. This is function wide.
int getFilterIDFor(std::vector<unsigned> &TyIds);
/// Map the landing pad's EH symbol to the call site indexes.
void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites);
/// Map the landing pad to its index. Used for Wasm exception handling.
void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index) {
WasmLPadToIndexMap[LPad] = Index;
}
/// Returns true if the landing pad has an associate index in wasm EH.
bool hasWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
return WasmLPadToIndexMap.count(LPad);
}
/// Get the index in wasm EH for a given landing pad.
unsigned getWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
assert(hasWasmLandingPadIndex(LPad));
return WasmLPadToIndexMap.lookup(LPad);
}
/// Get the call site indexes for a landing pad EH symbol.
SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) {
assert(hasCallSiteLandingPad(Sym) &&
"missing call site number for landing pad!");
return LPadToCallSiteMap[Sym];
}
/// Return true if the landing pad Eh symbol has an associated call site.
bool hasCallSiteLandingPad(MCSymbol *Sym) {
return !LPadToCallSiteMap[Sym].empty();
}
/// Map the begin label for a call site.
void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) {
CallSiteMap[BeginLabel] = Site;
}
/// Get the call site number for a begin label.
unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const {
assert(hasCallSiteBeginLabel(BeginLabel) &&
"Missing call site number for EH_LABEL!");
return CallSiteMap.lookup(BeginLabel);
}
/// Return true if the begin label has a call site number associated with it.
bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const {
return CallSiteMap.count(BeginLabel);
}
/// Record annotations associated with a particular label.
void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) {
CodeViewAnnotations.push_back({Label, MD});
}
ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const {
return CodeViewAnnotations;
}
/// Return a reference to the C++ typeinfo for the current function.
const std::vector<const GlobalValue *> &getTypeInfos() const {
return TypeInfos;
}
/// Return a reference to the typeids encoding filters used in the current
/// function.
const std::vector<unsigned> &getFilterIds() const {
return FilterIds;
}
/// \}
/// Collect information used to emit debugging information of a variable.
void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
int Slot, const DILocation *Loc) {
VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc);
}
VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; }
const VariableDbgInfoMapTy &getVariableDbgInfo() const {
return VariableDbgInfos;
}
/// Start tracking the arguments passed to the call \p CallI.
void addCallArgsForwardingRegs(const MachineInstr *CallI,
CallSiteInfoImpl &&CallInfo) {
assert(CallI->isCandidateForCallSiteEntry());
bool Inserted =
CallSitesInfo.try_emplace(CallI, std::move(CallInfo)).second;
(void)Inserted;
assert(Inserted && "Call site info not unique");
}
const CallSiteInfoMap &getCallSitesInfo() const {
return CallSitesInfo;
}
/// Following functions update call site info. They should be called before
/// removing, replacing or copying call instruction.
/// Erase the call site info for \p MI. It is used to remove a call
/// instruction from the instruction stream.
void eraseCallSiteInfo(const MachineInstr *MI);
/// Copy the call site info from \p Old to \ New. Its usage is when we are
/// making a copy of the instruction that will be inserted at different point
/// of the instruction stream.
void copyCallSiteInfo(const MachineInstr *Old,
const MachineInstr *New);
const std::vector<char> &getBBSectionsSymbolPrefix() const {
return BBSectionsSymbolPrefix;
}
/// Move the call site info from \p Old to \New call site info. This function
/// is used when we are replacing one call instruction with another one to
/// the same callee.
void moveCallSiteInfo(const MachineInstr *Old,
const MachineInstr *New);
unsigned getNewDebugInstrNum() {
return ++DebugInstrNumberingCount;
}
};
//===--------------------------------------------------------------------===//
// GraphTraits specializations for function basic block graphs (CFGs)
//===--------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a
// machine function as a graph of machine basic blocks... these are
// the same as the machine basic block iterators, except that the root
// node is implicitly the first node of the function.
//
template <> struct GraphTraits<MachineFunction*> :
public GraphTraits<MachineBasicBlock*> {
static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); }
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
using nodes_iterator = pointer_iterator<MachineFunction::iterator>;
static nodes_iterator nodes_begin(MachineFunction *F) {
return nodes_iterator(F->begin());
}
static nodes_iterator nodes_end(MachineFunction *F) {
return nodes_iterator(F->end());
}
static unsigned size (MachineFunction *F) { return F->size(); }
};
template <> struct GraphTraits<const MachineFunction*> :
public GraphTraits<const MachineBasicBlock*> {
static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); }
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>;
static nodes_iterator nodes_begin(const MachineFunction *F) {
return nodes_iterator(F->begin());
}
static nodes_iterator nodes_end (const MachineFunction *F) {
return nodes_iterator(F->end());
}
static unsigned size (const MachineFunction *F) {
return F->size();
}
};
// Provide specializations of GraphTraits to be able to treat a function as a
// graph of basic blocks... and to walk it in inverse order. Inverse order for
// a function is considered to be when traversing the predecessor edges of a BB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<MachineFunction*>> :
public GraphTraits<Inverse<MachineBasicBlock*>> {
static NodeRef getEntryNode(Inverse<MachineFunction *> G) {
return &G.Graph->front();
}
};
template <> struct GraphTraits<Inverse<const MachineFunction*>> :
public GraphTraits<Inverse<const MachineBasicBlock*>> {
static NodeRef getEntryNode(Inverse<const MachineFunction *> G) {
return &G.Graph->front();
}
};
class MachineFunctionAnalysisManager;
void verifyMachineFunction(MachineFunctionAnalysisManager *,
const std::string &Banner,
const MachineFunction &MF);
} // end namespace llvm
#endif // LLVM_CODEGEN_MACHINEFUNCTION_H