mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
2a2a79e361
This patch introduces "DBG_PHI" instructions, a marker of where a PHI instruction used to be, before PHI elimination. Under the instruction referencing model, we want to know where every value in the function is defined -- and a PHI, even if implicit, is such a place. Just like instruction numbers, we can use this to identify a value to be used as a variable value, but we don't need to know what instruction defines that value, for example: bb1: DBG_PHI $rax, 1 [... more insts ... ] bb2: DBG_INSTR_REF 1, 0, !1234, !DIExpression() This specifies that on entry to bb1, whatever value is in $rax is known as value number one -- and the later DBG_INSTR_REF marks the position where variable !1234 should take on value number one. PHI locations are stored in MachineFunction for the duration of the regalloc phase in the DebugPHIPositions map. The map is populated by PHIElimination, and then flushed back into the instruction stream by virtregrewriter. A small amount of maintenence is needed in LiveDebugVariables to account for registers being split, but only for individual positions, not for entire ranges of blocks. Differential Revision: https://reviews.llvm.org/D86812
1933 lines
77 KiB
C++
1933 lines
77 KiB
C++
//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the declaration of the MachineInstr class, which is the
|
|
// basic representation for all target dependent machine instructions used by
|
|
// the back end.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
|
|
#define LLVM_CODEGEN_MACHINEINSTR_H
|
|
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/PointerSumType.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/ilist.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/PseudoProbe.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/ArrayRecycler.h"
|
|
#include "llvm/Support/TrailingObjects.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
class AAResults;
|
|
template <typename T> class ArrayRef;
|
|
class DIExpression;
|
|
class DILocalVariable;
|
|
class MachineBasicBlock;
|
|
class MachineFunction;
|
|
class MachineRegisterInfo;
|
|
class ModuleSlotTracker;
|
|
class raw_ostream;
|
|
template <typename T> class SmallVectorImpl;
|
|
class SmallBitVector;
|
|
class StringRef;
|
|
class TargetInstrInfo;
|
|
class TargetRegisterClass;
|
|
class TargetRegisterInfo;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Representation of each machine instruction.
|
|
///
|
|
/// This class isn't a POD type, but it must have a trivial destructor. When a
|
|
/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
|
|
/// without having their destructor called.
|
|
///
|
|
class MachineInstr
|
|
: public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
|
|
ilist_sentinel_tracking<true>> {
|
|
public:
|
|
using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
|
|
|
|
/// Flags to specify different kinds of comments to output in
|
|
/// assembly code. These flags carry semantic information not
|
|
/// otherwise easily derivable from the IR text.
|
|
///
|
|
enum CommentFlag {
|
|
ReloadReuse = 0x1, // higher bits are reserved for target dep comments.
|
|
NoSchedComment = 0x2,
|
|
TAsmComments = 0x4 // Target Asm comments should start from this value.
|
|
};
|
|
|
|
enum MIFlag {
|
|
NoFlags = 0,
|
|
FrameSetup = 1 << 0, // Instruction is used as a part of
|
|
// function frame setup code.
|
|
FrameDestroy = 1 << 1, // Instruction is used as a part of
|
|
// function frame destruction code.
|
|
BundledPred = 1 << 2, // Instruction has bundled predecessors.
|
|
BundledSucc = 1 << 3, // Instruction has bundled successors.
|
|
FmNoNans = 1 << 4, // Instruction does not support Fast
|
|
// math nan values.
|
|
FmNoInfs = 1 << 5, // Instruction does not support Fast
|
|
// math infinity values.
|
|
FmNsz = 1 << 6, // Instruction is not required to retain
|
|
// signed zero values.
|
|
FmArcp = 1 << 7, // Instruction supports Fast math
|
|
// reciprocal approximations.
|
|
FmContract = 1 << 8, // Instruction supports Fast math
|
|
// contraction operations like fma.
|
|
FmAfn = 1 << 9, // Instruction may map to Fast math
|
|
// instrinsic approximation.
|
|
FmReassoc = 1 << 10, // Instruction supports Fast math
|
|
// reassociation of operand order.
|
|
NoUWrap = 1 << 11, // Instruction supports binary operator
|
|
// no unsigned wrap.
|
|
NoSWrap = 1 << 12, // Instruction supports binary operator
|
|
// no signed wrap.
|
|
IsExact = 1 << 13, // Instruction supports division is
|
|
// known to be exact.
|
|
NoFPExcept = 1 << 14, // Instruction does not raise
|
|
// floatint-point exceptions.
|
|
NoMerge = 1 << 15, // Passes that drop source location info
|
|
// (e.g. branch folding) should skip
|
|
// this instruction.
|
|
};
|
|
|
|
private:
|
|
const MCInstrDesc *MCID; // Instruction descriptor.
|
|
MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
|
|
|
|
// Operands are allocated by an ArrayRecycler.
|
|
MachineOperand *Operands = nullptr; // Pointer to the first operand.
|
|
unsigned NumOperands = 0; // Number of operands on instruction.
|
|
|
|
uint16_t Flags = 0; // Various bits of additional
|
|
// information about machine
|
|
// instruction.
|
|
|
|
uint8_t AsmPrinterFlags = 0; // Various bits of information used by
|
|
// the AsmPrinter to emit helpful
|
|
// comments. This is *not* semantic
|
|
// information. Do not use this for
|
|
// anything other than to convey comment
|
|
// information to AsmPrinter.
|
|
|
|
// OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
|
|
// to properly pack.
|
|
using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
|
|
OperandCapacity CapOperands; // Capacity of the Operands array.
|
|
|
|
/// Internal implementation detail class that provides out-of-line storage for
|
|
/// extra info used by the machine instruction when this info cannot be stored
|
|
/// in-line within the instruction itself.
|
|
///
|
|
/// This has to be defined eagerly due to the implementation constraints of
|
|
/// `PointerSumType` where it is used.
|
|
class ExtraInfo final
|
|
: TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> {
|
|
public:
|
|
static ExtraInfo *create(BumpPtrAllocator &Allocator,
|
|
ArrayRef<MachineMemOperand *> MMOs,
|
|
MCSymbol *PreInstrSymbol = nullptr,
|
|
MCSymbol *PostInstrSymbol = nullptr,
|
|
MDNode *HeapAllocMarker = nullptr) {
|
|
bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
|
|
bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
|
|
bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
|
|
auto *Result = new (Allocator.Allocate(
|
|
totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>(
|
|
MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
|
|
HasHeapAllocMarker),
|
|
alignof(ExtraInfo)))
|
|
ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
|
|
HasHeapAllocMarker);
|
|
|
|
// Copy the actual data into the trailing objects.
|
|
std::copy(MMOs.begin(), MMOs.end(),
|
|
Result->getTrailingObjects<MachineMemOperand *>());
|
|
|
|
if (HasPreInstrSymbol)
|
|
Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
|
|
if (HasPostInstrSymbol)
|
|
Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
|
|
PostInstrSymbol;
|
|
if (HasHeapAllocMarker)
|
|
Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
|
|
|
|
return Result;
|
|
}
|
|
|
|
ArrayRef<MachineMemOperand *> getMMOs() const {
|
|
return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
|
|
}
|
|
|
|
MCSymbol *getPreInstrSymbol() const {
|
|
return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
|
|
}
|
|
|
|
MCSymbol *getPostInstrSymbol() const {
|
|
return HasPostInstrSymbol
|
|
? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
|
|
: nullptr;
|
|
}
|
|
|
|
MDNode *getHeapAllocMarker() const {
|
|
return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
|
|
}
|
|
|
|
private:
|
|
friend TrailingObjects;
|
|
|
|
// Description of the extra info, used to interpret the actual optional
|
|
// data appended.
|
|
//
|
|
// Note that this is not terribly space optimized. This leaves a great deal
|
|
// of flexibility to fit more in here later.
|
|
const int NumMMOs;
|
|
const bool HasPreInstrSymbol;
|
|
const bool HasPostInstrSymbol;
|
|
const bool HasHeapAllocMarker;
|
|
|
|
// Implement the `TrailingObjects` internal API.
|
|
size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
|
|
return NumMMOs;
|
|
}
|
|
size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
|
|
return HasPreInstrSymbol + HasPostInstrSymbol;
|
|
}
|
|
size_t numTrailingObjects(OverloadToken<MDNode *>) const {
|
|
return HasHeapAllocMarker;
|
|
}
|
|
|
|
// Just a boring constructor to allow us to initialize the sizes. Always use
|
|
// the `create` routine above.
|
|
ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
|
|
bool HasHeapAllocMarker)
|
|
: NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
|
|
HasPostInstrSymbol(HasPostInstrSymbol),
|
|
HasHeapAllocMarker(HasHeapAllocMarker) {}
|
|
};
|
|
|
|
/// Enumeration of the kinds of inline extra info available. It is important
|
|
/// that the `MachineMemOperand` inline kind has a tag value of zero to make
|
|
/// it accessible as an `ArrayRef`.
|
|
enum ExtraInfoInlineKinds {
|
|
EIIK_MMO = 0,
|
|
EIIK_PreInstrSymbol,
|
|
EIIK_PostInstrSymbol,
|
|
EIIK_OutOfLine
|
|
};
|
|
|
|
// We store extra information about the instruction here. The common case is
|
|
// expected to be nothing or a single pointer (typically a MMO or a symbol).
|
|
// We work to optimize this common case by storing it inline here rather than
|
|
// requiring a separate allocation, but we fall back to an allocation when
|
|
// multiple pointers are needed.
|
|
PointerSumType<ExtraInfoInlineKinds,
|
|
PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
|
|
PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
|
|
PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
|
|
PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
|
|
Info;
|
|
|
|
DebugLoc debugLoc; // Source line information.
|
|
|
|
/// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
|
|
/// defined by this instruction.
|
|
unsigned DebugInstrNum;
|
|
|
|
// Intrusive list support
|
|
friend struct ilist_traits<MachineInstr>;
|
|
friend struct ilist_callback_traits<MachineBasicBlock>;
|
|
void setParent(MachineBasicBlock *P) { Parent = P; }
|
|
|
|
/// This constructor creates a copy of the given
|
|
/// MachineInstr in the given MachineFunction.
|
|
MachineInstr(MachineFunction &, const MachineInstr &);
|
|
|
|
/// This constructor create a MachineInstr and add the implicit operands.
|
|
/// It reserves space for number of operands specified by
|
|
/// MCInstrDesc. An explicit DebugLoc is supplied.
|
|
MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
|
|
bool NoImp = false);
|
|
|
|
// MachineInstrs are pool-allocated and owned by MachineFunction.
|
|
friend class MachineFunction;
|
|
|
|
void
|
|
dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
|
|
SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
|
|
|
|
public:
|
|
MachineInstr(const MachineInstr &) = delete;
|
|
MachineInstr &operator=(const MachineInstr &) = delete;
|
|
// Use MachineFunction::DeleteMachineInstr() instead.
|
|
~MachineInstr() = delete;
|
|
|
|
const MachineBasicBlock* getParent() const { return Parent; }
|
|
MachineBasicBlock* getParent() { return Parent; }
|
|
|
|
/// Move the instruction before \p MovePos.
|
|
void moveBefore(MachineInstr *MovePos);
|
|
|
|
/// Return the function that contains the basic block that this instruction
|
|
/// belongs to.
|
|
///
|
|
/// Note: this is undefined behaviour if the instruction does not have a
|
|
/// parent.
|
|
const MachineFunction *getMF() const;
|
|
MachineFunction *getMF() {
|
|
return const_cast<MachineFunction *>(
|
|
static_cast<const MachineInstr *>(this)->getMF());
|
|
}
|
|
|
|
/// Return the asm printer flags bitvector.
|
|
uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
|
|
|
|
/// Clear the AsmPrinter bitvector.
|
|
void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
|
|
|
|
/// Return whether an AsmPrinter flag is set.
|
|
bool getAsmPrinterFlag(CommentFlag Flag) const {
|
|
return AsmPrinterFlags & Flag;
|
|
}
|
|
|
|
/// Set a flag for the AsmPrinter.
|
|
void setAsmPrinterFlag(uint8_t Flag) {
|
|
AsmPrinterFlags |= Flag;
|
|
}
|
|
|
|
/// Clear specific AsmPrinter flags.
|
|
void clearAsmPrinterFlag(CommentFlag Flag) {
|
|
AsmPrinterFlags &= ~Flag;
|
|
}
|
|
|
|
/// Return the MI flags bitvector.
|
|
uint16_t getFlags() const {
|
|
return Flags;
|
|
}
|
|
|
|
/// Return whether an MI flag is set.
|
|
bool getFlag(MIFlag Flag) const {
|
|
return Flags & Flag;
|
|
}
|
|
|
|
/// Set a MI flag.
|
|
void setFlag(MIFlag Flag) {
|
|
Flags |= (uint16_t)Flag;
|
|
}
|
|
|
|
void setFlags(unsigned flags) {
|
|
// Filter out the automatically maintained flags.
|
|
unsigned Mask = BundledPred | BundledSucc;
|
|
Flags = (Flags & Mask) | (flags & ~Mask);
|
|
}
|
|
|
|
/// clearFlag - Clear a MI flag.
|
|
void clearFlag(MIFlag Flag) {
|
|
Flags &= ~((uint16_t)Flag);
|
|
}
|
|
|
|
/// Return true if MI is in a bundle (but not the first MI in a bundle).
|
|
///
|
|
/// A bundle looks like this before it's finalized:
|
|
/// ----------------
|
|
/// | MI |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// In this case, the first MI starts a bundle but is not inside a bundle, the
|
|
/// next 2 MIs are considered "inside" the bundle.
|
|
///
|
|
/// After a bundle is finalized, it looks like this:
|
|
/// ----------------
|
|
/// | Bundle |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// |
|
|
/// ----------------
|
|
/// | MI * |
|
|
/// ----------------
|
|
/// The first instruction has the special opcode "BUNDLE". It's not "inside"
|
|
/// a bundle, but the next three MIs are.
|
|
bool isInsideBundle() const {
|
|
return getFlag(BundledPred);
|
|
}
|
|
|
|
/// Return true if this instruction part of a bundle. This is true
|
|
/// if either itself or its following instruction is marked "InsideBundle".
|
|
bool isBundled() const {
|
|
return isBundledWithPred() || isBundledWithSucc();
|
|
}
|
|
|
|
/// Return true if this instruction is part of a bundle, and it is not the
|
|
/// first instruction in the bundle.
|
|
bool isBundledWithPred() const { return getFlag(BundledPred); }
|
|
|
|
/// Return true if this instruction is part of a bundle, and it is not the
|
|
/// last instruction in the bundle.
|
|
bool isBundledWithSucc() const { return getFlag(BundledSucc); }
|
|
|
|
/// Bundle this instruction with its predecessor. This can be an unbundled
|
|
/// instruction, or it can be the first instruction in a bundle.
|
|
void bundleWithPred();
|
|
|
|
/// Bundle this instruction with its successor. This can be an unbundled
|
|
/// instruction, or it can be the last instruction in a bundle.
|
|
void bundleWithSucc();
|
|
|
|
/// Break bundle above this instruction.
|
|
void unbundleFromPred();
|
|
|
|
/// Break bundle below this instruction.
|
|
void unbundleFromSucc();
|
|
|
|
/// Returns the debug location id of this MachineInstr.
|
|
const DebugLoc &getDebugLoc() const { return debugLoc; }
|
|
|
|
/// Return the operand containing the offset to be used if this DBG_VALUE
|
|
/// instruction is indirect; will be an invalid register if this value is
|
|
/// not indirect, and an immediate with value 0 otherwise.
|
|
const MachineOperand &getDebugOffset() const {
|
|
assert(isNonListDebugValue() && "not a DBG_VALUE");
|
|
return getOperand(1);
|
|
}
|
|
MachineOperand &getDebugOffset() {
|
|
assert(isNonListDebugValue() && "not a DBG_VALUE");
|
|
return getOperand(1);
|
|
}
|
|
|
|
/// Return the operand for the debug variable referenced by
|
|
/// this DBG_VALUE instruction.
|
|
const MachineOperand &getDebugVariableOp() const;
|
|
MachineOperand &getDebugVariableOp();
|
|
|
|
/// Return the debug variable referenced by
|
|
/// this DBG_VALUE instruction.
|
|
const DILocalVariable *getDebugVariable() const;
|
|
|
|
/// Return the operand for the complex address expression referenced by
|
|
/// this DBG_VALUE instruction.
|
|
const MachineOperand &getDebugExpressionOp() const;
|
|
MachineOperand &getDebugExpressionOp();
|
|
|
|
/// Return the complex address expression referenced by
|
|
/// this DBG_VALUE instruction.
|
|
const DIExpression *getDebugExpression() const;
|
|
|
|
/// Return the debug label referenced by
|
|
/// this DBG_LABEL instruction.
|
|
const DILabel *getDebugLabel() const;
|
|
|
|
/// Fetch the instruction number of this MachineInstr. If it does not have
|
|
/// one already, a new and unique number will be assigned.
|
|
unsigned getDebugInstrNum();
|
|
|
|
/// Examine the instruction number of this MachineInstr. May be zero if
|
|
/// it hasn't been assigned a number yet.
|
|
unsigned peekDebugInstrNum() const { return DebugInstrNum; }
|
|
|
|
/// Set instruction number of this MachineInstr. Avoid using unless you're
|
|
/// deserializing this information.
|
|
void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
|
|
|
|
/// Emit an error referring to the source location of this instruction.
|
|
/// This should only be used for inline assembly that is somehow
|
|
/// impossible to compile. Other errors should have been handled much
|
|
/// earlier.
|
|
///
|
|
/// If this method returns, the caller should try to recover from the error.
|
|
void emitError(StringRef Msg) const;
|
|
|
|
/// Returns the target instruction descriptor of this MachineInstr.
|
|
const MCInstrDesc &getDesc() const { return *MCID; }
|
|
|
|
/// Returns the opcode of this MachineInstr.
|
|
unsigned getOpcode() const { return MCID->Opcode; }
|
|
|
|
/// Retuns the total number of operands.
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
/// Returns the total number of operands which are debug locations.
|
|
unsigned getNumDebugOperands() const {
|
|
return std::distance(debug_operands().begin(), debug_operands().end());
|
|
}
|
|
|
|
const MachineOperand& getOperand(unsigned i) const {
|
|
assert(i < getNumOperands() && "getOperand() out of range!");
|
|
return Operands[i];
|
|
}
|
|
MachineOperand& getOperand(unsigned i) {
|
|
assert(i < getNumOperands() && "getOperand() out of range!");
|
|
return Operands[i];
|
|
}
|
|
|
|
MachineOperand &getDebugOperand(unsigned Index) {
|
|
assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
|
|
return *(debug_operands().begin() + Index);
|
|
}
|
|
const MachineOperand &getDebugOperand(unsigned Index) const {
|
|
assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!");
|
|
return *(debug_operands().begin() + Index);
|
|
}
|
|
|
|
SmallSet<Register, 4> getUsedDebugRegs() const {
|
|
assert(isDebugValue() && "not a DBG_VALUE*");
|
|
SmallSet<Register, 4> UsedRegs;
|
|
for (auto MO : debug_operands())
|
|
if (MO.isReg() && MO.getReg())
|
|
UsedRegs.insert(MO.getReg());
|
|
return UsedRegs;
|
|
}
|
|
|
|
/// Returns whether this debug value has at least one debug operand with the
|
|
/// register \p Reg.
|
|
bool hasDebugOperandForReg(Register Reg) const {
|
|
return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
|
|
return Op.isReg() && Op.getReg() == Reg;
|
|
});
|
|
}
|
|
|
|
/// Returns a range of all of the operands that correspond to a debug use of
|
|
/// \p Reg.
|
|
template <typename Operand, typename Instruction>
|
|
static iterator_range<
|
|
filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
|
|
getDebugOperandsForReg(Instruction *MI, Register Reg) {
|
|
std::function<bool(Operand & Op)> OpUsesReg(
|
|
[Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
|
|
return make_filter_range(MI->debug_operands(), OpUsesReg);
|
|
}
|
|
iterator_range<filter_iterator<const MachineOperand *,
|
|
std::function<bool(const MachineOperand &Op)>>>
|
|
getDebugOperandsForReg(Register Reg) const {
|
|
return MachineInstr::getDebugOperandsForReg<const MachineOperand,
|
|
const MachineInstr>(this, Reg);
|
|
}
|
|
iterator_range<filter_iterator<MachineOperand *,
|
|
std::function<bool(MachineOperand &Op)>>>
|
|
getDebugOperandsForReg(Register Reg) {
|
|
return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
|
|
this, Reg);
|
|
}
|
|
|
|
bool isDebugOperand(const MachineOperand *Op) const {
|
|
return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
|
|
}
|
|
|
|
unsigned getDebugOperandIndex(const MachineOperand *Op) const {
|
|
assert(isDebugOperand(Op) && "Expected a debug operand.");
|
|
return std::distance(adl_begin(debug_operands()), Op);
|
|
}
|
|
|
|
/// Returns the total number of definitions.
|
|
unsigned getNumDefs() const {
|
|
return getNumExplicitDefs() + MCID->getNumImplicitDefs();
|
|
}
|
|
|
|
/// Returns true if the instruction has implicit definition.
|
|
bool hasImplicitDef() const {
|
|
for (unsigned I = getNumExplicitOperands(), E = getNumOperands();
|
|
I != E; ++I) {
|
|
const MachineOperand &MO = getOperand(I);
|
|
if (MO.isDef() && MO.isImplicit())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns the implicit operands number.
|
|
unsigned getNumImplicitOperands() const {
|
|
return getNumOperands() - getNumExplicitOperands();
|
|
}
|
|
|
|
/// Return true if operand \p OpIdx is a subregister index.
|
|
bool isOperandSubregIdx(unsigned OpIdx) const {
|
|
assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
|
|
"Expected MO_Immediate operand type.");
|
|
if (isExtractSubreg() && OpIdx == 2)
|
|
return true;
|
|
if (isInsertSubreg() && OpIdx == 3)
|
|
return true;
|
|
if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
|
|
return true;
|
|
if (isSubregToReg() && OpIdx == 3)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Returns the number of non-implicit operands.
|
|
unsigned getNumExplicitOperands() const;
|
|
|
|
/// Returns the number of non-implicit definitions.
|
|
unsigned getNumExplicitDefs() const;
|
|
|
|
/// iterator/begin/end - Iterate over all operands of a machine instruction.
|
|
using mop_iterator = MachineOperand *;
|
|
using const_mop_iterator = const MachineOperand *;
|
|
|
|
mop_iterator operands_begin() { return Operands; }
|
|
mop_iterator operands_end() { return Operands + NumOperands; }
|
|
|
|
const_mop_iterator operands_begin() const { return Operands; }
|
|
const_mop_iterator operands_end() const { return Operands + NumOperands; }
|
|
|
|
iterator_range<mop_iterator> operands() {
|
|
return make_range(operands_begin(), operands_end());
|
|
}
|
|
iterator_range<const_mop_iterator> operands() const {
|
|
return make_range(operands_begin(), operands_end());
|
|
}
|
|
iterator_range<mop_iterator> explicit_operands() {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getNumExplicitOperands());
|
|
}
|
|
iterator_range<const_mop_iterator> explicit_operands() const {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getNumExplicitOperands());
|
|
}
|
|
iterator_range<mop_iterator> implicit_operands() {
|
|
return make_range(explicit_operands().end(), operands_end());
|
|
}
|
|
iterator_range<const_mop_iterator> implicit_operands() const {
|
|
return make_range(explicit_operands().end(), operands_end());
|
|
}
|
|
/// Returns a range over all operands that are used to determine the variable
|
|
/// location for this DBG_VALUE instruction.
|
|
iterator_range<mop_iterator> debug_operands() {
|
|
assert(isDebugValue() && "Must be a debug value instruction.");
|
|
return isDebugValueList()
|
|
? make_range(operands_begin() + 2, operands_end())
|
|
: make_range(operands_begin(), operands_begin() + 1);
|
|
}
|
|
/// \copydoc debug_operands()
|
|
iterator_range<const_mop_iterator> debug_operands() const {
|
|
assert(isDebugValue() && "Must be a debug value instruction.");
|
|
return isDebugValueList()
|
|
? make_range(operands_begin() + 2, operands_end())
|
|
: make_range(operands_begin(), operands_begin() + 1);
|
|
}
|
|
/// Returns a range over all explicit operands that are register definitions.
|
|
/// Implicit definition are not included!
|
|
iterator_range<mop_iterator> defs() {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getNumExplicitDefs());
|
|
}
|
|
/// \copydoc defs()
|
|
iterator_range<const_mop_iterator> defs() const {
|
|
return make_range(operands_begin(),
|
|
operands_begin() + getNumExplicitDefs());
|
|
}
|
|
/// Returns a range that includes all operands that are register uses.
|
|
/// This may include unrelated operands which are not register uses.
|
|
iterator_range<mop_iterator> uses() {
|
|
return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
|
|
}
|
|
/// \copydoc uses()
|
|
iterator_range<const_mop_iterator> uses() const {
|
|
return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
|
|
}
|
|
iterator_range<mop_iterator> explicit_uses() {
|
|
return make_range(operands_begin() + getNumExplicitDefs(),
|
|
operands_begin() + getNumExplicitOperands());
|
|
}
|
|
iterator_range<const_mop_iterator> explicit_uses() const {
|
|
return make_range(operands_begin() + getNumExplicitDefs(),
|
|
operands_begin() + getNumExplicitOperands());
|
|
}
|
|
|
|
/// Returns the number of the operand iterator \p I points to.
|
|
unsigned getOperandNo(const_mop_iterator I) const {
|
|
return I - operands_begin();
|
|
}
|
|
|
|
/// Access to memory operands of the instruction. If there are none, that does
|
|
/// not imply anything about whether the function accesses memory. Instead,
|
|
/// the caller must behave conservatively.
|
|
ArrayRef<MachineMemOperand *> memoperands() const {
|
|
if (!Info)
|
|
return {};
|
|
|
|
if (Info.is<EIIK_MMO>())
|
|
return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
|
|
|
|
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
|
|
return EI->getMMOs();
|
|
|
|
return {};
|
|
}
|
|
|
|
/// Access to memory operands of the instruction.
|
|
///
|
|
/// If `memoperands_begin() == memoperands_end()`, that does not imply
|
|
/// anything about whether the function accesses memory. Instead, the caller
|
|
/// must behave conservatively.
|
|
mmo_iterator memoperands_begin() const { return memoperands().begin(); }
|
|
|
|
/// Access to memory operands of the instruction.
|
|
///
|
|
/// If `memoperands_begin() == memoperands_end()`, that does not imply
|
|
/// anything about whether the function accesses memory. Instead, the caller
|
|
/// must behave conservatively.
|
|
mmo_iterator memoperands_end() const { return memoperands().end(); }
|
|
|
|
/// Return true if we don't have any memory operands which described the
|
|
/// memory access done by this instruction. If this is true, calling code
|
|
/// must be conservative.
|
|
bool memoperands_empty() const { return memoperands().empty(); }
|
|
|
|
/// Return true if this instruction has exactly one MachineMemOperand.
|
|
bool hasOneMemOperand() const { return memoperands().size() == 1; }
|
|
|
|
/// Return the number of memory operands.
|
|
unsigned getNumMemOperands() const { return memoperands().size(); }
|
|
|
|
/// Helper to extract a pre-instruction symbol if one has been added.
|
|
MCSymbol *getPreInstrSymbol() const {
|
|
if (!Info)
|
|
return nullptr;
|
|
if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
|
|
return S;
|
|
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
|
|
return EI->getPreInstrSymbol();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Helper to extract a post-instruction symbol if one has been added.
|
|
MCSymbol *getPostInstrSymbol() const {
|
|
if (!Info)
|
|
return nullptr;
|
|
if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
|
|
return S;
|
|
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
|
|
return EI->getPostInstrSymbol();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Helper to extract a heap alloc marker if one has been added.
|
|
MDNode *getHeapAllocMarker() const {
|
|
if (!Info)
|
|
return nullptr;
|
|
if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
|
|
return EI->getHeapAllocMarker();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// API for querying MachineInstr properties. They are the same as MCInstrDesc
|
|
/// queries but they are bundle aware.
|
|
|
|
enum QueryType {
|
|
IgnoreBundle, // Ignore bundles
|
|
AnyInBundle, // Return true if any instruction in bundle has property
|
|
AllInBundle // Return true if all instructions in bundle have property
|
|
};
|
|
|
|
/// Return true if the instruction (or in the case of a bundle,
|
|
/// the instructions inside the bundle) has the specified property.
|
|
/// The first argument is the property being queried.
|
|
/// The second argument indicates whether the query should look inside
|
|
/// instruction bundles.
|
|
bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
|
|
assert(MCFlag < 64 &&
|
|
"MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
|
|
// Inline the fast path for unbundled or bundle-internal instructions.
|
|
if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
|
|
return getDesc().getFlags() & (1ULL << MCFlag);
|
|
|
|
// If this is the first instruction in a bundle, take the slow path.
|
|
return hasPropertyInBundle(1ULL << MCFlag, Type);
|
|
}
|
|
|
|
/// Return true if this is an instruction that should go through the usual
|
|
/// legalization steps.
|
|
bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::PreISelOpcode, Type);
|
|
}
|
|
|
|
/// Return true if this instruction can have a variable number of operands.
|
|
/// In this case, the variable operands will be after the normal
|
|
/// operands but before the implicit definitions and uses (if any are
|
|
/// present).
|
|
bool isVariadic(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Variadic, Type);
|
|
}
|
|
|
|
/// Set if this instruction has an optional definition, e.g.
|
|
/// ARM instructions which can set condition code if 's' bit is set.
|
|
bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::HasOptionalDef, Type);
|
|
}
|
|
|
|
/// Return true if this is a pseudo instruction that doesn't
|
|
/// correspond to a real machine instruction.
|
|
bool isPseudo(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Pseudo, Type);
|
|
}
|
|
|
|
bool isReturn(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Return, Type);
|
|
}
|
|
|
|
/// Return true if this is an instruction that marks the end of an EH scope,
|
|
/// i.e., a catchpad or a cleanuppad instruction.
|
|
bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::EHScopeReturn, Type);
|
|
}
|
|
|
|
bool isCall(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Call, Type);
|
|
}
|
|
|
|
/// Return true if this is a call instruction that may have an associated
|
|
/// call site entry in the debug info.
|
|
bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
|
|
/// Return true if copying, moving, or erasing this instruction requires
|
|
/// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
|
|
/// \ref eraseCallSiteInfo).
|
|
bool shouldUpdateCallSiteInfo() const;
|
|
|
|
/// Returns true if the specified instruction stops control flow
|
|
/// from executing the instruction immediately following it. Examples include
|
|
/// unconditional branches and return instructions.
|
|
bool isBarrier(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Barrier, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction part of the terminator for a basic block.
|
|
/// Typically this is things like return and branch instructions.
|
|
///
|
|
/// Various passes use this to insert code into the bottom of a basic block,
|
|
/// but before control flow occurs.
|
|
bool isTerminator(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Terminator, Type);
|
|
}
|
|
|
|
/// Returns true if this is a conditional, unconditional, or indirect branch.
|
|
/// Predicates below can be used to discriminate between
|
|
/// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
|
|
/// get more information.
|
|
bool isBranch(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::Branch, Type);
|
|
}
|
|
|
|
/// Return true if this is an indirect branch, such as a
|
|
/// branch through a register.
|
|
bool isIndirectBranch(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::IndirectBranch, Type);
|
|
}
|
|
|
|
/// Return true if this is a branch which may fall
|
|
/// through to the next instruction or may transfer control flow to some other
|
|
/// block. The TargetInstrInfo::analyzeBranch method can be used to get more
|
|
/// information about this branch.
|
|
bool isConditionalBranch(QueryType Type = AnyInBundle) const {
|
|
return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
|
|
}
|
|
|
|
/// Return true if this is a branch which always
|
|
/// transfers control flow to some other block. The
|
|
/// TargetInstrInfo::analyzeBranch method can be used to get more information
|
|
/// about this branch.
|
|
bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
|
|
return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
|
|
}
|
|
|
|
/// Return true if this instruction has a predicate operand that
|
|
/// controls execution. It may be set to 'always', or may be set to other
|
|
/// values. There are various methods in TargetInstrInfo that can be used to
|
|
/// control and modify the predicate in this instruction.
|
|
bool isPredicable(QueryType Type = AllInBundle) const {
|
|
// If it's a bundle than all bundled instructions must be predicable for this
|
|
// to return true.
|
|
return hasProperty(MCID::Predicable, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a comparison.
|
|
bool isCompare(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Compare, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a move immediate
|
|
/// (including conditional moves) instruction.
|
|
bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::MoveImm, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a register move.
|
|
/// (including moving values from subreg to reg)
|
|
bool isMoveReg(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::MoveReg, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a bitcast instruction.
|
|
bool isBitcast(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Bitcast, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is a select instruction.
|
|
bool isSelect(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Select, Type);
|
|
}
|
|
|
|
/// Return true if this instruction cannot be safely duplicated.
|
|
/// For example, if the instruction has a unique labels attached
|
|
/// to it, duplicating it would cause multiple definition errors.
|
|
bool isNotDuplicable(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::NotDuplicable, Type);
|
|
}
|
|
|
|
/// Return true if this instruction is convergent.
|
|
/// Convergent instructions can not be made control-dependent on any
|
|
/// additional values.
|
|
bool isConvergent(QueryType Type = AnyInBundle) const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_IsConvergent)
|
|
return true;
|
|
}
|
|
return hasProperty(MCID::Convergent, Type);
|
|
}
|
|
|
|
/// Returns true if the specified instruction has a delay slot
|
|
/// which must be filled by the code generator.
|
|
bool hasDelaySlot(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::DelaySlot, Type);
|
|
}
|
|
|
|
/// Return true for instructions that can be folded as
|
|
/// memory operands in other instructions. The most common use for this
|
|
/// is instructions that are simple loads from memory that don't modify
|
|
/// the loaded value in any way, but it can also be used for instructions
|
|
/// that can be expressed as constant-pool loads, such as V_SETALLONES
|
|
/// on x86, to allow them to be folded when it is beneficial.
|
|
/// This should only be set on instructions that return a value in their
|
|
/// only virtual register definition.
|
|
bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::FoldableAsLoad, Type);
|
|
}
|
|
|
|
/// Return true if this instruction behaves
|
|
/// the same way as the generic REG_SEQUENCE instructions.
|
|
/// E.g., on ARM,
|
|
/// dX VMOVDRR rY, rZ
|
|
/// is equivalent to
|
|
/// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::RegSequence, Type);
|
|
}
|
|
|
|
/// Return true if this instruction behaves
|
|
/// the same way as the generic EXTRACT_SUBREG instructions.
|
|
/// E.g., on ARM,
|
|
/// rX, rY VMOVRRD dZ
|
|
/// is equivalent to two EXTRACT_SUBREG:
|
|
/// rX = EXTRACT_SUBREG dZ, ssub_0
|
|
/// rY = EXTRACT_SUBREG dZ, ssub_1
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::ExtractSubreg, Type);
|
|
}
|
|
|
|
/// Return true if this instruction behaves
|
|
/// the same way as the generic INSERT_SUBREG instructions.
|
|
/// E.g., on ARM,
|
|
/// dX = VSETLNi32 dY, rZ, Imm
|
|
/// is equivalent to a INSERT_SUBREG:
|
|
/// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
|
|
///
|
|
/// Note that for the optimizers to be able to take advantage of
|
|
/// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
|
|
/// override accordingly.
|
|
bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::InsertSubreg, Type);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Side Effect Analysis
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Return true if this instruction could possibly read memory.
|
|
/// Instructions with this flag set are not necessarily simple load
|
|
/// instructions, they may load a value and modify it, for example.
|
|
bool mayLoad(QueryType Type = AnyInBundle) const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_MayLoad)
|
|
return true;
|
|
}
|
|
return hasProperty(MCID::MayLoad, Type);
|
|
}
|
|
|
|
/// Return true if this instruction could possibly modify memory.
|
|
/// Instructions with this flag set are not necessarily simple store
|
|
/// instructions, they may store a modified value based on their operands, or
|
|
/// may not actually modify anything, for example.
|
|
bool mayStore(QueryType Type = AnyInBundle) const {
|
|
if (isInlineAsm()) {
|
|
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
|
|
if (ExtraInfo & InlineAsm::Extra_MayStore)
|
|
return true;
|
|
}
|
|
return hasProperty(MCID::MayStore, Type);
|
|
}
|
|
|
|
/// Return true if this instruction could possibly read or modify memory.
|
|
bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
|
|
return mayLoad(Type) || mayStore(Type);
|
|
}
|
|
|
|
/// Return true if this instruction could possibly raise a floating-point
|
|
/// exception. This is the case if the instruction is a floating-point
|
|
/// instruction that can in principle raise an exception, as indicated
|
|
/// by the MCID::MayRaiseFPException property, *and* at the same time,
|
|
/// the instruction is used in a context where we expect floating-point
|
|
/// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
|
|
bool mayRaiseFPException() const {
|
|
return hasProperty(MCID::MayRaiseFPException) &&
|
|
!getFlag(MachineInstr::MIFlag::NoFPExcept);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Flags that indicate whether an instruction can be modified by a method.
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Return true if this may be a 2- or 3-address
|
|
/// instruction (of the form "X = op Y, Z, ..."), which produces the same
|
|
/// result if Y and Z are exchanged. If this flag is set, then the
|
|
/// TargetInstrInfo::commuteInstruction method may be used to hack on the
|
|
/// instruction.
|
|
///
|
|
/// Note that this flag may be set on instructions that are only commutable
|
|
/// sometimes. In these cases, the call to commuteInstruction will fail.
|
|
/// Also note that some instructions require non-trivial modification to
|
|
/// commute them.
|
|
bool isCommutable(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::Commutable, Type);
|
|
}
|
|
|
|
/// Return true if this is a 2-address instruction
|
|
/// which can be changed into a 3-address instruction if needed. Doing this
|
|
/// transformation can be profitable in the register allocator, because it
|
|
/// means that the instruction can use a 2-address form if possible, but
|
|
/// degrade into a less efficient form if the source and dest register cannot
|
|
/// be assigned to the same register. For example, this allows the x86
|
|
/// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
|
|
/// is the same speed as the shift but has bigger code size.
|
|
///
|
|
/// If this returns true, then the target must implement the
|
|
/// TargetInstrInfo::convertToThreeAddress method for this instruction, which
|
|
/// is allowed to fail if the transformation isn't valid for this specific
|
|
/// instruction (e.g. shl reg, 4 on x86).
|
|
///
|
|
bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::ConvertibleTo3Addr, Type);
|
|
}
|
|
|
|
/// Return true if this instruction requires
|
|
/// custom insertion support when the DAG scheduler is inserting it into a
|
|
/// machine basic block. If this is true for the instruction, it basically
|
|
/// means that it is a pseudo instruction used at SelectionDAG time that is
|
|
/// expanded out into magic code by the target when MachineInstrs are formed.
|
|
///
|
|
/// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
|
|
/// is used to insert this into the MachineBasicBlock.
|
|
bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::UsesCustomInserter, Type);
|
|
}
|
|
|
|
/// Return true if this instruction requires *adjustment*
|
|
/// after instruction selection by calling a target hook. For example, this
|
|
/// can be used to fill in ARM 's' optional operand depending on whether
|
|
/// the conditional flag register is used.
|
|
bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
|
|
return hasProperty(MCID::HasPostISelHook, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction is a candidate for remat.
|
|
/// This flag is deprecated, please don't use it anymore. If this
|
|
/// flag is set, the isReallyTriviallyReMaterializable() method is called to
|
|
/// verify the instruction is really rematable.
|
|
bool isRematerializable(QueryType Type = AllInBundle) const {
|
|
// It's only possible to re-mat a bundle if all bundled instructions are
|
|
// re-materializable.
|
|
return hasProperty(MCID::Rematerializable, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction has the same cost (or less) than a move
|
|
/// instruction. This is useful during certain types of optimizations
|
|
/// (e.g., remat during two-address conversion or machine licm)
|
|
/// where we would like to remat or hoist the instruction, but not if it costs
|
|
/// more than moving the instruction into the appropriate register. Note, we
|
|
/// are not marking copies from and to the same register class with this flag.
|
|
bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
|
|
// Only returns true for a bundle if all bundled instructions are cheap.
|
|
return hasProperty(MCID::CheapAsAMove, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction source operands
|
|
/// have special register allocation requirements that are not captured by the
|
|
/// operand register classes. e.g. ARM::STRD's two source registers must be an
|
|
/// even / odd pair, ARM::STM registers have to be in ascending order.
|
|
/// Post-register allocation passes should not attempt to change allocations
|
|
/// for sources of instructions with this flag.
|
|
bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
|
|
}
|
|
|
|
/// Returns true if this instruction def operands
|
|
/// have special register allocation requirements that are not captured by the
|
|
/// operand register classes. e.g. ARM::LDRD's two def registers must be an
|
|
/// even / odd pair, ARM::LDM registers have to be in ascending order.
|
|
/// Post-register allocation passes should not attempt to change allocations
|
|
/// for definitions of instructions with this flag.
|
|
bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
|
|
return hasProperty(MCID::ExtraDefRegAllocReq, Type);
|
|
}
|
|
|
|
enum MICheckType {
|
|
CheckDefs, // Check all operands for equality
|
|
CheckKillDead, // Check all operands including kill / dead markers
|
|
IgnoreDefs, // Ignore all definitions
|
|
IgnoreVRegDefs // Ignore virtual register definitions
|
|
};
|
|
|
|
/// Return true if this instruction is identical to \p Other.
|
|
/// Two instructions are identical if they have the same opcode and all their
|
|
/// operands are identical (with respect to MachineOperand::isIdenticalTo()).
|
|
/// Note that this means liveness related flags (dead, undef, kill) do not
|
|
/// affect the notion of identical.
|
|
bool isIdenticalTo(const MachineInstr &Other,
|
|
MICheckType Check = CheckDefs) const;
|
|
|
|
/// Unlink 'this' from the containing basic block, and return it without
|
|
/// deleting it.
|
|
///
|
|
/// This function can not be used on bundled instructions, use
|
|
/// removeFromBundle() to remove individual instructions from a bundle.
|
|
MachineInstr *removeFromParent();
|
|
|
|
/// Unlink this instruction from its basic block and return it without
|
|
/// deleting it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle remain bundled.
|
|
MachineInstr *removeFromBundle();
|
|
|
|
/// Unlink 'this' from the containing basic block and delete it.
|
|
///
|
|
/// If this instruction is the header of a bundle, the whole bundle is erased.
|
|
/// This function can not be used for instructions inside a bundle, use
|
|
/// eraseFromBundle() to erase individual bundled instructions.
|
|
void eraseFromParent();
|
|
|
|
/// Unlink 'this' from the containing basic block and delete it.
|
|
///
|
|
/// For all definitions mark their uses in DBG_VALUE nodes
|
|
/// as undefined. Otherwise like eraseFromParent().
|
|
void eraseFromParentAndMarkDBGValuesForRemoval();
|
|
|
|
/// Unlink 'this' form its basic block and delete it.
|
|
///
|
|
/// If the instruction is part of a bundle, the other instructions in the
|
|
/// bundle remain bundled.
|
|
void eraseFromBundle();
|
|
|
|
bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
|
|
bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
|
|
bool isAnnotationLabel() const {
|
|
return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
|
|
}
|
|
|
|
/// Returns true if the MachineInstr represents a label.
|
|
bool isLabel() const {
|
|
return isEHLabel() || isGCLabel() || isAnnotationLabel();
|
|
}
|
|
|
|
bool isCFIInstruction() const {
|
|
return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
|
|
}
|
|
|
|
bool isPseudoProbe() const {
|
|
return getOpcode() == TargetOpcode::PSEUDO_PROBE;
|
|
}
|
|
|
|
// True if the instruction represents a position in the function.
|
|
bool isPosition() const { return isLabel() || isCFIInstruction(); }
|
|
|
|
bool isNonListDebugValue() const {
|
|
return getOpcode() == TargetOpcode::DBG_VALUE;
|
|
}
|
|
bool isDebugValueList() const {
|
|
return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
|
|
}
|
|
bool isDebugValue() const {
|
|
return isNonListDebugValue() || isDebugValueList();
|
|
}
|
|
bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
|
|
bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
|
|
bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
|
|
bool isDebugInstr() const {
|
|
return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
|
|
}
|
|
bool isDebugOrPseudoInstr() const {
|
|
return isDebugInstr() || isPseudoProbe();
|
|
}
|
|
|
|
bool isDebugOffsetImm() const {
|
|
return isNonListDebugValue() && getDebugOffset().isImm();
|
|
}
|
|
|
|
/// A DBG_VALUE is indirect iff the location operand is a register and
|
|
/// the offset operand is an immediate.
|
|
bool isIndirectDebugValue() const {
|
|
return isDebugOffsetImm() && getDebugOperand(0).isReg();
|
|
}
|
|
|
|
/// A DBG_VALUE is an entry value iff its debug expression contains the
|
|
/// DW_OP_LLVM_entry_value operation.
|
|
bool isDebugEntryValue() const;
|
|
|
|
/// Return true if the instruction is a debug value which describes a part of
|
|
/// a variable as unavailable.
|
|
bool isUndefDebugValue() const {
|
|
if (!isDebugValue())
|
|
return false;
|
|
// If any $noreg locations are given, this DV is undef.
|
|
for (const MachineOperand &Op : debug_operands())
|
|
if (Op.isReg() && !Op.getReg().isValid())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool isPHI() const {
|
|
return getOpcode() == TargetOpcode::PHI ||
|
|
getOpcode() == TargetOpcode::G_PHI;
|
|
}
|
|
bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
|
|
bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
|
|
bool isInlineAsm() const {
|
|
return getOpcode() == TargetOpcode::INLINEASM ||
|
|
getOpcode() == TargetOpcode::INLINEASM_BR;
|
|
}
|
|
|
|
/// FIXME: Seems like a layering violation that the AsmDialect, which is X86
|
|
/// specific, be attached to a generic MachineInstr.
|
|
bool isMSInlineAsm() const {
|
|
return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
|
|
}
|
|
|
|
bool isStackAligningInlineAsm() const;
|
|
InlineAsm::AsmDialect getInlineAsmDialect() const;
|
|
|
|
bool isInsertSubreg() const {
|
|
return getOpcode() == TargetOpcode::INSERT_SUBREG;
|
|
}
|
|
|
|
bool isSubregToReg() const {
|
|
return getOpcode() == TargetOpcode::SUBREG_TO_REG;
|
|
}
|
|
|
|
bool isRegSequence() const {
|
|
return getOpcode() == TargetOpcode::REG_SEQUENCE;
|
|
}
|
|
|
|
bool isBundle() const {
|
|
return getOpcode() == TargetOpcode::BUNDLE;
|
|
}
|
|
|
|
bool isCopy() const {
|
|
return getOpcode() == TargetOpcode::COPY;
|
|
}
|
|
|
|
bool isFullCopy() const {
|
|
return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
|
|
}
|
|
|
|
bool isExtractSubreg() const {
|
|
return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
|
|
}
|
|
|
|
/// Return true if the instruction behaves like a copy.
|
|
/// This does not include native copy instructions.
|
|
bool isCopyLike() const {
|
|
return isCopy() || isSubregToReg();
|
|
}
|
|
|
|
/// Return true is the instruction is an identity copy.
|
|
bool isIdentityCopy() const {
|
|
return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
|
|
getOperand(0).getSubReg() == getOperand(1).getSubReg();
|
|
}
|
|
|
|
/// Return true if this instruction doesn't produce any output in the form of
|
|
/// executable instructions.
|
|
bool isMetaInstruction() const {
|
|
switch (getOpcode()) {
|
|
default:
|
|
return false;
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::KILL:
|
|
case TargetOpcode::CFI_INSTRUCTION:
|
|
case TargetOpcode::EH_LABEL:
|
|
case TargetOpcode::GC_LABEL:
|
|
case TargetOpcode::DBG_VALUE:
|
|
case TargetOpcode::DBG_VALUE_LIST:
|
|
case TargetOpcode::DBG_INSTR_REF:
|
|
case TargetOpcode::DBG_PHI:
|
|
case TargetOpcode::DBG_LABEL:
|
|
case TargetOpcode::LIFETIME_START:
|
|
case TargetOpcode::LIFETIME_END:
|
|
case TargetOpcode::PSEUDO_PROBE:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Return true if this is a transient instruction that is either very likely
|
|
/// to be eliminated during register allocation (such as copy-like
|
|
/// instructions), or if this instruction doesn't have an execution-time cost.
|
|
bool isTransient() const {
|
|
switch (getOpcode()) {
|
|
default:
|
|
return isMetaInstruction();
|
|
// Copy-like instructions are usually eliminated during register allocation.
|
|
case TargetOpcode::PHI:
|
|
case TargetOpcode::G_PHI:
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
case TargetOpcode::REG_SEQUENCE:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Return the number of instructions inside the MI bundle, excluding the
|
|
/// bundle header.
|
|
///
|
|
/// This is the number of instructions that MachineBasicBlock::iterator
|
|
/// skips, 0 for unbundled instructions.
|
|
unsigned getBundleSize() const;
|
|
|
|
/// Return true if the MachineInstr reads the specified register.
|
|
/// If TargetRegisterInfo is passed, then it also checks if there
|
|
/// is a read of a super-register.
|
|
/// This does not count partial redefines of virtual registers as reads:
|
|
/// %reg1024:6 = OP.
|
|
bool readsRegister(Register Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
|
|
}
|
|
|
|
/// Return true if the MachineInstr reads the specified virtual register.
|
|
/// Take into account that a partial define is a
|
|
/// read-modify-write operation.
|
|
bool readsVirtualRegister(Register Reg) const {
|
|
return readsWritesVirtualRegister(Reg).first;
|
|
}
|
|
|
|
/// Return a pair of bools (reads, writes) indicating if this instruction
|
|
/// reads or writes Reg. This also considers partial defines.
|
|
/// If Ops is not null, all operand indices for Reg are added.
|
|
std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
|
|
SmallVectorImpl<unsigned> *Ops = nullptr) const;
|
|
|
|
/// Return true if the MachineInstr kills the specified register.
|
|
/// If TargetRegisterInfo is passed, then it also checks if there is
|
|
/// a kill of a super-register.
|
|
bool killsRegister(Register Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
|
|
}
|
|
|
|
/// Return true if the MachineInstr fully defines the specified register.
|
|
/// If TargetRegisterInfo is passed, then it also checks
|
|
/// if there is a def of a super-register.
|
|
/// NOTE: It's ignoring subreg indices on virtual registers.
|
|
bool definesRegister(Register Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
|
|
}
|
|
|
|
/// Return true if the MachineInstr modifies (fully define or partially
|
|
/// define) the specified register.
|
|
/// NOTE: It's ignoring subreg indices on virtual registers.
|
|
bool modifiesRegister(Register Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
|
|
}
|
|
|
|
/// Returns true if the register is dead in this machine instruction.
|
|
/// If TargetRegisterInfo is passed, then it also checks
|
|
/// if there is a dead def of a super-register.
|
|
bool registerDefIsDead(Register Reg,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
|
|
}
|
|
|
|
/// Returns true if the MachineInstr has an implicit-use operand of exactly
|
|
/// the given register (not considering sub/super-registers).
|
|
bool hasRegisterImplicitUseOperand(Register Reg) const;
|
|
|
|
/// Returns the operand index that is a use of the specific register or -1
|
|
/// if it is not found. It further tightens the search criteria to a use
|
|
/// that kills the register if isKill is true.
|
|
int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const;
|
|
|
|
/// Wrapper for findRegisterUseOperandIdx, it returns
|
|
/// a pointer to the MachineOperand rather than an index.
|
|
MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
|
|
const TargetRegisterInfo *TRI = nullptr) {
|
|
int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
|
|
return (Idx == -1) ? nullptr : &getOperand(Idx);
|
|
}
|
|
|
|
const MachineOperand *findRegisterUseOperand(
|
|
Register Reg, bool isKill = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return const_cast<MachineInstr *>(this)->
|
|
findRegisterUseOperand(Reg, isKill, TRI);
|
|
}
|
|
|
|
/// Returns the operand index that is a def of the specified register or
|
|
/// -1 if it is not found. If isDead is true, defs that are not dead are
|
|
/// skipped. If Overlap is true, then it also looks for defs that merely
|
|
/// overlap the specified register. If TargetRegisterInfo is non-null,
|
|
/// then it also checks if there is a def of a super-register.
|
|
/// This may also return a register mask operand when Overlap is true.
|
|
int findRegisterDefOperandIdx(Register Reg,
|
|
bool isDead = false, bool Overlap = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const;
|
|
|
|
/// Wrapper for findRegisterDefOperandIdx, it returns
|
|
/// a pointer to the MachineOperand rather than an index.
|
|
MachineOperand *
|
|
findRegisterDefOperand(Register Reg, bool isDead = false,
|
|
bool Overlap = false,
|
|
const TargetRegisterInfo *TRI = nullptr) {
|
|
int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
|
|
return (Idx == -1) ? nullptr : &getOperand(Idx);
|
|
}
|
|
|
|
const MachineOperand *
|
|
findRegisterDefOperand(Register Reg, bool isDead = false,
|
|
bool Overlap = false,
|
|
const TargetRegisterInfo *TRI = nullptr) const {
|
|
return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
|
|
Reg, isDead, Overlap, TRI);
|
|
}
|
|
|
|
/// Find the index of the first operand in the
|
|
/// operand list that is used to represent the predicate. It returns -1 if
|
|
/// none is found.
|
|
int findFirstPredOperandIdx() const;
|
|
|
|
/// Find the index of the flag word operand that
|
|
/// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
|
|
/// getOperand(OpIdx) does not belong to an inline asm operand group.
|
|
///
|
|
/// If GroupNo is not NULL, it will receive the number of the operand group
|
|
/// containing OpIdx.
|
|
///
|
|
/// The flag operand is an immediate that can be decoded with methods like
|
|
/// InlineAsm::hasRegClassConstraint().
|
|
int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
|
|
|
|
/// Compute the static register class constraint for operand OpIdx.
|
|
/// For normal instructions, this is derived from the MCInstrDesc.
|
|
/// For inline assembly it is derived from the flag words.
|
|
///
|
|
/// Returns NULL if the static register class constraint cannot be
|
|
/// determined.
|
|
const TargetRegisterClass*
|
|
getRegClassConstraint(unsigned OpIdx,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
/// Applies the constraints (def/use) implied by this MI on \p Reg to
|
|
/// the given \p CurRC.
|
|
/// If \p ExploreBundle is set and MI is part of a bundle, all the
|
|
/// instructions inside the bundle will be taken into account. In other words,
|
|
/// this method accumulates all the constraints of the operand of this MI and
|
|
/// the related bundle if MI is a bundle or inside a bundle.
|
|
///
|
|
/// Returns the register class that satisfies both \p CurRC and the
|
|
/// constraints set by MI. Returns NULL if such a register class does not
|
|
/// exist.
|
|
///
|
|
/// \pre CurRC must not be NULL.
|
|
const TargetRegisterClass *getRegClassConstraintEffectForVReg(
|
|
Register Reg, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
|
|
bool ExploreBundle = false) const;
|
|
|
|
/// Applies the constraints (def/use) implied by the \p OpIdx operand
|
|
/// to the given \p CurRC.
|
|
///
|
|
/// Returns the register class that satisfies both \p CurRC and the
|
|
/// constraints set by \p OpIdx MI. Returns NULL if such a register class
|
|
/// does not exist.
|
|
///
|
|
/// \pre CurRC must not be NULL.
|
|
/// \pre The operand at \p OpIdx must be a register.
|
|
const TargetRegisterClass *
|
|
getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) const;
|
|
|
|
/// Add a tie between the register operands at DefIdx and UseIdx.
|
|
/// The tie will cause the register allocator to ensure that the two
|
|
/// operands are assigned the same physical register.
|
|
///
|
|
/// Tied operands are managed automatically for explicit operands in the
|
|
/// MCInstrDesc. This method is for exceptional cases like inline asm.
|
|
void tieOperands(unsigned DefIdx, unsigned UseIdx);
|
|
|
|
/// Given the index of a tied register operand, find the
|
|
/// operand it is tied to. Defs are tied to uses and vice versa. Returns the
|
|
/// index of the tied operand which must exist.
|
|
unsigned findTiedOperandIdx(unsigned OpIdx) const;
|
|
|
|
/// Given the index of a register def operand,
|
|
/// check if the register def is tied to a source operand, due to either
|
|
/// two-address elimination or inline assembly constraints. Returns the
|
|
/// first tied use operand index by reference if UseOpIdx is not null.
|
|
bool isRegTiedToUseOperand(unsigned DefOpIdx,
|
|
unsigned *UseOpIdx = nullptr) const {
|
|
const MachineOperand &MO = getOperand(DefOpIdx);
|
|
if (!MO.isReg() || !MO.isDef() || !MO.isTied())
|
|
return false;
|
|
if (UseOpIdx)
|
|
*UseOpIdx = findTiedOperandIdx(DefOpIdx);
|
|
return true;
|
|
}
|
|
|
|
/// Return true if the use operand of the specified index is tied to a def
|
|
/// operand. It also returns the def operand index by reference if DefOpIdx
|
|
/// is not null.
|
|
bool isRegTiedToDefOperand(unsigned UseOpIdx,
|
|
unsigned *DefOpIdx = nullptr) const {
|
|
const MachineOperand &MO = getOperand(UseOpIdx);
|
|
if (!MO.isReg() || !MO.isUse() || !MO.isTied())
|
|
return false;
|
|
if (DefOpIdx)
|
|
*DefOpIdx = findTiedOperandIdx(UseOpIdx);
|
|
return true;
|
|
}
|
|
|
|
/// Clears kill flags on all operands.
|
|
void clearKillInfo();
|
|
|
|
/// Replace all occurrences of FromReg with ToReg:SubIdx,
|
|
/// properly composing subreg indices where necessary.
|
|
void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
|
|
const TargetRegisterInfo &RegInfo);
|
|
|
|
/// We have determined MI kills a register. Look for the
|
|
/// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
|
|
/// add a implicit operand if it's not found. Returns true if the operand
|
|
/// exists / is added.
|
|
bool addRegisterKilled(Register IncomingReg,
|
|
const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound = false);
|
|
|
|
/// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
|
|
/// all aliasing registers.
|
|
void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
|
|
|
|
/// We have determined MI defined a register without a use.
|
|
/// Look for the operand that defines it and mark it as IsDead. If
|
|
/// AddIfNotFound is true, add a implicit operand if it's not found. Returns
|
|
/// true if the operand exists / is added.
|
|
bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
|
|
bool AddIfNotFound = false);
|
|
|
|
/// Clear all dead flags on operands defining register @p Reg.
|
|
void clearRegisterDeads(Register Reg);
|
|
|
|
/// Mark all subregister defs of register @p Reg with the undef flag.
|
|
/// This function is used when we determined to have a subregister def in an
|
|
/// otherwise undefined super register.
|
|
void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
|
|
|
|
/// We have determined MI defines a register. Make sure there is an operand
|
|
/// defining Reg.
|
|
void addRegisterDefined(Register Reg,
|
|
const TargetRegisterInfo *RegInfo = nullptr);
|
|
|
|
/// Mark every physreg used by this instruction as
|
|
/// dead except those in the UsedRegs list.
|
|
///
|
|
/// On instructions with register mask operands, also add implicit-def
|
|
/// operands for all registers in UsedRegs.
|
|
void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
|
|
const TargetRegisterInfo &TRI);
|
|
|
|
/// Return true if it is safe to move this instruction. If
|
|
/// SawStore is set to true, it means that there is a store (or call) between
|
|
/// the instruction's location and its intended destination.
|
|
bool isSafeToMove(AAResults *AA, bool &SawStore) const;
|
|
|
|
/// Returns true if this instruction's memory access aliases the memory
|
|
/// access of Other.
|
|
//
|
|
/// Assumes any physical registers used to compute addresses
|
|
/// have the same value for both instructions. Returns false if neither
|
|
/// instruction writes to memory.
|
|
///
|
|
/// @param AA Optional alias analysis, used to compare memory operands.
|
|
/// @param Other MachineInstr to check aliasing against.
|
|
/// @param UseTBAA Whether to pass TBAA information to alias analysis.
|
|
bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
|
|
|
|
/// Return true if this instruction may have an ordered
|
|
/// or volatile memory reference, or if the information describing the memory
|
|
/// reference is not available. Return false if it is known to have no
|
|
/// ordered or volatile memory references.
|
|
bool hasOrderedMemoryRef() const;
|
|
|
|
/// Return true if this load instruction never traps and points to a memory
|
|
/// location whose value doesn't change during the execution of this function.
|
|
///
|
|
/// Examples include loading a value from the constant pool or from the
|
|
/// argument area of a function (if it does not change). If the instruction
|
|
/// does multiple loads, this returns true only if all of the loads are
|
|
/// dereferenceable and invariant.
|
|
bool isDereferenceableInvariantLoad(AAResults *AA) const;
|
|
|
|
/// If the specified instruction is a PHI that always merges together the
|
|
/// same virtual register, return the register, otherwise return 0.
|
|
unsigned isConstantValuePHI() const;
|
|
|
|
/// Return true if this instruction has side effects that are not modeled
|
|
/// by mayLoad / mayStore, etc.
|
|
/// For all instructions, the property is encoded in MCInstrDesc::Flags
|
|
/// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
|
|
/// INLINEASM instruction, in which case the side effect property is encoded
|
|
/// in one of its operands (see InlineAsm::Extra_HasSideEffect).
|
|
///
|
|
bool hasUnmodeledSideEffects() const;
|
|
|
|
/// Returns true if it is illegal to fold a load across this instruction.
|
|
bool isLoadFoldBarrier() const;
|
|
|
|
/// Return true if all the defs of this instruction are dead.
|
|
bool allDefsAreDead() const;
|
|
|
|
/// Return a valid size if the instruction is a spill instruction.
|
|
Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
|
|
|
|
/// Return a valid size if the instruction is a folded spill instruction.
|
|
Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
|
|
|
|
/// Return a valid size if the instruction is a restore instruction.
|
|
Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
|
|
|
|
/// Return a valid size if the instruction is a folded restore instruction.
|
|
Optional<unsigned>
|
|
getFoldedRestoreSize(const TargetInstrInfo *TII) const;
|
|
|
|
/// Copy implicit register operands from specified
|
|
/// instruction to this instruction.
|
|
void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
|
|
|
|
/// Debugging support
|
|
/// @{
|
|
/// Determine the generic type to be printed (if needed) on uses and defs.
|
|
LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
|
|
const MachineRegisterInfo &MRI) const;
|
|
|
|
/// Return true when an instruction has tied register that can't be determined
|
|
/// by the instruction's descriptor. This is useful for MIR printing, to
|
|
/// determine whether we need to print the ties or not.
|
|
bool hasComplexRegisterTies() const;
|
|
|
|
/// Print this MI to \p OS.
|
|
/// Don't print information that can be inferred from other instructions if
|
|
/// \p IsStandalone is false. It is usually true when only a fragment of the
|
|
/// function is printed.
|
|
/// Only print the defs and the opcode if \p SkipOpers is true.
|
|
/// Otherwise, also print operands if \p SkipDebugLoc is true.
|
|
/// Otherwise, also print the debug loc, with a terminating newline.
|
|
/// \p TII is used to print the opcode name. If it's not present, but the
|
|
/// MI is in a function, the opcode will be printed using the function's TII.
|
|
void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
|
|
bool SkipDebugLoc = false, bool AddNewLine = true,
|
|
const TargetInstrInfo *TII = nullptr) const;
|
|
void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
|
|
bool SkipOpers = false, bool SkipDebugLoc = false,
|
|
bool AddNewLine = true,
|
|
const TargetInstrInfo *TII = nullptr) const;
|
|
void dump() const;
|
|
/// Print on dbgs() the current instruction and the instructions defining its
|
|
/// operands and so on until we reach \p MaxDepth.
|
|
void dumpr(const MachineRegisterInfo &MRI,
|
|
unsigned MaxDepth = UINT_MAX) const;
|
|
/// @}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Accessors used to build up machine instructions.
|
|
|
|
/// Add the specified operand to the instruction. If it is an implicit
|
|
/// operand, it is added to the end of the operand list. If it is an
|
|
/// explicit operand it is added at the end of the explicit operand list
|
|
/// (before the first implicit operand).
|
|
///
|
|
/// MF must be the machine function that was used to allocate this
|
|
/// instruction.
|
|
///
|
|
/// MachineInstrBuilder provides a more convenient interface for creating
|
|
/// instructions and adding operands.
|
|
void addOperand(MachineFunction &MF, const MachineOperand &Op);
|
|
|
|
/// Add an operand without providing an MF reference. This only works for
|
|
/// instructions that are inserted in a basic block.
|
|
///
|
|
/// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
|
|
/// preferred.
|
|
void addOperand(const MachineOperand &Op);
|
|
|
|
/// Replace the instruction descriptor (thus opcode) of
|
|
/// the current instruction with a new one.
|
|
void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
|
|
|
|
/// Replace current source information with new such.
|
|
/// Avoid using this, the constructor argument is preferable.
|
|
void setDebugLoc(DebugLoc dl) {
|
|
debugLoc = std::move(dl);
|
|
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
|
|
}
|
|
|
|
/// Erase an operand from an instruction, leaving it with one
|
|
/// fewer operand than it started with.
|
|
void RemoveOperand(unsigned OpNo);
|
|
|
|
/// Clear this MachineInstr's memory reference descriptor list. This resets
|
|
/// the memrefs to their most conservative state. This should be used only
|
|
/// as a last resort since it greatly pessimizes our knowledge of the memory
|
|
/// access performed by the instruction.
|
|
void dropMemRefs(MachineFunction &MF);
|
|
|
|
/// Assign this MachineInstr's memory reference descriptor list.
|
|
///
|
|
/// Unlike other methods, this *will* allocate them into a new array
|
|
/// associated with the provided `MachineFunction`.
|
|
void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
|
|
|
|
/// Add a MachineMemOperand to the machine instruction.
|
|
/// This function should be used only occasionally. The setMemRefs function
|
|
/// is the primary method for setting up a MachineInstr's MemRefs list.
|
|
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
|
|
|
|
/// Clone another MachineInstr's memory reference descriptor list and replace
|
|
/// ours with it.
|
|
///
|
|
/// Note that `*this` may be the incoming MI!
|
|
///
|
|
/// Prefer this API whenever possible as it can avoid allocations in common
|
|
/// cases.
|
|
void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
|
|
|
|
/// Clone the merge of multiple MachineInstrs' memory reference descriptors
|
|
/// list and replace ours with it.
|
|
///
|
|
/// Note that `*this` may be one of the incoming MIs!
|
|
///
|
|
/// Prefer this API whenever possible as it can avoid allocations in common
|
|
/// cases.
|
|
void cloneMergedMemRefs(MachineFunction &MF,
|
|
ArrayRef<const MachineInstr *> MIs);
|
|
|
|
/// Set a symbol that will be emitted just prior to the instruction itself.
|
|
///
|
|
/// Setting this to a null pointer will remove any such symbol.
|
|
///
|
|
/// FIXME: This is not fully implemented yet.
|
|
void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
|
|
|
|
/// Set a symbol that will be emitted just after the instruction itself.
|
|
///
|
|
/// Setting this to a null pointer will remove any such symbol.
|
|
///
|
|
/// FIXME: This is not fully implemented yet.
|
|
void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
|
|
|
|
/// Clone another MachineInstr's pre- and post- instruction symbols and
|
|
/// replace ours with it.
|
|
void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
|
|
|
|
/// Set a marker on instructions that denotes where we should create and emit
|
|
/// heap alloc site labels. This waits until after instruction selection and
|
|
/// optimizations to create the label, so it should still work if the
|
|
/// instruction is removed or duplicated.
|
|
void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
|
|
|
|
/// Return the MIFlags which represent both MachineInstrs. This
|
|
/// should be used when merging two MachineInstrs into one. This routine does
|
|
/// not modify the MIFlags of this MachineInstr.
|
|
uint16_t mergeFlagsWith(const MachineInstr& Other) const;
|
|
|
|
static uint16_t copyFlagsFromInstruction(const Instruction &I);
|
|
|
|
/// Copy all flags to MachineInst MIFlags
|
|
void copyIRFlags(const Instruction &I);
|
|
|
|
/// Break any tie involving OpIdx.
|
|
void untieRegOperand(unsigned OpIdx) {
|
|
MachineOperand &MO = getOperand(OpIdx);
|
|
if (MO.isReg() && MO.isTied()) {
|
|
getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
|
|
MO.TiedTo = 0;
|
|
}
|
|
}
|
|
|
|
/// Add all implicit def and use operands to this instruction.
|
|
void addImplicitDefUseOperands(MachineFunction &MF);
|
|
|
|
/// Scan instructions immediately following MI and collect any matching
|
|
/// DBG_VALUEs.
|
|
void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
|
|
|
|
/// Find all DBG_VALUEs that point to the register def in this instruction
|
|
/// and point them to \p Reg instead.
|
|
void changeDebugValuesDefReg(Register Reg);
|
|
|
|
/// Returns the Intrinsic::ID for this instruction.
|
|
/// \pre Must have an intrinsic ID operand.
|
|
unsigned getIntrinsicID() const {
|
|
return getOperand(getNumExplicitDefs()).getIntrinsicID();
|
|
}
|
|
|
|
/// Sets all register debug operands in this debug value instruction to be
|
|
/// undef.
|
|
void setDebugValueUndef() {
|
|
assert(isDebugValue() && "Must be a debug value instruction.");
|
|
for (MachineOperand &MO : debug_operands()) {
|
|
if (MO.isReg()) {
|
|
MO.setReg(0);
|
|
MO.setSubReg(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
PseudoProbeAttributes getPseudoProbeAttribute() const {
|
|
assert(isPseudoProbe() && "Must be a pseudo probe instruction");
|
|
return (PseudoProbeAttributes)getOperand(3).getImm();
|
|
}
|
|
|
|
void addPseudoProbeAttribute(PseudoProbeAttributes Attr) {
|
|
assert(isPseudoProbe() && "Must be a pseudo probe instruction");
|
|
MachineOperand &AttrOperand = getOperand(3);
|
|
AttrOperand.setImm(AttrOperand.getImm() | (uint32_t)Attr);
|
|
}
|
|
|
|
private:
|
|
/// If this instruction is embedded into a MachineFunction, return the
|
|
/// MachineRegisterInfo object for the current function, otherwise
|
|
/// return null.
|
|
MachineRegisterInfo *getRegInfo();
|
|
|
|
/// Unlink all of the register operands in this instruction from their
|
|
/// respective use lists. This requires that the operands already be on their
|
|
/// use lists.
|
|
void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
|
|
|
|
/// Add all of the register operands in this instruction from their
|
|
/// respective use lists. This requires that the operands not be on their
|
|
/// use lists yet.
|
|
void AddRegOperandsToUseLists(MachineRegisterInfo&);
|
|
|
|
/// Slow path for hasProperty when we're dealing with a bundle.
|
|
bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
|
|
|
|
/// Implements the logic of getRegClassConstraintEffectForVReg for the
|
|
/// this MI and the given operand index \p OpIdx.
|
|
/// If the related operand does not constrained Reg, this returns CurRC.
|
|
const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
|
|
unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
|
|
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
|
|
|
|
/// Stores extra instruction information inline or allocates as ExtraInfo
|
|
/// based on the number of pointers.
|
|
void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
|
|
MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
|
|
MDNode *HeapAllocMarker);
|
|
};
|
|
|
|
/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
|
|
/// instruction rather than by pointer value.
|
|
/// The hashing and equality testing functions ignore definitions so this is
|
|
/// useful for CSE, etc.
|
|
struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
|
|
static inline MachineInstr *getEmptyKey() {
|
|
return nullptr;
|
|
}
|
|
|
|
static inline MachineInstr *getTombstoneKey() {
|
|
return reinterpret_cast<MachineInstr*>(-1);
|
|
}
|
|
|
|
static unsigned getHashValue(const MachineInstr* const &MI);
|
|
|
|
static bool isEqual(const MachineInstr* const &LHS,
|
|
const MachineInstr* const &RHS) {
|
|
if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
|
|
LHS == getEmptyKey() || LHS == getTombstoneKey())
|
|
return LHS == RHS;
|
|
return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Debugging Support
|
|
|
|
inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
|
|
MI.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_CODEGEN_MACHINEINSTR_H
|