1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00
llvm-mirror/lib/AsmParser/LLParser.cpp
Igor Laevsky 05bff16edd Add argmemonly attribute.
This change adds new attribute called "argmemonly". Function marked with this attribute can only access memory through it's argument pointers. This attribute directly corresponds to the "OnlyAccessesArgumentPointees" ModRef behaviour in alias analysis.

Differential Revision: http://reviews.llvm.org/D10398

llvm-svn: 241979
2015-07-11 10:30:36 +00:00

5837 lines
203 KiB
C++

//===-- LLParser.cpp - Parser Class ---------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the parser class for .ll files.
//
//===----------------------------------------------------------------------===//
#include "LLParser.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/AsmParser/SlotMapping.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static std::string getTypeString(Type *T) {
std::string Result;
raw_string_ostream Tmp(Result);
Tmp << *T;
return Tmp.str();
}
/// Run: module ::= toplevelentity*
bool LLParser::Run() {
// Prime the lexer.
Lex.Lex();
return ParseTopLevelEntities() ||
ValidateEndOfModule();
}
/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
/// module.
bool LLParser::ValidateEndOfModule() {
for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
// Handle any function attribute group forward references.
for (std::map<Value*, std::vector<unsigned> >::iterator
I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
I != E; ++I) {
Value *V = I->first;
std::vector<unsigned> &Vec = I->second;
AttrBuilder B;
for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
VI != VE; ++VI)
B.merge(NumberedAttrBuilders[*VI]);
if (Function *Fn = dyn_cast<Function>(V)) {
AttributeSet AS = Fn->getAttributes();
AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
AS.getFnAttributes());
FnAttrs.merge(B);
// If the alignment was parsed as an attribute, move to the alignment
// field.
if (FnAttrs.hasAlignmentAttr()) {
Fn->setAlignment(FnAttrs.getAlignment());
FnAttrs.removeAttribute(Attribute::Alignment);
}
AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
AttributeSet::get(Context,
AttributeSet::FunctionIndex,
FnAttrs));
Fn->setAttributes(AS);
} else if (CallInst *CI = dyn_cast<CallInst>(V)) {
AttributeSet AS = CI->getAttributes();
AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
AS.getFnAttributes());
FnAttrs.merge(B);
AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
AttributeSet::get(Context,
AttributeSet::FunctionIndex,
FnAttrs));
CI->setAttributes(AS);
} else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
AttributeSet AS = II->getAttributes();
AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
AS.getFnAttributes());
FnAttrs.merge(B);
AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
AttributeSet::get(Context,
AttributeSet::FunctionIndex,
FnAttrs));
II->setAttributes(AS);
} else {
llvm_unreachable("invalid object with forward attribute group reference");
}
}
// If there are entries in ForwardRefBlockAddresses at this point, the
// function was never defined.
if (!ForwardRefBlockAddresses.empty())
return Error(ForwardRefBlockAddresses.begin()->first.Loc,
"expected function name in blockaddress");
for (const auto &NT : NumberedTypes)
if (NT.second.second.isValid())
return Error(NT.second.second,
"use of undefined type '%" + Twine(NT.first) + "'");
for (StringMap<std::pair<Type*, LocTy> >::iterator I =
NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
if (I->second.second.isValid())
return Error(I->second.second,
"use of undefined type named '" + I->getKey() + "'");
if (!ForwardRefComdats.empty())
return Error(ForwardRefComdats.begin()->second,
"use of undefined comdat '$" +
ForwardRefComdats.begin()->first + "'");
if (!ForwardRefVals.empty())
return Error(ForwardRefVals.begin()->second.second,
"use of undefined value '@" + ForwardRefVals.begin()->first +
"'");
if (!ForwardRefValIDs.empty())
return Error(ForwardRefValIDs.begin()->second.second,
"use of undefined value '@" +
Twine(ForwardRefValIDs.begin()->first) + "'");
if (!ForwardRefMDNodes.empty())
return Error(ForwardRefMDNodes.begin()->second.second,
"use of undefined metadata '!" +
Twine(ForwardRefMDNodes.begin()->first) + "'");
// Resolve metadata cycles.
for (auto &N : NumberedMetadata) {
if (N.second && !N.second->isResolved())
N.second->resolveCycles();
}
// Look for intrinsic functions and CallInst that need to be upgraded
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
UpgradeDebugInfo(*M);
if (!Slots)
return false;
// Initialize the slot mapping.
// Because by this point we've parsed and validated everything, we can "steal"
// the mapping from LLParser as it doesn't need it anymore.
Slots->GlobalValues = std::move(NumberedVals);
Slots->MetadataNodes = std::move(NumberedMetadata);
return false;
}
//===----------------------------------------------------------------------===//
// Top-Level Entities
//===----------------------------------------------------------------------===//
bool LLParser::ParseTopLevelEntities() {
while (1) {
switch (Lex.getKind()) {
default: return TokError("expected top-level entity");
case lltok::Eof: return false;
case lltok::kw_declare: if (ParseDeclare()) return true; break;
case lltok::kw_define: if (ParseDefine()) return true; break;
case lltok::kw_module: if (ParseModuleAsm()) return true; break;
case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
case lltok::LocalVar: if (ParseNamedType()) return true; break;
case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
case lltok::ComdatVar: if (parseComdat()) return true; break;
case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
// The Global variable production with no name can have many different
// optional leading prefixes, the production is:
// GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
// OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr
// ('constant'|'global') ...
case lltok::kw_private: // OptionalLinkage
case lltok::kw_internal: // OptionalLinkage
case lltok::kw_weak: // OptionalLinkage
case lltok::kw_weak_odr: // OptionalLinkage
case lltok::kw_linkonce: // OptionalLinkage
case lltok::kw_linkonce_odr: // OptionalLinkage
case lltok::kw_appending: // OptionalLinkage
case lltok::kw_common: // OptionalLinkage
case lltok::kw_extern_weak: // OptionalLinkage
case lltok::kw_external: // OptionalLinkage
case lltok::kw_default: // OptionalVisibility
case lltok::kw_hidden: // OptionalVisibility
case lltok::kw_protected: // OptionalVisibility
case lltok::kw_dllimport: // OptionalDLLStorageClass
case lltok::kw_dllexport: // OptionalDLLStorageClass
case lltok::kw_thread_local: // OptionalThreadLocal
case lltok::kw_addrspace: // OptionalAddrSpace
case lltok::kw_constant: // GlobalType
case lltok::kw_global: { // GlobalType
unsigned Linkage, Visibility, DLLStorageClass;
bool UnnamedAddr;
GlobalVariable::ThreadLocalMode TLM;
bool HasLinkage;
if (ParseOptionalLinkage(Linkage, HasLinkage) ||
ParseOptionalVisibility(Visibility) ||
ParseOptionalDLLStorageClass(DLLStorageClass) ||
ParseOptionalThreadLocal(TLM) ||
parseOptionalUnnamedAddr(UnnamedAddr) ||
ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility,
DLLStorageClass, TLM, UnnamedAddr))
return true;
break;
}
case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
case lltok::kw_uselistorder_bb:
if (ParseUseListOrderBB()) return true; break;
}
}
}
/// toplevelentity
/// ::= 'module' 'asm' STRINGCONSTANT
bool LLParser::ParseModuleAsm() {
assert(Lex.getKind() == lltok::kw_module);
Lex.Lex();
std::string AsmStr;
if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
ParseStringConstant(AsmStr)) return true;
M->appendModuleInlineAsm(AsmStr);
return false;
}
/// toplevelentity
/// ::= 'target' 'triple' '=' STRINGCONSTANT
/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
bool LLParser::ParseTargetDefinition() {
assert(Lex.getKind() == lltok::kw_target);
std::string Str;
switch (Lex.Lex()) {
default: return TokError("unknown target property");
case lltok::kw_triple:
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after target triple") ||
ParseStringConstant(Str))
return true;
M->setTargetTriple(Str);
return false;
case lltok::kw_datalayout:
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
ParseStringConstant(Str))
return true;
M->setDataLayout(Str);
return false;
}
}
/// toplevelentity
/// ::= 'deplibs' '=' '[' ']'
/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
/// FIXME: Remove in 4.0. Currently parse, but ignore.
bool LLParser::ParseDepLibs() {
assert(Lex.getKind() == lltok::kw_deplibs);
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
ParseToken(lltok::lsquare, "expected '=' after deplibs"))
return true;
if (EatIfPresent(lltok::rsquare))
return false;
do {
std::string Str;
if (ParseStringConstant(Str)) return true;
} while (EatIfPresent(lltok::comma));
return ParseToken(lltok::rsquare, "expected ']' at end of list");
}
/// ParseUnnamedType:
/// ::= LocalVarID '=' 'type' type
bool LLParser::ParseUnnamedType() {
LocTy TypeLoc = Lex.getLoc();
unsigned TypeID = Lex.getUIntVal();
Lex.Lex(); // eat LocalVarID;
if (ParseToken(lltok::equal, "expected '=' after name") ||
ParseToken(lltok::kw_type, "expected 'type' after '='"))
return true;
Type *Result = nullptr;
if (ParseStructDefinition(TypeLoc, "",
NumberedTypes[TypeID], Result)) return true;
if (!isa<StructType>(Result)) {
std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
if (Entry.first)
return Error(TypeLoc, "non-struct types may not be recursive");
Entry.first = Result;
Entry.second = SMLoc();
}
return false;
}
/// toplevelentity
/// ::= LocalVar '=' 'type' type
bool LLParser::ParseNamedType() {
std::string Name = Lex.getStrVal();
LocTy NameLoc = Lex.getLoc();
Lex.Lex(); // eat LocalVar.
if (ParseToken(lltok::equal, "expected '=' after name") ||
ParseToken(lltok::kw_type, "expected 'type' after name"))
return true;
Type *Result = nullptr;
if (ParseStructDefinition(NameLoc, Name,
NamedTypes[Name], Result)) return true;
if (!isa<StructType>(Result)) {
std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
if (Entry.first)
return Error(NameLoc, "non-struct types may not be recursive");
Entry.first = Result;
Entry.second = SMLoc();
}
return false;
}
/// toplevelentity
/// ::= 'declare' FunctionHeader
bool LLParser::ParseDeclare() {
assert(Lex.getKind() == lltok::kw_declare);
Lex.Lex();
Function *F;
return ParseFunctionHeader(F, false);
}
/// toplevelentity
/// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
bool LLParser::ParseDefine() {
assert(Lex.getKind() == lltok::kw_define);
Lex.Lex();
Function *F;
return ParseFunctionHeader(F, true) ||
ParseOptionalFunctionMetadata(*F) ||
ParseFunctionBody(*F);
}
/// ParseGlobalType
/// ::= 'constant'
/// ::= 'global'
bool LLParser::ParseGlobalType(bool &IsConstant) {
if (Lex.getKind() == lltok::kw_constant)
IsConstant = true;
else if (Lex.getKind() == lltok::kw_global)
IsConstant = false;
else {
IsConstant = false;
return TokError("expected 'global' or 'constant'");
}
Lex.Lex();
return false;
}
/// ParseUnnamedGlobal:
/// OptionalVisibility ALIAS ...
/// OptionalLinkage OptionalVisibility OptionalDLLStorageClass
/// ... -> global variable
/// GlobalID '=' OptionalVisibility ALIAS ...
/// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
/// ... -> global variable
bool LLParser::ParseUnnamedGlobal() {
unsigned VarID = NumberedVals.size();
std::string Name;
LocTy NameLoc = Lex.getLoc();
// Handle the GlobalID form.
if (Lex.getKind() == lltok::GlobalID) {
if (Lex.getUIntVal() != VarID)
return Error(Lex.getLoc(), "variable expected to be numbered '%" +
Twine(VarID) + "'");
Lex.Lex(); // eat GlobalID;
if (ParseToken(lltok::equal, "expected '=' after name"))
return true;
}
bool HasLinkage;
unsigned Linkage, Visibility, DLLStorageClass;
GlobalVariable::ThreadLocalMode TLM;
bool UnnamedAddr;
if (ParseOptionalLinkage(Linkage, HasLinkage) ||
ParseOptionalVisibility(Visibility) ||
ParseOptionalDLLStorageClass(DLLStorageClass) ||
ParseOptionalThreadLocal(TLM) ||
parseOptionalUnnamedAddr(UnnamedAddr))
return true;
if (Lex.getKind() != lltok::kw_alias)
return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
DLLStorageClass, TLM, UnnamedAddr);
return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
UnnamedAddr);
}
/// ParseNamedGlobal:
/// GlobalVar '=' OptionalVisibility ALIAS ...
/// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
/// ... -> global variable
bool LLParser::ParseNamedGlobal() {
assert(Lex.getKind() == lltok::GlobalVar);
LocTy NameLoc = Lex.getLoc();
std::string Name = Lex.getStrVal();
Lex.Lex();
bool HasLinkage;
unsigned Linkage, Visibility, DLLStorageClass;
GlobalVariable::ThreadLocalMode TLM;
bool UnnamedAddr;
if (ParseToken(lltok::equal, "expected '=' in global variable") ||
ParseOptionalLinkage(Linkage, HasLinkage) ||
ParseOptionalVisibility(Visibility) ||
ParseOptionalDLLStorageClass(DLLStorageClass) ||
ParseOptionalThreadLocal(TLM) ||
parseOptionalUnnamedAddr(UnnamedAddr))
return true;
if (Lex.getKind() != lltok::kw_alias)
return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
DLLStorageClass, TLM, UnnamedAddr);
return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM,
UnnamedAddr);
}
bool LLParser::parseComdat() {
assert(Lex.getKind() == lltok::ComdatVar);
std::string Name = Lex.getStrVal();
LocTy NameLoc = Lex.getLoc();
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' here"))
return true;
if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
return TokError("expected comdat type");
Comdat::SelectionKind SK;
switch (Lex.getKind()) {
default:
return TokError("unknown selection kind");
case lltok::kw_any:
SK = Comdat::Any;
break;
case lltok::kw_exactmatch:
SK = Comdat::ExactMatch;
break;
case lltok::kw_largest:
SK = Comdat::Largest;
break;
case lltok::kw_noduplicates:
SK = Comdat::NoDuplicates;
break;
case lltok::kw_samesize:
SK = Comdat::SameSize;
break;
}
Lex.Lex();
// See if the comdat was forward referenced, if so, use the comdat.
Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
Comdat *C;
if (I != ComdatSymTab.end())
C = &I->second;
else
C = M->getOrInsertComdat(Name);
C->setSelectionKind(SK);
return false;
}
// MDString:
// ::= '!' STRINGCONSTANT
bool LLParser::ParseMDString(MDString *&Result) {
std::string Str;
if (ParseStringConstant(Str)) return true;
llvm::UpgradeMDStringConstant(Str);
Result = MDString::get(Context, Str);
return false;
}
// MDNode:
// ::= '!' MDNodeNumber
bool LLParser::ParseMDNodeID(MDNode *&Result) {
// !{ ..., !42, ... }
unsigned MID = 0;
if (ParseUInt32(MID))
return true;
// If not a forward reference, just return it now.
if (NumberedMetadata.count(MID)) {
Result = NumberedMetadata[MID];
return false;
}
// Otherwise, create MDNode forward reference.
auto &FwdRef = ForwardRefMDNodes[MID];
FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc());
Result = FwdRef.first.get();
NumberedMetadata[MID].reset(Result);
return false;
}
/// ParseNamedMetadata:
/// !foo = !{ !1, !2 }
bool LLParser::ParseNamedMetadata() {
assert(Lex.getKind() == lltok::MetadataVar);
std::string Name = Lex.getStrVal();
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' here") ||
ParseToken(lltok::exclaim, "Expected '!' here") ||
ParseToken(lltok::lbrace, "Expected '{' here"))
return true;
NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
if (Lex.getKind() != lltok::rbrace)
do {
if (ParseToken(lltok::exclaim, "Expected '!' here"))
return true;
MDNode *N = nullptr;
if (ParseMDNodeID(N)) return true;
NMD->addOperand(N);
} while (EatIfPresent(lltok::comma));
return ParseToken(lltok::rbrace, "expected end of metadata node");
}
/// ParseStandaloneMetadata:
/// !42 = !{...}
bool LLParser::ParseStandaloneMetadata() {
assert(Lex.getKind() == lltok::exclaim);
Lex.Lex();
unsigned MetadataID = 0;
MDNode *Init;
if (ParseUInt32(MetadataID) ||
ParseToken(lltok::equal, "expected '=' here"))
return true;
// Detect common error, from old metadata syntax.
if (Lex.getKind() == lltok::Type)
return TokError("unexpected type in metadata definition");
bool IsDistinct = EatIfPresent(lltok::kw_distinct);
if (Lex.getKind() == lltok::MetadataVar) {
if (ParseSpecializedMDNode(Init, IsDistinct))
return true;
} else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
ParseMDTuple(Init, IsDistinct))
return true;
// See if this was forward referenced, if so, handle it.
auto FI = ForwardRefMDNodes.find(MetadataID);
if (FI != ForwardRefMDNodes.end()) {
FI->second.first->replaceAllUsesWith(Init);
ForwardRefMDNodes.erase(FI);
assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
} else {
if (NumberedMetadata.count(MetadataID))
return TokError("Metadata id is already used");
NumberedMetadata[MetadataID].reset(Init);
}
return false;
}
static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
(GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
}
/// ParseAlias:
/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility
/// OptionalDLLStorageClass OptionalThreadLocal
/// OptionalUnnamedAddr 'alias' Aliasee
///
/// Aliasee
/// ::= TypeAndValue
///
/// Everything through OptionalUnnamedAddr has already been parsed.
///
bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L,
unsigned Visibility, unsigned DLLStorageClass,
GlobalVariable::ThreadLocalMode TLM,
bool UnnamedAddr) {
assert(Lex.getKind() == lltok::kw_alias);
Lex.Lex();
GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
if(!GlobalAlias::isValidLinkage(Linkage))
return Error(NameLoc, "invalid linkage type for alias");
if (!isValidVisibilityForLinkage(Visibility, L))
return Error(NameLoc,
"symbol with local linkage must have default visibility");
Constant *Aliasee;
LocTy AliaseeLoc = Lex.getLoc();
if (Lex.getKind() != lltok::kw_bitcast &&
Lex.getKind() != lltok::kw_getelementptr &&
Lex.getKind() != lltok::kw_addrspacecast &&
Lex.getKind() != lltok::kw_inttoptr) {
if (ParseGlobalTypeAndValue(Aliasee))
return true;
} else {
// The bitcast dest type is not present, it is implied by the dest type.
ValID ID;
if (ParseValID(ID))
return true;
if (ID.Kind != ValID::t_Constant)
return Error(AliaseeLoc, "invalid aliasee");
Aliasee = ID.ConstantVal;
}
Type *AliaseeType = Aliasee->getType();
auto *PTy = dyn_cast<PointerType>(AliaseeType);
if (!PTy)
return Error(AliaseeLoc, "An alias must have pointer type");
// Okay, create the alias but do not insert it into the module yet.
std::unique_ptr<GlobalAlias> GA(
GlobalAlias::create(PTy, (GlobalValue::LinkageTypes)Linkage, Name,
Aliasee, /*Parent*/ nullptr));
GA->setThreadLocalMode(TLM);
GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
GA->setUnnamedAddr(UnnamedAddr);
if (Name.empty())
NumberedVals.push_back(GA.get());
// See if this value already exists in the symbol table. If so, it is either
// a redefinition or a definition of a forward reference.
if (GlobalValue *Val = M->getNamedValue(Name)) {
// See if this was a redefinition. If so, there is no entry in
// ForwardRefVals.
std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefVals.find(Name);
if (I == ForwardRefVals.end())
return Error(NameLoc, "redefinition of global named '@" + Name + "'");
// Otherwise, this was a definition of forward ref. Verify that types
// agree.
if (Val->getType() != GA->getType())
return Error(NameLoc,
"forward reference and definition of alias have different types");
// If they agree, just RAUW the old value with the alias and remove the
// forward ref info.
Val->replaceAllUsesWith(GA.get());
Val->eraseFromParent();
ForwardRefVals.erase(I);
}
// Insert into the module, we know its name won't collide now.
M->getAliasList().push_back(GA.get());
assert(GA->getName() == Name && "Should not be a name conflict!");
// The module owns this now
GA.release();
return false;
}
/// ParseGlobal
/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
/// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
/// OptionalExternallyInitialized GlobalType Type Const
/// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
/// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
/// OptionalExternallyInitialized GlobalType Type Const
///
/// Everything up to and including OptionalUnnamedAddr has been parsed
/// already.
///
bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
unsigned Linkage, bool HasLinkage,
unsigned Visibility, unsigned DLLStorageClass,
GlobalVariable::ThreadLocalMode TLM,
bool UnnamedAddr) {
if (!isValidVisibilityForLinkage(Visibility, Linkage))
return Error(NameLoc,
"symbol with local linkage must have default visibility");
unsigned AddrSpace;
bool IsConstant, IsExternallyInitialized;
LocTy IsExternallyInitializedLoc;
LocTy TyLoc;
Type *Ty = nullptr;
if (ParseOptionalAddrSpace(AddrSpace) ||
ParseOptionalToken(lltok::kw_externally_initialized,
IsExternallyInitialized,
&IsExternallyInitializedLoc) ||
ParseGlobalType(IsConstant) ||
ParseType(Ty, TyLoc))
return true;
// If the linkage is specified and is external, then no initializer is
// present.
Constant *Init = nullptr;
if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage &&
Linkage != GlobalValue::ExternalLinkage)) {
if (ParseGlobalValue(Ty, Init))
return true;
}
if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
return Error(TyLoc, "invalid type for global variable");
GlobalValue *GVal = nullptr;
// See if the global was forward referenced, if so, use the global.
if (!Name.empty()) {
GVal = M->getNamedValue(Name);
if (GVal) {
if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
return Error(NameLoc, "redefinition of global '@" + Name + "'");
}
} else {
std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefValIDs.find(NumberedVals.size());
if (I != ForwardRefValIDs.end()) {
GVal = I->second.first;
ForwardRefValIDs.erase(I);
}
}
GlobalVariable *GV;
if (!GVal) {
GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
Name, nullptr, GlobalVariable::NotThreadLocal,
AddrSpace);
} else {
if (GVal->getValueType() != Ty)
return Error(TyLoc,
"forward reference and definition of global have different types");
GV = cast<GlobalVariable>(GVal);
// Move the forward-reference to the correct spot in the module.
M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
}
if (Name.empty())
NumberedVals.push_back(GV);
// Set the parsed properties on the global.
if (Init)
GV->setInitializer(Init);
GV->setConstant(IsConstant);
GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
GV->setExternallyInitialized(IsExternallyInitialized);
GV->setThreadLocalMode(TLM);
GV->setUnnamedAddr(UnnamedAddr);
// Parse attributes on the global.
while (Lex.getKind() == lltok::comma) {
Lex.Lex();
if (Lex.getKind() == lltok::kw_section) {
Lex.Lex();
GV->setSection(Lex.getStrVal());
if (ParseToken(lltok::StringConstant, "expected global section string"))
return true;
} else if (Lex.getKind() == lltok::kw_align) {
unsigned Alignment;
if (ParseOptionalAlignment(Alignment)) return true;
GV->setAlignment(Alignment);
} else {
Comdat *C;
if (parseOptionalComdat(Name, C))
return true;
if (C)
GV->setComdat(C);
else
return TokError("unknown global variable property!");
}
}
return false;
}
/// ParseUnnamedAttrGrp
/// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
bool LLParser::ParseUnnamedAttrGrp() {
assert(Lex.getKind() == lltok::kw_attributes);
LocTy AttrGrpLoc = Lex.getLoc();
Lex.Lex();
if (Lex.getKind() != lltok::AttrGrpID)
return TokError("expected attribute group id");
unsigned VarID = Lex.getUIntVal();
std::vector<unsigned> unused;
LocTy BuiltinLoc;
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' here") ||
ParseToken(lltok::lbrace, "expected '{' here") ||
ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
BuiltinLoc) ||
ParseToken(lltok::rbrace, "expected end of attribute group"))
return true;
if (!NumberedAttrBuilders[VarID].hasAttributes())
return Error(AttrGrpLoc, "attribute group has no attributes");
return false;
}
/// ParseFnAttributeValuePairs
/// ::= <attr> | <attr> '=' <value>
bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
std::vector<unsigned> &FwdRefAttrGrps,
bool inAttrGrp, LocTy &BuiltinLoc) {
bool HaveError = false;
B.clear();
while (true) {
lltok::Kind Token = Lex.getKind();
if (Token == lltok::kw_builtin)
BuiltinLoc = Lex.getLoc();
switch (Token) {
default:
if (!inAttrGrp) return HaveError;
return Error(Lex.getLoc(), "unterminated attribute group");
case lltok::rbrace:
// Finished.
return false;
case lltok::AttrGrpID: {
// Allow a function to reference an attribute group:
//
// define void @foo() #1 { ... }
if (inAttrGrp)
HaveError |=
Error(Lex.getLoc(),
"cannot have an attribute group reference in an attribute group");
unsigned AttrGrpNum = Lex.getUIntVal();
if (inAttrGrp) break;
// Save the reference to the attribute group. We'll fill it in later.
FwdRefAttrGrps.push_back(AttrGrpNum);
break;
}
// Target-dependent attributes:
case lltok::StringConstant: {
std::string Attr = Lex.getStrVal();
Lex.Lex();
std::string Val;
if (EatIfPresent(lltok::equal) &&
ParseStringConstant(Val))
return true;
B.addAttribute(Attr, Val);
continue;
}
// Target-independent attributes:
case lltok::kw_align: {
// As a hack, we allow function alignment to be initially parsed as an
// attribute on a function declaration/definition or added to an attribute
// group and later moved to the alignment field.
unsigned Alignment;
if (inAttrGrp) {
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' here") ||
ParseUInt32(Alignment))
return true;
} else {
if (ParseOptionalAlignment(Alignment))
return true;
}
B.addAlignmentAttr(Alignment);
continue;
}
case lltok::kw_alignstack: {
unsigned Alignment;
if (inAttrGrp) {
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' here") ||
ParseUInt32(Alignment))
return true;
} else {
if (ParseOptionalStackAlignment(Alignment))
return true;
}
B.addStackAlignmentAttr(Alignment);
continue;
}
case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
case lltok::kw_noimplicitfloat:
B.addAttribute(Attribute::NoImplicitFloat); break;
case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
case lltok::kw_returns_twice:
B.addAttribute(Attribute::ReturnsTwice); break;
case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
case lltok::kw_sspstrong:
B.addAttribute(Attribute::StackProtectStrong); break;
case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
case lltok::kw_sanitize_address:
B.addAttribute(Attribute::SanitizeAddress); break;
case lltok::kw_sanitize_thread:
B.addAttribute(Attribute::SanitizeThread); break;
case lltok::kw_sanitize_memory:
B.addAttribute(Attribute::SanitizeMemory); break;
case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
// Error handling.
case lltok::kw_inreg:
case lltok::kw_signext:
case lltok::kw_zeroext:
HaveError |=
Error(Lex.getLoc(),
"invalid use of attribute on a function");
break;
case lltok::kw_byval:
case lltok::kw_dereferenceable:
case lltok::kw_dereferenceable_or_null:
case lltok::kw_inalloca:
case lltok::kw_nest:
case lltok::kw_noalias:
case lltok::kw_nocapture:
case lltok::kw_nonnull:
case lltok::kw_returned:
case lltok::kw_sret:
HaveError |=
Error(Lex.getLoc(),
"invalid use of parameter-only attribute on a function");
break;
}
Lex.Lex();
}
}
//===----------------------------------------------------------------------===//
// GlobalValue Reference/Resolution Routines.
//===----------------------------------------------------------------------===//
/// GetGlobalVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
LocTy Loc) {
PointerType *PTy = dyn_cast<PointerType>(Ty);
if (!PTy) {
Error(Loc, "global variable reference must have pointer type");
return nullptr;
}
// Look this name up in the normal function symbol table.
GlobalValue *Val =
cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (!Val) {
std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefVals.find(Name);
if (I != ForwardRefVals.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
Error(Loc, "'@" + Name + "' defined with type '" +
getTypeString(Val->getType()) + "'");
return nullptr;
}
// Otherwise, create a new forward reference for this value and remember it.
GlobalValue *FwdVal;
if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
else
FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
GlobalValue::ExternalWeakLinkage, nullptr, Name,
nullptr, GlobalVariable::NotThreadLocal,
PTy->getAddressSpace());
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
PointerType *PTy = dyn_cast<PointerType>(Ty);
if (!PTy) {
Error(Loc, "global variable reference must have pointer type");
return nullptr;
}
GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (!Val) {
std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefValIDs.find(ID);
if (I != ForwardRefValIDs.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
getTypeString(Val->getType()) + "'");
return nullptr;
}
// Otherwise, create a new forward reference for this value and remember it.
GlobalValue *FwdVal;
if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
else
FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
GlobalValue::ExternalWeakLinkage, nullptr, "");
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
//===----------------------------------------------------------------------===//
// Comdat Reference/Resolution Routines.
//===----------------------------------------------------------------------===//
Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
// Look this name up in the comdat symbol table.
Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
if (I != ComdatSymTab.end())
return &I->second;
// Otherwise, create a new forward reference for this value and remember it.
Comdat *C = M->getOrInsertComdat(Name);
ForwardRefComdats[Name] = Loc;
return C;
}
//===----------------------------------------------------------------------===//
// Helper Routines.
//===----------------------------------------------------------------------===//
/// ParseToken - If the current token has the specified kind, eat it and return
/// success. Otherwise, emit the specified error and return failure.
bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
if (Lex.getKind() != T)
return TokError(ErrMsg);
Lex.Lex();
return false;
}
/// ParseStringConstant
/// ::= StringConstant
bool LLParser::ParseStringConstant(std::string &Result) {
if (Lex.getKind() != lltok::StringConstant)
return TokError("expected string constant");
Result = Lex.getStrVal();
Lex.Lex();
return false;
}
/// ParseUInt32
/// ::= uint32
bool LLParser::ParseUInt32(unsigned &Val) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
return TokError("expected integer");
uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
if (Val64 != unsigned(Val64))
return TokError("expected 32-bit integer (too large)");
Val = Val64;
Lex.Lex();
return false;
}
/// ParseUInt64
/// ::= uint64
bool LLParser::ParseUInt64(uint64_t &Val) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
return TokError("expected integer");
Val = Lex.getAPSIntVal().getLimitedValue();
Lex.Lex();
return false;
}
/// ParseTLSModel
/// := 'localdynamic'
/// := 'initialexec'
/// := 'localexec'
bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
switch (Lex.getKind()) {
default:
return TokError("expected localdynamic, initialexec or localexec");
case lltok::kw_localdynamic:
TLM = GlobalVariable::LocalDynamicTLSModel;
break;
case lltok::kw_initialexec:
TLM = GlobalVariable::InitialExecTLSModel;
break;
case lltok::kw_localexec:
TLM = GlobalVariable::LocalExecTLSModel;
break;
}
Lex.Lex();
return false;
}
/// ParseOptionalThreadLocal
/// := /*empty*/
/// := 'thread_local'
/// := 'thread_local' '(' tlsmodel ')'
bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
TLM = GlobalVariable::NotThreadLocal;
if (!EatIfPresent(lltok::kw_thread_local))
return false;
TLM = GlobalVariable::GeneralDynamicTLSModel;
if (Lex.getKind() == lltok::lparen) {
Lex.Lex();
return ParseTLSModel(TLM) ||
ParseToken(lltok::rparen, "expected ')' after thread local model");
}
return false;
}
/// ParseOptionalAddrSpace
/// := /*empty*/
/// := 'addrspace' '(' uint32 ')'
bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
AddrSpace = 0;
if (!EatIfPresent(lltok::kw_addrspace))
return false;
return ParseToken(lltok::lparen, "expected '(' in address space") ||
ParseUInt32(AddrSpace) ||
ParseToken(lltok::rparen, "expected ')' in address space");
}
/// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
bool HaveError = false;
B.clear();
while (1) {
lltok::Kind Token = Lex.getKind();
switch (Token) {
default: // End of attributes.
return HaveError;
case lltok::kw_align: {
unsigned Alignment;
if (ParseOptionalAlignment(Alignment))
return true;
B.addAlignmentAttr(Alignment);
continue;
}
case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break;
case lltok::kw_dereferenceable: {
uint64_t Bytes;
if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
return true;
B.addDereferenceableAttr(Bytes);
continue;
}
case lltok::kw_dereferenceable_or_null: {
uint64_t Bytes;
if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
return true;
B.addDereferenceableOrNullAttr(Bytes);
continue;
}
case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break;
case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
case lltok::kw_nest: B.addAttribute(Attribute::Nest); break;
case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break;
case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
case lltok::kw_returned: B.addAttribute(Attribute::Returned); break;
case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break;
case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
case lltok::kw_alignstack:
case lltok::kw_alwaysinline:
case lltok::kw_argmemonly:
case lltok::kw_builtin:
case lltok::kw_inlinehint:
case lltok::kw_jumptable:
case lltok::kw_minsize:
case lltok::kw_naked:
case lltok::kw_nobuiltin:
case lltok::kw_noduplicate:
case lltok::kw_noimplicitfloat:
case lltok::kw_noinline:
case lltok::kw_nonlazybind:
case lltok::kw_noredzone:
case lltok::kw_noreturn:
case lltok::kw_nounwind:
case lltok::kw_optnone:
case lltok::kw_optsize:
case lltok::kw_returns_twice:
case lltok::kw_sanitize_address:
case lltok::kw_sanitize_memory:
case lltok::kw_sanitize_thread:
case lltok::kw_ssp:
case lltok::kw_sspreq:
case lltok::kw_sspstrong:
case lltok::kw_safestack:
case lltok::kw_uwtable:
HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
break;
}
Lex.Lex();
}
}
/// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
bool HaveError = false;
B.clear();
while (1) {
lltok::Kind Token = Lex.getKind();
switch (Token) {
default: // End of attributes.
return HaveError;
case lltok::kw_dereferenceable: {
uint64_t Bytes;
if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
return true;
B.addDereferenceableAttr(Bytes);
continue;
}
case lltok::kw_dereferenceable_or_null: {
uint64_t Bytes;
if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
return true;
B.addDereferenceableOrNullAttr(Bytes);
continue;
}
case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break;
case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break;
case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break;
case lltok::kw_signext: B.addAttribute(Attribute::SExt); break;
case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break;
// Error handling.
case lltok::kw_align:
case lltok::kw_byval:
case lltok::kw_inalloca:
case lltok::kw_nest:
case lltok::kw_nocapture:
case lltok::kw_returned:
case lltok::kw_sret:
HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
break;
case lltok::kw_alignstack:
case lltok::kw_alwaysinline:
case lltok::kw_argmemonly:
case lltok::kw_builtin:
case lltok::kw_cold:
case lltok::kw_inlinehint:
case lltok::kw_jumptable:
case lltok::kw_minsize:
case lltok::kw_naked:
case lltok::kw_nobuiltin:
case lltok::kw_noduplicate:
case lltok::kw_noimplicitfloat:
case lltok::kw_noinline:
case lltok::kw_nonlazybind:
case lltok::kw_noredzone:
case lltok::kw_noreturn:
case lltok::kw_nounwind:
case lltok::kw_optnone:
case lltok::kw_optsize:
case lltok::kw_returns_twice:
case lltok::kw_sanitize_address:
case lltok::kw_sanitize_memory:
case lltok::kw_sanitize_thread:
case lltok::kw_ssp:
case lltok::kw_sspreq:
case lltok::kw_sspstrong:
case lltok::kw_safestack:
case lltok::kw_uwtable:
HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
break;
case lltok::kw_readnone:
case lltok::kw_readonly:
HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
}
Lex.Lex();
}
}
/// ParseOptionalLinkage
/// ::= /*empty*/
/// ::= 'private'
/// ::= 'internal'
/// ::= 'weak'
/// ::= 'weak_odr'
/// ::= 'linkonce'
/// ::= 'linkonce_odr'
/// ::= 'available_externally'
/// ::= 'appending'
/// ::= 'common'
/// ::= 'extern_weak'
/// ::= 'external'
bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
HasLinkage = false;
switch (Lex.getKind()) {
default: Res=GlobalValue::ExternalLinkage; return false;
case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
case lltok::kw_available_externally:
Res = GlobalValue::AvailableExternallyLinkage;
break;
case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
}
Lex.Lex();
HasLinkage = true;
return false;
}
/// ParseOptionalVisibility
/// ::= /*empty*/
/// ::= 'default'
/// ::= 'hidden'
/// ::= 'protected'
///
bool LLParser::ParseOptionalVisibility(unsigned &Res) {
switch (Lex.getKind()) {
default: Res = GlobalValue::DefaultVisibility; return false;
case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
}
Lex.Lex();
return false;
}
/// ParseOptionalDLLStorageClass
/// ::= /*empty*/
/// ::= 'dllimport'
/// ::= 'dllexport'
///
bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
switch (Lex.getKind()) {
default: Res = GlobalValue::DefaultStorageClass; return false;
case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break;
case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break;
}
Lex.Lex();
return false;
}
/// ParseOptionalCallingConv
/// ::= /*empty*/
/// ::= 'ccc'
/// ::= 'fastcc'
/// ::= 'intel_ocl_bicc'
/// ::= 'coldcc'
/// ::= 'x86_stdcallcc'
/// ::= 'x86_fastcallcc'
/// ::= 'x86_thiscallcc'
/// ::= 'x86_vectorcallcc'
/// ::= 'arm_apcscc'
/// ::= 'arm_aapcscc'
/// ::= 'arm_aapcs_vfpcc'
/// ::= 'msp430_intrcc'
/// ::= 'ptx_kernel'
/// ::= 'ptx_device'
/// ::= 'spir_func'
/// ::= 'spir_kernel'
/// ::= 'x86_64_sysvcc'
/// ::= 'x86_64_win64cc'
/// ::= 'webkit_jscc'
/// ::= 'anyregcc'
/// ::= 'preserve_mostcc'
/// ::= 'preserve_allcc'
/// ::= 'ghccc'
/// ::= 'cc' UINT
///
bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
switch (Lex.getKind()) {
default: CC = CallingConv::C; return false;
case lltok::kw_ccc: CC = CallingConv::C; break;
case lltok::kw_fastcc: CC = CallingConv::Fast; break;
case lltok::kw_coldcc: CC = CallingConv::Cold; break;
case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break;
case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
case lltok::kw_ghccc: CC = CallingConv::GHC; break;
case lltok::kw_cc: {
Lex.Lex();
return ParseUInt32(CC);
}
}
Lex.Lex();
return false;
}
/// ParseMetadataAttachment
/// ::= !dbg !42
bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
std::string Name = Lex.getStrVal();
Kind = M->getMDKindID(Name);
Lex.Lex();
return ParseMDNode(MD);
}
/// ParseInstructionMetadata
/// ::= !dbg !42 (',' !dbg !57)*
bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
do {
if (Lex.getKind() != lltok::MetadataVar)
return TokError("expected metadata after comma");
unsigned MDK;
MDNode *N;
if (ParseMetadataAttachment(MDK, N))
return true;
Inst.setMetadata(MDK, N);
if (MDK == LLVMContext::MD_tbaa)
InstsWithTBAATag.push_back(&Inst);
// If this is the end of the list, we're done.
} while (EatIfPresent(lltok::comma));
return false;
}
/// ParseOptionalFunctionMetadata
/// ::= (!dbg !57)*
bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
while (Lex.getKind() == lltok::MetadataVar) {
unsigned MDK;
MDNode *N;
if (ParseMetadataAttachment(MDK, N))
return true;
F.setMetadata(MDK, N);
}
return false;
}
/// ParseOptionalAlignment
/// ::= /* empty */
/// ::= 'align' 4
bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
Alignment = 0;
if (!EatIfPresent(lltok::kw_align))
return false;
LocTy AlignLoc = Lex.getLoc();
if (ParseUInt32(Alignment)) return true;
if (!isPowerOf2_32(Alignment))
return Error(AlignLoc, "alignment is not a power of two");
if (Alignment > Value::MaximumAlignment)
return Error(AlignLoc, "huge alignments are not supported yet");
return false;
}
/// ParseOptionalDerefAttrBytes
/// ::= /* empty */
/// ::= AttrKind '(' 4 ')'
///
/// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
uint64_t &Bytes) {
assert((AttrKind == lltok::kw_dereferenceable ||
AttrKind == lltok::kw_dereferenceable_or_null) &&
"contract!");
Bytes = 0;
if (!EatIfPresent(AttrKind))
return false;
LocTy ParenLoc = Lex.getLoc();
if (!EatIfPresent(lltok::lparen))
return Error(ParenLoc, "expected '('");
LocTy DerefLoc = Lex.getLoc();
if (ParseUInt64(Bytes)) return true;
ParenLoc = Lex.getLoc();
if (!EatIfPresent(lltok::rparen))
return Error(ParenLoc, "expected ')'");
if (!Bytes)
return Error(DerefLoc, "dereferenceable bytes must be non-zero");
return false;
}
/// ParseOptionalCommaAlign
/// ::=
/// ::= ',' align 4
///
/// This returns with AteExtraComma set to true if it ate an excess comma at the
/// end.
bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
bool &AteExtraComma) {
AteExtraComma = false;
while (EatIfPresent(lltok::comma)) {
// Metadata at the end is an early exit.
if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
return false;
}
if (Lex.getKind() != lltok::kw_align)
return Error(Lex.getLoc(), "expected metadata or 'align'");
if (ParseOptionalAlignment(Alignment)) return true;
}
return false;
}
/// ParseScopeAndOrdering
/// if isAtomic: ::= 'singlethread'? AtomicOrdering
/// else: ::=
///
/// This sets Scope and Ordering to the parsed values.
bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
AtomicOrdering &Ordering) {
if (!isAtomic)
return false;
Scope = CrossThread;
if (EatIfPresent(lltok::kw_singlethread))
Scope = SingleThread;
return ParseOrdering(Ordering);
}
/// ParseOrdering
/// ::= AtomicOrdering
///
/// This sets Ordering to the parsed value.
bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
switch (Lex.getKind()) {
default: return TokError("Expected ordering on atomic instruction");
case lltok::kw_unordered: Ordering = Unordered; break;
case lltok::kw_monotonic: Ordering = Monotonic; break;
case lltok::kw_acquire: Ordering = Acquire; break;
case lltok::kw_release: Ordering = Release; break;
case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
}
Lex.Lex();
return false;
}
/// ParseOptionalStackAlignment
/// ::= /* empty */
/// ::= 'alignstack' '(' 4 ')'
bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
Alignment = 0;
if (!EatIfPresent(lltok::kw_alignstack))
return false;
LocTy ParenLoc = Lex.getLoc();
if (!EatIfPresent(lltok::lparen))
return Error(ParenLoc, "expected '('");
LocTy AlignLoc = Lex.getLoc();
if (ParseUInt32(Alignment)) return true;
ParenLoc = Lex.getLoc();
if (!EatIfPresent(lltok::rparen))
return Error(ParenLoc, "expected ')'");
if (!isPowerOf2_32(Alignment))
return Error(AlignLoc, "stack alignment is not a power of two");
return false;
}
/// ParseIndexList - This parses the index list for an insert/extractvalue
/// instruction. This sets AteExtraComma in the case where we eat an extra
/// comma at the end of the line and find that it is followed by metadata.
/// Clients that don't allow metadata can call the version of this function that
/// only takes one argument.
///
/// ParseIndexList
/// ::= (',' uint32)+
///
bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
bool &AteExtraComma) {
AteExtraComma = false;
if (Lex.getKind() != lltok::comma)
return TokError("expected ',' as start of index list");
while (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::MetadataVar) {
if (Indices.empty()) return TokError("expected index");
AteExtraComma = true;
return false;
}
unsigned Idx = 0;
if (ParseUInt32(Idx)) return true;
Indices.push_back(Idx);
}
return false;
}
//===----------------------------------------------------------------------===//
// Type Parsing.
//===----------------------------------------------------------------------===//
/// ParseType - Parse a type.
bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
SMLoc TypeLoc = Lex.getLoc();
switch (Lex.getKind()) {
default:
return TokError(Msg);
case lltok::Type:
// Type ::= 'float' | 'void' (etc)
Result = Lex.getTyVal();
Lex.Lex();
break;
case lltok::lbrace:
// Type ::= StructType
if (ParseAnonStructType(Result, false))
return true;
break;
case lltok::lsquare:
// Type ::= '[' ... ']'
Lex.Lex(); // eat the lsquare.
if (ParseArrayVectorType(Result, false))
return true;
break;
case lltok::less: // Either vector or packed struct.
// Type ::= '<' ... '>'
Lex.Lex();
if (Lex.getKind() == lltok::lbrace) {
if (ParseAnonStructType(Result, true) ||
ParseToken(lltok::greater, "expected '>' at end of packed struct"))
return true;
} else if (ParseArrayVectorType(Result, true))
return true;
break;
case lltok::LocalVar: {
// Type ::= %foo
std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
// If the type hasn't been defined yet, create a forward definition and
// remember where that forward def'n was seen (in case it never is defined).
if (!Entry.first) {
Entry.first = StructType::create(Context, Lex.getStrVal());
Entry.second = Lex.getLoc();
}
Result = Entry.first;
Lex.Lex();
break;
}
case lltok::LocalVarID: {
// Type ::= %4
std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
// If the type hasn't been defined yet, create a forward definition and
// remember where that forward def'n was seen (in case it never is defined).
if (!Entry.first) {
Entry.first = StructType::create(Context);
Entry.second = Lex.getLoc();
}
Result = Entry.first;
Lex.Lex();
break;
}
}
// Parse the type suffixes.
while (1) {
switch (Lex.getKind()) {
// End of type.
default:
if (!AllowVoid && Result->isVoidTy())
return Error(TypeLoc, "void type only allowed for function results");
return false;
// Type ::= Type '*'
case lltok::star:
if (Result->isLabelTy())
return TokError("basic block pointers are invalid");
if (Result->isVoidTy())
return TokError("pointers to void are invalid - use i8* instead");
if (!PointerType::isValidElementType(Result))
return TokError("pointer to this type is invalid");
Result = PointerType::getUnqual(Result);
Lex.Lex();
break;
// Type ::= Type 'addrspace' '(' uint32 ')' '*'
case lltok::kw_addrspace: {
if (Result->isLabelTy())
return TokError("basic block pointers are invalid");
if (Result->isVoidTy())
return TokError("pointers to void are invalid; use i8* instead");
if (!PointerType::isValidElementType(Result))
return TokError("pointer to this type is invalid");
unsigned AddrSpace;
if (ParseOptionalAddrSpace(AddrSpace) ||
ParseToken(lltok::star, "expected '*' in address space"))
return true;
Result = PointerType::get(Result, AddrSpace);
break;
}
/// Types '(' ArgTypeListI ')' OptFuncAttrs
case lltok::lparen:
if (ParseFunctionType(Result))
return true;
break;
}
}
}
/// ParseParameterList
/// ::= '(' ')'
/// ::= '(' Arg (',' Arg)* ')'
/// Arg
/// ::= Type OptionalAttributes Value OptionalAttributes
bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
PerFunctionState &PFS, bool IsMustTailCall,
bool InVarArgsFunc) {
if (ParseToken(lltok::lparen, "expected '(' in call"))
return true;
unsigned AttrIndex = 1;
while (Lex.getKind() != lltok::rparen) {
// If this isn't the first argument, we need a comma.
if (!ArgList.empty() &&
ParseToken(lltok::comma, "expected ',' in argument list"))
return true;
// Parse an ellipsis if this is a musttail call in a variadic function.
if (Lex.getKind() == lltok::dotdotdot) {
const char *Msg = "unexpected ellipsis in argument list for ";
if (!IsMustTailCall)
return TokError(Twine(Msg) + "non-musttail call");
if (!InVarArgsFunc)
return TokError(Twine(Msg) + "musttail call in non-varargs function");
Lex.Lex(); // Lex the '...', it is purely for readability.
return ParseToken(lltok::rparen, "expected ')' at end of argument list");
}
// Parse the argument.
LocTy ArgLoc;
Type *ArgTy = nullptr;
AttrBuilder ArgAttrs;
Value *V;
if (ParseType(ArgTy, ArgLoc))
return true;
if (ArgTy->isMetadataTy()) {
if (ParseMetadataAsValue(V, PFS))
return true;
} else {
// Otherwise, handle normal operands.
if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
return true;
}
ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
AttrIndex++,
ArgAttrs)));
}
if (IsMustTailCall && InVarArgsFunc)
return TokError("expected '...' at end of argument list for musttail call "
"in varargs function");
Lex.Lex(); // Lex the ')'.
return false;
}
/// ParseArgumentList - Parse the argument list for a function type or function
/// prototype.
/// ::= '(' ArgTypeListI ')'
/// ArgTypeListI
/// ::= /*empty*/
/// ::= '...'
/// ::= ArgTypeList ',' '...'
/// ::= ArgType (',' ArgType)*
///
bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
bool &isVarArg){
isVarArg = false;
assert(Lex.getKind() == lltok::lparen);
Lex.Lex(); // eat the (.
if (Lex.getKind() == lltok::rparen) {
// empty
} else if (Lex.getKind() == lltok::dotdotdot) {
isVarArg = true;
Lex.Lex();
} else {
LocTy TypeLoc = Lex.getLoc();
Type *ArgTy = nullptr;
AttrBuilder Attrs;
std::string Name;
if (ParseType(ArgTy) ||
ParseOptionalParamAttrs(Attrs)) return true;
if (ArgTy->isVoidTy())
return Error(TypeLoc, "argument can not have void type");
if (Lex.getKind() == lltok::LocalVar) {
Name = Lex.getStrVal();
Lex.Lex();
}
if (!FunctionType::isValidArgumentType(ArgTy))
return Error(TypeLoc, "invalid type for function argument");
unsigned AttrIndex = 1;
ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
AttrIndex++, Attrs),
std::move(Name));
while (EatIfPresent(lltok::comma)) {
// Handle ... at end of arg list.
if (EatIfPresent(lltok::dotdotdot)) {
isVarArg = true;
break;
}
// Otherwise must be an argument type.
TypeLoc = Lex.getLoc();
if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
if (ArgTy->isVoidTy())
return Error(TypeLoc, "argument can not have void type");
if (Lex.getKind() == lltok::LocalVar) {
Name = Lex.getStrVal();
Lex.Lex();
} else {
Name = "";
}
if (!ArgTy->isFirstClassType())
return Error(TypeLoc, "invalid type for function argument");
ArgList.emplace_back(
TypeLoc, ArgTy,
AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
std::move(Name));
}
}
return ParseToken(lltok::rparen, "expected ')' at end of argument list");
}
/// ParseFunctionType
/// ::= Type ArgumentList OptionalAttrs
bool LLParser::ParseFunctionType(Type *&Result) {
assert(Lex.getKind() == lltok::lparen);
if (!FunctionType::isValidReturnType(Result))
return TokError("invalid function return type");
SmallVector<ArgInfo, 8> ArgList;
bool isVarArg;
if (ParseArgumentList(ArgList, isVarArg))
return true;
// Reject names on the arguments lists.
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
if (!ArgList[i].Name.empty())
return Error(ArgList[i].Loc, "argument name invalid in function type");
if (ArgList[i].Attrs.hasAttributes(i + 1))
return Error(ArgList[i].Loc,
"argument attributes invalid in function type");
}
SmallVector<Type*, 16> ArgListTy;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ArgListTy.push_back(ArgList[i].Ty);
Result = FunctionType::get(Result, ArgListTy, isVarArg);
return false;
}
/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
/// other structs.
bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
SmallVector<Type*, 8> Elts;
if (ParseStructBody(Elts)) return true;
Result = StructType::get(Context, Elts, Packed);
return false;
}
/// ParseStructDefinition - Parse a struct in a 'type' definition.
bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
std::pair<Type*, LocTy> &Entry,
Type *&ResultTy) {
// If the type was already defined, diagnose the redefinition.
if (Entry.first && !Entry.second.isValid())
return Error(TypeLoc, "redefinition of type");
// If we have opaque, just return without filling in the definition for the
// struct. This counts as a definition as far as the .ll file goes.
if (EatIfPresent(lltok::kw_opaque)) {
// This type is being defined, so clear the location to indicate this.
Entry.second = SMLoc();
// If this type number has never been uttered, create it.
if (!Entry.first)
Entry.first = StructType::create(Context, Name);
ResultTy = Entry.first;
return false;
}
// If the type starts with '<', then it is either a packed struct or a vector.
bool isPacked = EatIfPresent(lltok::less);
// If we don't have a struct, then we have a random type alias, which we
// accept for compatibility with old files. These types are not allowed to be
// forward referenced and not allowed to be recursive.
if (Lex.getKind() != lltok::lbrace) {
if (Entry.first)
return Error(TypeLoc, "forward references to non-struct type");
ResultTy = nullptr;
if (isPacked)
return ParseArrayVectorType(ResultTy, true);
return ParseType(ResultTy);
}
// This type is being defined, so clear the location to indicate this.
Entry.second = SMLoc();
// If this type number has never been uttered, create it.
if (!Entry.first)
Entry.first = StructType::create(Context, Name);
StructType *STy = cast<StructType>(Entry.first);
SmallVector<Type*, 8> Body;
if (ParseStructBody(Body) ||
(isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
return true;
STy->setBody(Body, isPacked);
ResultTy = STy;
return false;
}
/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
/// StructType
/// ::= '{' '}'
/// ::= '{' Type (',' Type)* '}'
/// ::= '<' '{' '}' '>'
/// ::= '<' '{' Type (',' Type)* '}' '>'
bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
assert(Lex.getKind() == lltok::lbrace);
Lex.Lex(); // Consume the '{'
// Handle the empty struct.
if (EatIfPresent(lltok::rbrace))
return false;
LocTy EltTyLoc = Lex.getLoc();
Type *Ty = nullptr;
if (ParseType(Ty)) return true;
Body.push_back(Ty);
if (!StructType::isValidElementType(Ty))
return Error(EltTyLoc, "invalid element type for struct");
while (EatIfPresent(lltok::comma)) {
EltTyLoc = Lex.getLoc();
if (ParseType(Ty)) return true;
if (!StructType::isValidElementType(Ty))
return Error(EltTyLoc, "invalid element type for struct");
Body.push_back(Ty);
}
return ParseToken(lltok::rbrace, "expected '}' at end of struct");
}
/// ParseArrayVectorType - Parse an array or vector type, assuming the first
/// token has already been consumed.
/// Type
/// ::= '[' APSINTVAL 'x' Types ']'
/// ::= '<' APSINTVAL 'x' Types '>'
bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
Lex.getAPSIntVal().getBitWidth() > 64)
return TokError("expected number in address space");
LocTy SizeLoc = Lex.getLoc();
uint64_t Size = Lex.getAPSIntVal().getZExtValue();
Lex.Lex();
if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
return true;
LocTy TypeLoc = Lex.getLoc();
Type *EltTy = nullptr;
if (ParseType(EltTy)) return true;
if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
"expected end of sequential type"))
return true;
if (isVector) {
if (Size == 0)
return Error(SizeLoc, "zero element vector is illegal");
if ((unsigned)Size != Size)
return Error(SizeLoc, "size too large for vector");
if (!VectorType::isValidElementType(EltTy))
return Error(TypeLoc, "invalid vector element type");
Result = VectorType::get(EltTy, unsigned(Size));
} else {
if (!ArrayType::isValidElementType(EltTy))
return Error(TypeLoc, "invalid array element type");
Result = ArrayType::get(EltTy, Size);
}
return false;
}
//===----------------------------------------------------------------------===//
// Function Semantic Analysis.
//===----------------------------------------------------------------------===//
LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
int functionNumber)
: P(p), F(f), FunctionNumber(functionNumber) {
// Insert unnamed arguments into the NumberedVals list.
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
AI != E; ++AI)
if (!AI->hasName())
NumberedVals.push_back(AI);
}
LLParser::PerFunctionState::~PerFunctionState() {
// If there were any forward referenced non-basicblock values, delete them.
for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
if (!isa<BasicBlock>(I->second.first)) {
I->second.first->replaceAllUsesWith(
UndefValue::get(I->second.first->getType()));
delete I->second.first;
I->second.first = nullptr;
}
for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
if (!isa<BasicBlock>(I->second.first)) {
I->second.first->replaceAllUsesWith(
UndefValue::get(I->second.first->getType()));
delete I->second.first;
I->second.first = nullptr;
}
}
bool LLParser::PerFunctionState::FinishFunction() {
if (!ForwardRefVals.empty())
return P.Error(ForwardRefVals.begin()->second.second,
"use of undefined value '%" + ForwardRefVals.begin()->first +
"'");
if (!ForwardRefValIDs.empty())
return P.Error(ForwardRefValIDs.begin()->second.second,
"use of undefined value '%" +
Twine(ForwardRefValIDs.begin()->first) + "'");
return false;
}
/// GetVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
Type *Ty, LocTy Loc) {
// Look this name up in the normal function symbol table.
Value *Val = F.getValueSymbolTable().lookup(Name);
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (!Val) {
std::map<std::string, std::pair<Value*, LocTy> >::iterator
I = ForwardRefVals.find(Name);
if (I != ForwardRefVals.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
if (Ty->isLabelTy())
P.Error(Loc, "'%" + Name + "' is not a basic block");
else
P.Error(Loc, "'%" + Name + "' defined with type '" +
getTypeString(Val->getType()) + "'");
return nullptr;
}
// Don't make placeholders with invalid type.
if (!Ty->isFirstClassType()) {
P.Error(Loc, "invalid use of a non-first-class type");
return nullptr;
}
// Otherwise, create a new forward reference for this value and remember it.
Value *FwdVal;
if (Ty->isLabelTy())
FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
else
FwdVal = new Argument(Ty, Name);
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
LocTy Loc) {
// Look this name up in the normal function symbol table.
Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (!Val) {
std::map<unsigned, std::pair<Value*, LocTy> >::iterator
I = ForwardRefValIDs.find(ID);
if (I != ForwardRefValIDs.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
if (Ty->isLabelTy())
P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
else
P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
getTypeString(Val->getType()) + "'");
return nullptr;
}
if (!Ty->isFirstClassType()) {
P.Error(Loc, "invalid use of a non-first-class type");
return nullptr;
}
// Otherwise, create a new forward reference for this value and remember it.
Value *FwdVal;
if (Ty->isLabelTy())
FwdVal = BasicBlock::Create(F.getContext(), "", &F);
else
FwdVal = new Argument(Ty);
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
/// SetInstName - After an instruction is parsed and inserted into its
/// basic block, this installs its name.
bool LLParser::PerFunctionState::SetInstName(int NameID,
const std::string &NameStr,
LocTy NameLoc, Instruction *Inst) {
// If this instruction has void type, it cannot have a name or ID specified.
if (Inst->getType()->isVoidTy()) {
if (NameID != -1 || !NameStr.empty())
return P.Error(NameLoc, "instructions returning void cannot have a name");
return false;
}
// If this was a numbered instruction, verify that the instruction is the
// expected value and resolve any forward references.
if (NameStr.empty()) {
// If neither a name nor an ID was specified, just use the next ID.
if (NameID == -1)
NameID = NumberedVals.size();
if (unsigned(NameID) != NumberedVals.size())
return P.Error(NameLoc, "instruction expected to be numbered '%" +
Twine(NumberedVals.size()) + "'");
std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
ForwardRefValIDs.find(NameID);
if (FI != ForwardRefValIDs.end()) {
if (FI->second.first->getType() != Inst->getType())
return P.Error(NameLoc, "instruction forward referenced with type '" +
getTypeString(FI->second.first->getType()) + "'");
FI->second.first->replaceAllUsesWith(Inst);
delete FI->second.first;
ForwardRefValIDs.erase(FI);
}
NumberedVals.push_back(Inst);
return false;
}
// Otherwise, the instruction had a name. Resolve forward refs and set it.
std::map<std::string, std::pair<Value*, LocTy> >::iterator
FI = ForwardRefVals.find(NameStr);
if (FI != ForwardRefVals.end()) {
if (FI->second.first->getType() != Inst->getType())
return P.Error(NameLoc, "instruction forward referenced with type '" +
getTypeString(FI->second.first->getType()) + "'");
FI->second.first->replaceAllUsesWith(Inst);
delete FI->second.first;
ForwardRefVals.erase(FI);
}
// Set the name on the instruction.
Inst->setName(NameStr);
if (Inst->getName() != NameStr)
return P.Error(NameLoc, "multiple definition of local value named '" +
NameStr + "'");
return false;
}
/// GetBB - Get a basic block with the specified name or ID, creating a
/// forward reference record if needed.
BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
LocTy Loc) {
return dyn_cast_or_null<BasicBlock>(GetVal(Name,
Type::getLabelTy(F.getContext()), Loc));
}
BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
return dyn_cast_or_null<BasicBlock>(GetVal(ID,
Type::getLabelTy(F.getContext()), Loc));
}
/// DefineBB - Define the specified basic block, which is either named or
/// unnamed. If there is an error, this returns null otherwise it returns
/// the block being defined.
BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
LocTy Loc) {
BasicBlock *BB;
if (Name.empty())
BB = GetBB(NumberedVals.size(), Loc);
else
BB = GetBB(Name, Loc);
if (!BB) return nullptr; // Already diagnosed error.
// Move the block to the end of the function. Forward ref'd blocks are
// inserted wherever they happen to be referenced.
F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
// Remove the block from forward ref sets.
if (Name.empty()) {
ForwardRefValIDs.erase(NumberedVals.size());
NumberedVals.push_back(BB);
} else {
// BB forward references are already in the function symbol table.
ForwardRefVals.erase(Name);
}
return BB;
}
//===----------------------------------------------------------------------===//
// Constants.
//===----------------------------------------------------------------------===//
/// ParseValID - Parse an abstract value that doesn't necessarily have a
/// type implied. For example, if we parse "4" we don't know what integer type
/// it has. The value will later be combined with its type and checked for
/// sanity. PFS is used to convert function-local operands of metadata (since
/// metadata operands are not just parsed here but also converted to values).
/// PFS can be null when we are not parsing metadata values inside a function.
bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
ID.Loc = Lex.getLoc();
switch (Lex.getKind()) {
default: return TokError("expected value token");
case lltok::GlobalID: // @42
ID.UIntVal = Lex.getUIntVal();
ID.Kind = ValID::t_GlobalID;
break;
case lltok::GlobalVar: // @foo
ID.StrVal = Lex.getStrVal();
ID.Kind = ValID::t_GlobalName;
break;
case lltok::LocalVarID: // %42
ID.UIntVal = Lex.getUIntVal();
ID.Kind = ValID::t_LocalID;
break;
case lltok::LocalVar: // %foo
ID.StrVal = Lex.getStrVal();
ID.Kind = ValID::t_LocalName;
break;
case lltok::APSInt:
ID.APSIntVal = Lex.getAPSIntVal();
ID.Kind = ValID::t_APSInt;
break;
case lltok::APFloat:
ID.APFloatVal = Lex.getAPFloatVal();
ID.Kind = ValID::t_APFloat;
break;
case lltok::kw_true:
ID.ConstantVal = ConstantInt::getTrue(Context);
ID.Kind = ValID::t_Constant;
break;
case lltok::kw_false:
ID.ConstantVal = ConstantInt::getFalse(Context);
ID.Kind = ValID::t_Constant;
break;
case lltok::kw_null: ID.Kind = ValID::t_Null; break;
case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
case lltok::lbrace: {
// ValID ::= '{' ConstVector '}'
Lex.Lex();
SmallVector<Constant*, 16> Elts;
if (ParseGlobalValueVector(Elts) ||
ParseToken(lltok::rbrace, "expected end of struct constant"))
return true;
ID.ConstantStructElts = new Constant*[Elts.size()];
ID.UIntVal = Elts.size();
memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
ID.Kind = ValID::t_ConstantStruct;
return false;
}
case lltok::less: {
// ValID ::= '<' ConstVector '>' --> Vector.
// ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
Lex.Lex();
bool isPackedStruct = EatIfPresent(lltok::lbrace);
SmallVector<Constant*, 16> Elts;
LocTy FirstEltLoc = Lex.getLoc();
if (ParseGlobalValueVector(Elts) ||
(isPackedStruct &&
ParseToken(lltok::rbrace, "expected end of packed struct")) ||
ParseToken(lltok::greater, "expected end of constant"))
return true;
if (isPackedStruct) {
ID.ConstantStructElts = new Constant*[Elts.size()];
memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
ID.UIntVal = Elts.size();
ID.Kind = ValID::t_PackedConstantStruct;
return false;
}
if (Elts.empty())
return Error(ID.Loc, "constant vector must not be empty");
if (!Elts[0]->getType()->isIntegerTy() &&
!Elts[0]->getType()->isFloatingPointTy() &&
!Elts[0]->getType()->isPointerTy())
return Error(FirstEltLoc,
"vector elements must have integer, pointer or floating point type");
// Verify that all the vector elements have the same type.
for (unsigned i = 1, e = Elts.size(); i != e; ++i)
if (Elts[i]->getType() != Elts[0]->getType())
return Error(FirstEltLoc,
"vector element #" + Twine(i) +
" is not of type '" + getTypeString(Elts[0]->getType()));
ID.ConstantVal = ConstantVector::get(Elts);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::lsquare: { // Array Constant
Lex.Lex();
SmallVector<Constant*, 16> Elts;
LocTy FirstEltLoc = Lex.getLoc();
if (ParseGlobalValueVector(Elts) ||
ParseToken(lltok::rsquare, "expected end of array constant"))
return true;
// Handle empty element.
if (Elts.empty()) {
// Use undef instead of an array because it's inconvenient to determine
// the element type at this point, there being no elements to examine.
ID.Kind = ValID::t_EmptyArray;
return false;
}
if (!Elts[0]->getType()->isFirstClassType())
return Error(FirstEltLoc, "invalid array element type: " +
getTypeString(Elts[0]->getType()));
ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
// Verify all elements are correct type!
for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
if (Elts[i]->getType() != Elts[0]->getType())
return Error(FirstEltLoc,
"array element #" + Twine(i) +
" is not of type '" + getTypeString(Elts[0]->getType()));
}
ID.ConstantVal = ConstantArray::get(ATy, Elts);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_c: // c "foo"
Lex.Lex();
ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
false);
if (ParseToken(lltok::StringConstant, "expected string")) return true;
ID.Kind = ValID::t_Constant;
return false;
case lltok::kw_asm: {
// ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
// STRINGCONSTANT
bool HasSideEffect, AlignStack, AsmDialect;
Lex.Lex();
if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
ParseStringConstant(ID.StrVal) ||
ParseToken(lltok::comma, "expected comma in inline asm expression") ||
ParseToken(lltok::StringConstant, "expected constraint string"))
return true;
ID.StrVal2 = Lex.getStrVal();
ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
(unsigned(AsmDialect)<<2);
ID.Kind = ValID::t_InlineAsm;
return false;
}
case lltok::kw_blockaddress: {
// ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
Lex.Lex();
ValID Fn, Label;
if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
ParseValID(Fn) ||
ParseToken(lltok::comma, "expected comma in block address expression")||
ParseValID(Label) ||
ParseToken(lltok::rparen, "expected ')' in block address expression"))
return true;
if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
return Error(Fn.Loc, "expected function name in blockaddress");
if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
return Error(Label.Loc, "expected basic block name in blockaddress");
// Try to find the function (but skip it if it's forward-referenced).
GlobalValue *GV = nullptr;
if (Fn.Kind == ValID::t_GlobalID) {
if (Fn.UIntVal < NumberedVals.size())
GV = NumberedVals[Fn.UIntVal];
} else if (!ForwardRefVals.count(Fn.StrVal)) {
GV = M->getNamedValue(Fn.StrVal);
}
Function *F = nullptr;
if (GV) {
// Confirm that it's actually a function with a definition.
if (!isa<Function>(GV))
return Error(Fn.Loc, "expected function name in blockaddress");
F = cast<Function>(GV);
if (F->isDeclaration())
return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
}
if (!F) {
// Make a global variable as a placeholder for this reference.
GlobalValue *&FwdRef =
ForwardRefBlockAddresses.insert(std::make_pair(
std::move(Fn),
std::map<ValID, GlobalValue *>()))
.first->second.insert(std::make_pair(std::move(Label), nullptr))
.first->second;
if (!FwdRef)
FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
GlobalValue::InternalLinkage, nullptr, "");
ID.ConstantVal = FwdRef;
ID.Kind = ValID::t_Constant;
return false;
}
// We found the function; now find the basic block. Don't use PFS, since we
// might be inside a constant expression.
BasicBlock *BB;
if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
if (Label.Kind == ValID::t_LocalID)
BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
else
BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
if (!BB)
return Error(Label.Loc, "referenced value is not a basic block");
} else {
if (Label.Kind == ValID::t_LocalID)
return Error(Label.Loc, "cannot take address of numeric label after "
"the function is defined");
BB = dyn_cast_or_null<BasicBlock>(
F->getValueSymbolTable().lookup(Label.StrVal));
if (!BB)
return Error(Label.Loc, "referenced value is not a basic block");
}
ID.ConstantVal = BlockAddress::get(F, BB);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_trunc:
case lltok::kw_zext:
case lltok::kw_sext:
case lltok::kw_fptrunc:
case lltok::kw_fpext:
case lltok::kw_bitcast:
case lltok::kw_addrspacecast:
case lltok::kw_uitofp:
case lltok::kw_sitofp:
case lltok::kw_fptoui:
case lltok::kw_fptosi:
case lltok::kw_inttoptr:
case lltok::kw_ptrtoint: {
unsigned Opc = Lex.getUIntVal();
Type *DestTy = nullptr;
Constant *SrcVal;
Lex.Lex();
if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
ParseGlobalTypeAndValue(SrcVal) ||
ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
ParseType(DestTy) ||
ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
return true;
if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
return Error(ID.Loc, "invalid cast opcode for cast from '" +
getTypeString(SrcVal->getType()) + "' to '" +
getTypeString(DestTy) + "'");
ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
SrcVal, DestTy);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_extractvalue: {
Lex.Lex();
Constant *Val;
SmallVector<unsigned, 4> Indices;
if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
ParseGlobalTypeAndValue(Val) ||
ParseIndexList(Indices) ||
ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
return true;
if (!Val->getType()->isAggregateType())
return Error(ID.Loc, "extractvalue operand must be aggregate type");
if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
return Error(ID.Loc, "invalid indices for extractvalue");
ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_insertvalue: {
Lex.Lex();
Constant *Val0, *Val1;
SmallVector<unsigned, 4> Indices;
if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
ParseGlobalTypeAndValue(Val1) ||
ParseIndexList(Indices) ||
ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
return true;
if (!Val0->getType()->isAggregateType())
return Error(ID.Loc, "insertvalue operand must be aggregate type");
Type *IndexedType =
ExtractValueInst::getIndexedType(Val0->getType(), Indices);
if (!IndexedType)
return Error(ID.Loc, "invalid indices for insertvalue");
if (IndexedType != Val1->getType())
return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
getTypeString(Val1->getType()) +
"' instead of '" + getTypeString(IndexedType) +
"'");
ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_icmp:
case lltok::kw_fcmp: {
unsigned PredVal, Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
if (ParseCmpPredicate(PredVal, Opc) ||
ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
ParseGlobalTypeAndValue(Val1) ||
ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return Error(ID.Loc, "compare operands must have the same type");
CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
if (Opc == Instruction::FCmp) {
if (!Val0->getType()->isFPOrFPVectorTy())
return Error(ID.Loc, "fcmp requires floating point operands");
ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
} else {
assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
if (!Val0->getType()->isIntOrIntVectorTy() &&
!Val0->getType()->getScalarType()->isPointerTy())
return Error(ID.Loc, "icmp requires pointer or integer operands");
ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
}
ID.Kind = ValID::t_Constant;
return false;
}
// Binary Operators.
case lltok::kw_add:
case lltok::kw_fadd:
case lltok::kw_sub:
case lltok::kw_fsub:
case lltok::kw_mul:
case lltok::kw_fmul:
case lltok::kw_udiv:
case lltok::kw_sdiv:
case lltok::kw_fdiv:
case lltok::kw_urem:
case lltok::kw_srem:
case lltok::kw_frem:
case lltok::kw_shl:
case lltok::kw_lshr:
case lltok::kw_ashr: {
bool NUW = false;
bool NSW = false;
bool Exact = false;
unsigned Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
LocTy ModifierLoc = Lex.getLoc();
if (Opc == Instruction::Add || Opc == Instruction::Sub ||
Opc == Instruction::Mul || Opc == Instruction::Shl) {
if (EatIfPresent(lltok::kw_nuw))
NUW = true;
if (EatIfPresent(lltok::kw_nsw)) {
NSW = true;
if (EatIfPresent(lltok::kw_nuw))
NUW = true;
}
} else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
Opc == Instruction::LShr || Opc == Instruction::AShr) {
if (EatIfPresent(lltok::kw_exact))
Exact = true;
}
if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
ParseGlobalTypeAndValue(Val1) ||
ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return Error(ID.Loc, "operands of constexpr must have same type");
if (!Val0->getType()->isIntOrIntVectorTy()) {
if (NUW)
return Error(ModifierLoc, "nuw only applies to integer operations");
if (NSW)
return Error(ModifierLoc, "nsw only applies to integer operations");
}
// Check that the type is valid for the operator.
switch (Opc) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::Shl:
case Instruction::AShr:
case Instruction::LShr:
if (!Val0->getType()->isIntOrIntVectorTy())
return Error(ID.Loc, "constexpr requires integer operands");
break;
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
if (!Val0->getType()->isFPOrFPVectorTy())
return Error(ID.Loc, "constexpr requires fp operands");
break;
default: llvm_unreachable("Unknown binary operator!");
}
unsigned Flags = 0;
if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
if (Exact) Flags |= PossiblyExactOperator::IsExact;
Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
ID.ConstantVal = C;
ID.Kind = ValID::t_Constant;
return false;
}
// Logical Operations
case lltok::kw_and:
case lltok::kw_or:
case lltok::kw_xor: {
unsigned Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
ParseGlobalTypeAndValue(Val1) ||
ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return Error(ID.Loc, "operands of constexpr must have same type");
if (!Val0->getType()->isIntOrIntVectorTy())
return Error(ID.Loc,
"constexpr requires integer or integer vector operands");
ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_getelementptr:
case lltok::kw_shufflevector:
case lltok::kw_insertelement:
case lltok::kw_extractelement:
case lltok::kw_select: {
unsigned Opc = Lex.getUIntVal();
SmallVector<Constant*, 16> Elts;
bool InBounds = false;
Type *Ty;
Lex.Lex();
if (Opc == Instruction::GetElementPtr)
InBounds = EatIfPresent(lltok::kw_inbounds);
if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
return true;
LocTy ExplicitTypeLoc = Lex.getLoc();
if (Opc == Instruction::GetElementPtr) {
if (ParseType(Ty) ||
ParseToken(lltok::comma, "expected comma after getelementptr's type"))
return true;
}
if (ParseGlobalValueVector(Elts) ||
ParseToken(lltok::rparen, "expected ')' in constantexpr"))
return true;
if (Opc == Instruction::GetElementPtr) {
if (Elts.size() == 0 ||
!Elts[0]->getType()->getScalarType()->isPointerTy())
return Error(ID.Loc, "base of getelementptr must be a pointer");
Type *BaseType = Elts[0]->getType();
auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
if (Ty != BasePointerType->getElementType())
return Error(
ExplicitTypeLoc,
"explicit pointee type doesn't match operand's pointee type");
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
for (Constant *Val : Indices) {
Type *ValTy = Val->getType();
if (!ValTy->getScalarType()->isIntegerTy())
return Error(ID.Loc, "getelementptr index must be an integer");
if (ValTy->isVectorTy() != BaseType->isVectorTy())
return Error(ID.Loc, "getelementptr index type missmatch");
if (ValTy->isVectorTy()) {
unsigned ValNumEl = ValTy->getVectorNumElements();
unsigned PtrNumEl = BaseType->getVectorNumElements();
if (ValNumEl != PtrNumEl)
return Error(
ID.Loc,
"getelementptr vector index has a wrong number of elements");
}
}
SmallPtrSet<const Type*, 4> Visited;
if (!Indices.empty() && !Ty->isSized(&Visited))
return Error(ID.Loc, "base element of getelementptr must be sized");
if (!GetElementPtrInst::getIndexedType(Ty, Indices))
return Error(ID.Loc, "invalid getelementptr indices");
ID.ConstantVal =
ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
} else if (Opc == Instruction::Select) {
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to select");
if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
Elts[2]))
return Error(ID.Loc, Reason);
ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
} else if (Opc == Instruction::ShuffleVector) {
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to shufflevector");
if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
return Error(ID.Loc, "invalid operands to shufflevector");
ID.ConstantVal =
ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
} else if (Opc == Instruction::ExtractElement) {
if (Elts.size() != 2)
return Error(ID.Loc, "expected two operands to extractelement");
if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
return Error(ID.Loc, "invalid extractelement operands");
ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
} else {
assert(Opc == Instruction::InsertElement && "Unknown opcode");
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to insertelement");
if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
return Error(ID.Loc, "invalid insertelement operands");
ID.ConstantVal =
ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
}
ID.Kind = ValID::t_Constant;
return false;
}
}
Lex.Lex();
return false;
}
/// ParseGlobalValue - Parse a global value with the specified type.
bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
C = nullptr;
ValID ID;
Value *V = nullptr;
bool Parsed = ParseValID(ID) ||
ConvertValIDToValue(Ty, ID, V, nullptr);
if (V && !(C = dyn_cast<Constant>(V)))
return Error(ID.Loc, "global values must be constants");
return Parsed;
}
bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
Type *Ty = nullptr;
return ParseType(Ty) ||
ParseGlobalValue(Ty, V);
}
bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
C = nullptr;
LocTy KwLoc = Lex.getLoc();
if (!EatIfPresent(lltok::kw_comdat))
return false;
if (EatIfPresent(lltok::lparen)) {
if (Lex.getKind() != lltok::ComdatVar)
return TokError("expected comdat variable");
C = getComdat(Lex.getStrVal(), Lex.getLoc());
Lex.Lex();
if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
return true;
} else {
if (GlobalName.empty())
return TokError("comdat cannot be unnamed");
C = getComdat(GlobalName, KwLoc);
}
return false;
}
/// ParseGlobalValueVector
/// ::= /*empty*/
/// ::= TypeAndValue (',' TypeAndValue)*
bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
// Empty list.
if (Lex.getKind() == lltok::rbrace ||
Lex.getKind() == lltok::rsquare ||
Lex.getKind() == lltok::greater ||
Lex.getKind() == lltok::rparen)
return false;
Constant *C;
if (ParseGlobalTypeAndValue(C)) return true;
Elts.push_back(C);
while (EatIfPresent(lltok::comma)) {
if (ParseGlobalTypeAndValue(C)) return true;
Elts.push_back(C);
}
return false;
}
bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
SmallVector<Metadata *, 16> Elts;
if (ParseMDNodeVector(Elts))
return true;
MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
return false;
}
/// MDNode:
/// ::= !{ ... }
/// ::= !7
/// ::= !DILocation(...)
bool LLParser::ParseMDNode(MDNode *&N) {
if (Lex.getKind() == lltok::MetadataVar)
return ParseSpecializedMDNode(N);
return ParseToken(lltok::exclaim, "expected '!' here") ||
ParseMDNodeTail(N);
}
bool LLParser::ParseMDNodeTail(MDNode *&N) {
// !{ ... }
if (Lex.getKind() == lltok::lbrace)
return ParseMDTuple(N);
// !42
return ParseMDNodeID(N);
}
namespace {
/// Structure to represent an optional metadata field.
template <class FieldTy> struct MDFieldImpl {
typedef MDFieldImpl ImplTy;
FieldTy Val;
bool Seen;
void assign(FieldTy Val) {
Seen = true;
this->Val = std::move(Val);
}
explicit MDFieldImpl(FieldTy Default)
: Val(std::move(Default)), Seen(false) {}
};
struct MDUnsignedField : public MDFieldImpl<uint64_t> {
uint64_t Max;
MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
: ImplTy(Default), Max(Max) {}
};
struct LineField : public MDUnsignedField {
LineField() : MDUnsignedField(0, UINT32_MAX) {}
};
struct ColumnField : public MDUnsignedField {
ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
};
struct DwarfTagField : public MDUnsignedField {
DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
DwarfTagField(dwarf::Tag DefaultTag)
: MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
};
struct DwarfAttEncodingField : public MDUnsignedField {
DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
};
struct DwarfVirtualityField : public MDUnsignedField {
DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
};
struct DwarfLangField : public MDUnsignedField {
DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
};
struct DIFlagField : public MDUnsignedField {
DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
};
struct MDSignedField : public MDFieldImpl<int64_t> {
int64_t Min;
int64_t Max;
MDSignedField(int64_t Default = 0)
: ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
MDSignedField(int64_t Default, int64_t Min, int64_t Max)
: ImplTy(Default), Min(Min), Max(Max) {}
};
struct MDBoolField : public MDFieldImpl<bool> {
MDBoolField(bool Default = false) : ImplTy(Default) {}
};
struct MDField : public MDFieldImpl<Metadata *> {
bool AllowNull;
MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
};
struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
MDConstant() : ImplTy(nullptr) {}
};
struct MDStringField : public MDFieldImpl<MDString *> {
bool AllowEmpty;
MDStringField(bool AllowEmpty = true)
: ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
};
struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
};
} // end namespace
namespace llvm {
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
MDUnsignedField &Result) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
return TokError("expected unsigned integer");
auto &U = Lex.getAPSIntVal();
if (U.ugt(Result.Max))
return TokError("value for '" + Name + "' too large, limit is " +
Twine(Result.Max));
Result.assign(U.getZExtValue());
assert(Result.Val <= Result.Max && "Expected value in range");
Lex.Lex();
return false;
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
if (Lex.getKind() == lltok::APSInt)
return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::DwarfTag)
return TokError("expected DWARF tag");
unsigned Tag = dwarf::getTag(Lex.getStrVal());
if (Tag == dwarf::DW_TAG_invalid)
return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
assert(Tag <= Result.Max && "Expected valid DWARF tag");
Result.assign(Tag);
Lex.Lex();
return false;
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
DwarfVirtualityField &Result) {
if (Lex.getKind() == lltok::APSInt)
return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::DwarfVirtuality)
return TokError("expected DWARF virtuality code");
unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
if (!Virtuality)
return TokError("invalid DWARF virtuality code" + Twine(" '") +
Lex.getStrVal() + "'");
assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
Result.assign(Virtuality);
Lex.Lex();
return false;
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
if (Lex.getKind() == lltok::APSInt)
return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::DwarfLang)
return TokError("expected DWARF language");
unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
if (!Lang)
return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
"'");
assert(Lang <= Result.Max && "Expected valid DWARF language");
Result.assign(Lang);
Lex.Lex();
return false;
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
DwarfAttEncodingField &Result) {
if (Lex.getKind() == lltok::APSInt)
return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
if (Lex.getKind() != lltok::DwarfAttEncoding)
return TokError("expected DWARF type attribute encoding");
unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
if (!Encoding)
return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
Lex.getStrVal() + "'");
assert(Encoding <= Result.Max && "Expected valid DWARF language");
Result.assign(Encoding);
Lex.Lex();
return false;
}
/// DIFlagField
/// ::= uint32
/// ::= DIFlagVector
/// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
// Parser for a single flag.
auto parseFlag = [&](unsigned &Val) {
if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
return ParseUInt32(Val);
if (Lex.getKind() != lltok::DIFlag)
return TokError("expected debug info flag");
Val = DINode::getFlag(Lex.getStrVal());
if (!Val)
return TokError(Twine("invalid debug info flag flag '") +
Lex.getStrVal() + "'");
Lex.Lex();
return false;
};
// Parse the flags and combine them together.
unsigned Combined = 0;
do {
unsigned Val;
if (parseFlag(Val))
return true;
Combined |= Val;
} while (EatIfPresent(lltok::bar));
Result.assign(Combined);
return false;
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
MDSignedField &Result) {
if (Lex.getKind() != lltok::APSInt)
return TokError("expected signed integer");
auto &S = Lex.getAPSIntVal();
if (S < Result.Min)
return TokError("value for '" + Name + "' too small, limit is " +
Twine(Result.Min));
if (S > Result.Max)
return TokError("value for '" + Name + "' too large, limit is " +
Twine(Result.Max));
Result.assign(S.getExtValue());
assert(Result.Val >= Result.Min && "Expected value in range");
assert(Result.Val <= Result.Max && "Expected value in range");
Lex.Lex();
return false;
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
switch (Lex.getKind()) {
default:
return TokError("expected 'true' or 'false'");
case lltok::kw_true:
Result.assign(true);
break;
case lltok::kw_false:
Result.assign(false);
break;
}
Lex.Lex();
return false;
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
if (Lex.getKind() == lltok::kw_null) {
if (!Result.AllowNull)
return TokError("'" + Name + "' cannot be null");
Lex.Lex();
Result.assign(nullptr);
return false;
}
Metadata *MD;
if (ParseMetadata(MD, nullptr))
return true;
Result.assign(MD);
return false;
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
Metadata *MD;
if (ParseValueAsMetadata(MD, "expected constant", nullptr))
return true;
Result.assign(cast<ConstantAsMetadata>(MD));
return false;
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
LocTy ValueLoc = Lex.getLoc();
std::string S;
if (ParseStringConstant(S))
return true;
if (!Result.AllowEmpty && S.empty())
return Error(ValueLoc, "'" + Name + "' cannot be empty");
Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
return false;
}
template <>
bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
SmallVector<Metadata *, 4> MDs;
if (ParseMDNodeVector(MDs))
return true;
Result.assign(std::move(MDs));
return false;
}
} // end namespace llvm
template <class ParserTy>
bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
do {
if (Lex.getKind() != lltok::LabelStr)
return TokError("expected field label here");
if (parseField())
return true;
} while (EatIfPresent(lltok::comma));
return false;
}
template <class ParserTy>
bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
Lex.Lex();
if (ParseToken(lltok::lparen, "expected '(' here"))
return true;
if (Lex.getKind() != lltok::rparen)
if (ParseMDFieldsImplBody(parseField))
return true;
ClosingLoc = Lex.getLoc();
return ParseToken(lltok::rparen, "expected ')' here");
}
template <class FieldTy>
bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
if (Result.Seen)
return TokError("field '" + Name + "' cannot be specified more than once");
LocTy Loc = Lex.getLoc();
Lex.Lex();
return ParseMDField(Loc, Name, Result);
}
bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
if (Lex.getStrVal() == #CLASS) \
return Parse##CLASS(N, IsDistinct);
#include "llvm/IR/Metadata.def"
return TokError("expected metadata type");
}
#define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
#define NOP_FIELD(NAME, TYPE, INIT)
#define REQUIRE_FIELD(NAME, TYPE, INIT) \
if (!NAME.Seen) \
return Error(ClosingLoc, "missing required field '" #NAME "'");
#define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
if (Lex.getStrVal() == #NAME) \
return ParseMDField(#NAME, NAME);
#define PARSE_MD_FIELDS() \
VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
do { \
LocTy ClosingLoc; \
if (ParseMDFieldsImpl([&]() -> bool { \
VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \
}, ClosingLoc)) \
return true; \
VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
} while (false)
#define GET_OR_DISTINCT(CLASS, ARGS) \
(IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
/// ParseDILocationFields:
/// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(line, LineField, ); \
OPTIONAL(column, ColumnField, ); \
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
OPTIONAL(inlinedAt, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(
DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
return false;
}
/// ParseGenericDINode:
/// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(tag, DwarfTagField, ); \
OPTIONAL(header, MDStringField, ); \
OPTIONAL(operands, MDFieldList, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(GenericDINode,
(Context, tag.Val, header.Val, operands.Val));
return false;
}
/// ParseDISubrange:
/// ::= !DISubrange(count: 30, lowerBound: 2)
bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \
OPTIONAL(lowerBound, MDSignedField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
return false;
}
/// ParseDIEnumerator:
/// ::= !DIEnumerator(value: 30, name: "SomeKind")
bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(name, MDStringField, ); \
REQUIRED(value, MDSignedField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
return false;
}
/// ParseDIBasicType:
/// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(encoding, DwarfAttEncodingField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
align.Val, encoding.Val));
return false;
}
/// ParseDIDerivedType:
/// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
/// line: 7, scope: !1, baseType: !2, size: 32,
/// align: 32, offset: 0, flags: 0, extraData: !3)
bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(tag, DwarfTagField, ); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(scope, MDField, ); \
REQUIRED(baseType, MDField, ); \
OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(flags, DIFlagField, ); \
OPTIONAL(extraData, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIDerivedType,
(Context, tag.Val, name.Val, file.Val, line.Val,
scope.Val, baseType.Val, size.Val, align.Val,
offset.Val, flags.Val, extraData.Val));
return false;
}
bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(tag, DwarfTagField, ); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(scope, MDField, ); \
OPTIONAL(baseType, MDField, ); \
OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
OPTIONAL(flags, DIFlagField, ); \
OPTIONAL(elements, MDField, ); \
OPTIONAL(runtimeLang, DwarfLangField, ); \
OPTIONAL(vtableHolder, MDField, ); \
OPTIONAL(templateParams, MDField, ); \
OPTIONAL(identifier, MDStringField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(
DICompositeType,
(Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
size.Val, align.Val, offset.Val, flags.Val, elements.Val,
runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
return false;
}
bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(flags, DIFlagField, ); \
REQUIRED(types, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val));
return false;
}
/// ParseDIFileType:
/// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(filename, MDStringField, ); \
REQUIRED(directory, MDStringField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
return false;
}
/// ParseDICompileUnit:
/// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
/// isOptimized: true, flags: "-O2", runtimeVersion: 1,
/// splitDebugFilename: "abc.debug", emissionKind: 1,
/// enums: !1, retainedTypes: !2, subprograms: !3,
/// globals: !4, imports: !5, dwoId: 0x0abcd)
bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(language, DwarfLangField, ); \
REQUIRED(file, MDField, (/* AllowNull */ false)); \
OPTIONAL(producer, MDStringField, ); \
OPTIONAL(isOptimized, MDBoolField, ); \
OPTIONAL(flags, MDStringField, ); \
OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
OPTIONAL(splitDebugFilename, MDStringField, ); \
OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \
OPTIONAL(enums, MDField, ); \
OPTIONAL(retainedTypes, MDField, ); \
OPTIONAL(subprograms, MDField, ); \
OPTIONAL(globals, MDField, ); \
OPTIONAL(imports, MDField, ); \
OPTIONAL(dwoId, MDUnsignedField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DICompileUnit,
(Context, language.Val, file.Val, producer.Val,
isOptimized.Val, flags.Val, runtimeVersion.Val,
splitDebugFilename.Val, emissionKind.Val, enums.Val,
retainedTypes.Val, subprograms.Val, globals.Val,
imports.Val, dwoId.Val));
return false;
}
/// ParseDISubprogram:
/// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
/// file: !1, line: 7, type: !2, isLocal: false,
/// isDefinition: true, scopeLine: 8, containingType: !3,
/// virtuality: DW_VIRTUALTIY_pure_virtual,
/// virtualIndex: 10, flags: 11,
/// isOptimized: false, function: void ()* @_Z3foov,
/// templateParams: !4, declaration: !5, variables: !6)
bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(scope, MDField, ); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(linkageName, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(type, MDField, ); \
OPTIONAL(isLocal, MDBoolField, ); \
OPTIONAL(isDefinition, MDBoolField, (true)); \
OPTIONAL(scopeLine, LineField, ); \
OPTIONAL(containingType, MDField, ); \
OPTIONAL(virtuality, DwarfVirtualityField, ); \
OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
OPTIONAL(flags, DIFlagField, ); \
OPTIONAL(isOptimized, MDBoolField, ); \
OPTIONAL(function, MDConstant, ); \
OPTIONAL(templateParams, MDField, ); \
OPTIONAL(declaration, MDField, ); \
OPTIONAL(variables, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(
DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
line.Val, type.Val, isLocal.Val, isDefinition.Val,
scopeLine.Val, containingType.Val, virtuality.Val,
virtualIndex.Val, flags.Val, isOptimized.Val, function.Val,
templateParams.Val, declaration.Val, variables.Val));
return false;
}
/// ParseDILexicalBlock:
/// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(column, ColumnField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(
DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
return false;
}
/// ParseDILexicalBlockFile:
/// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
OPTIONAL(file, MDField, ); \
REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DILexicalBlockFile,
(Context, scope.Val, file.Val, discriminator.Val));
return false;
}
/// ParseDINamespace:
/// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(scope, MDField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(line, LineField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DINamespace,
(Context, scope.Val, file.Val, name.Val, line.Val));
return false;
}
/// ParseDIModule:
/// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
/// includePath: "/usr/include", isysroot: "/")
bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(scope, MDField, ); \
REQUIRED(name, MDStringField, ); \
OPTIONAL(configMacros, MDStringField, ); \
OPTIONAL(includePath, MDStringField, ); \
OPTIONAL(isysroot, MDStringField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
configMacros.Val, includePath.Val, isysroot.Val));
return false;
}
/// ParseDITemplateTypeParameter:
/// ::= !DITemplateTypeParameter(name: "Ty", type: !1)
bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(name, MDStringField, ); \
REQUIRED(type, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result =
GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
return false;
}
/// ParseDITemplateValueParameter:
/// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
/// name: "V", type: !1, value: i32 7)
bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(type, MDField, ); \
REQUIRED(value, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DITemplateValueParameter,
(Context, tag.Val, name.Val, type.Val, value.Val));
return false;
}
/// ParseDIGlobalVariable:
/// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
/// file: !1, line: 7, type: !2, isLocal: false,
/// isDefinition: true, variable: i32* @foo,
/// declaration: !3)
bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \
OPTIONAL(scope, MDField, ); \
OPTIONAL(linkageName, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(type, MDField, ); \
OPTIONAL(isLocal, MDBoolField, ); \
OPTIONAL(isDefinition, MDBoolField, (true)); \
OPTIONAL(variable, MDConstant, ); \
OPTIONAL(declaration, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIGlobalVariable,
(Context, scope.Val, name.Val, linkageName.Val,
file.Val, line.Val, type.Val, isLocal.Val,
isDefinition.Val, variable.Val, declaration.Val));
return false;
}
/// ParseDILocalVariable:
/// ::= !DILocalVariable(tag: DW_TAG_arg_variable, scope: !0, name: "foo",
/// file: !1, line: 7, type: !2, arg: 2, flags: 7)
bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(tag, DwarfTagField, ); \
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(type, MDField, ); \
OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
OPTIONAL(flags, DIFlagField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DILocalVariable,
(Context, tag.Val, scope.Val, name.Val, file.Val,
line.Val, type.Val, arg.Val, flags.Val));
return false;
}
/// ParseDIExpression:
/// ::= !DIExpression(0, 7, -1)
bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
Lex.Lex();
if (ParseToken(lltok::lparen, "expected '(' here"))
return true;
SmallVector<uint64_t, 8> Elements;
if (Lex.getKind() != lltok::rparen)
do {
if (Lex.getKind() == lltok::DwarfOp) {
if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
Lex.Lex();
Elements.push_back(Op);
continue;
}
return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
}
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
return TokError("expected unsigned integer");
auto &U = Lex.getAPSIntVal();
if (U.ugt(UINT64_MAX))
return TokError("element too large, limit is " + Twine(UINT64_MAX));
Elements.push_back(U.getZExtValue());
Lex.Lex();
} while (EatIfPresent(lltok::comma));
if (ParseToken(lltok::rparen, "expected ')' here"))
return true;
Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
return false;
}
/// ParseDIObjCProperty:
/// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
/// getter: "getFoo", attributes: 7, type: !2)
bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
OPTIONAL(name, MDStringField, ); \
OPTIONAL(file, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(setter, MDStringField, ); \
OPTIONAL(getter, MDStringField, ); \
OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
OPTIONAL(type, MDField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIObjCProperty,
(Context, name.Val, file.Val, line.Val, setter.Val,
getter.Val, attributes.Val, type.Val));
return false;
}
/// ParseDIImportedEntity:
/// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
/// line: 7, name: "foo")
bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
REQUIRED(tag, DwarfTagField, ); \
REQUIRED(scope, MDField, ); \
OPTIONAL(entity, MDField, ); \
OPTIONAL(line, LineField, ); \
OPTIONAL(name, MDStringField, );
PARSE_MD_FIELDS();
#undef VISIT_MD_FIELDS
Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
entity.Val, line.Val, name.Val));
return false;
}
#undef PARSE_MD_FIELD
#undef NOP_FIELD
#undef REQUIRE_FIELD
#undef DECLARE_FIELD
/// ParseMetadataAsValue
/// ::= metadata i32 %local
/// ::= metadata i32 @global
/// ::= metadata i32 7
/// ::= metadata !0
/// ::= metadata !{...}
/// ::= metadata !"string"
bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
// Note: the type 'metadata' has already been parsed.
Metadata *MD;
if (ParseMetadata(MD, &PFS))
return true;
V = MetadataAsValue::get(Context, MD);
return false;
}
/// ParseValueAsMetadata
/// ::= i32 %local
/// ::= i32 @global
/// ::= i32 7
bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
PerFunctionState *PFS) {
Type *Ty;
LocTy Loc;
if (ParseType(Ty, TypeMsg, Loc))
return true;
if (Ty->isMetadataTy())
return Error(Loc, "invalid metadata-value-metadata roundtrip");
Value *V;
if (ParseValue(Ty, V, PFS))
return true;
MD = ValueAsMetadata::get(V);
return false;
}
/// ParseMetadata
/// ::= i32 %local
/// ::= i32 @global
/// ::= i32 7
/// ::= !42
/// ::= !{...}
/// ::= !"string"
/// ::= !DILocation(...)
bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
if (Lex.getKind() == lltok::MetadataVar) {
MDNode *N;
if (ParseSpecializedMDNode(N))
return true;
MD = N;
return false;
}
// ValueAsMetadata:
// <type> <value>
if (Lex.getKind() != lltok::exclaim)
return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
// '!'.
assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
Lex.Lex();
// MDString:
// ::= '!' STRINGCONSTANT
if (Lex.getKind() == lltok::StringConstant) {
MDString *S;
if (ParseMDString(S))
return true;
MD = S;
return false;
}
// MDNode:
// !{ ... }
// !7
MDNode *N;
if (ParseMDNodeTail(N))
return true;
MD = N;
return false;
}
//===----------------------------------------------------------------------===//
// Function Parsing.
//===----------------------------------------------------------------------===//
bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
PerFunctionState *PFS) {
if (Ty->isFunctionTy())
return Error(ID.Loc, "functions are not values, refer to them as pointers");
switch (ID.Kind) {
case ValID::t_LocalID:
if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
return V == nullptr;
case ValID::t_LocalName:
if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
return V == nullptr;
case ValID::t_InlineAsm: {
PointerType *PTy = dyn_cast<PointerType>(Ty);
FunctionType *FTy =
PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : nullptr;
if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
return Error(ID.Loc, "invalid type for inline asm constraint string");
V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
(ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
return false;
}
case ValID::t_GlobalName:
V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
return V == nullptr;
case ValID::t_GlobalID:
V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
return V == nullptr;
case ValID::t_APSInt:
if (!Ty->isIntegerTy())
return Error(ID.Loc, "integer constant must have integer type");
ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
V = ConstantInt::get(Context, ID.APSIntVal);
return false;
case ValID::t_APFloat:
if (!Ty->isFloatingPointTy() ||
!ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
return Error(ID.Loc, "floating point constant invalid for type");
// The lexer has no type info, so builds all half, float, and double FP
// constants as double. Fix this here. Long double does not need this.
if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
bool Ignored;
if (Ty->isHalfTy())
ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
&Ignored);
else if (Ty->isFloatTy())
ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
&Ignored);
}
V = ConstantFP::get(Context, ID.APFloatVal);
if (V->getType() != Ty)
return Error(ID.Loc, "floating point constant does not have type '" +
getTypeString(Ty) + "'");
return false;
case ValID::t_Null:
if (!Ty->isPointerTy())
return Error(ID.Loc, "null must be a pointer type");
V = ConstantPointerNull::get(cast<PointerType>(Ty));
return false;
case ValID::t_Undef:
// FIXME: LabelTy should not be a first-class type.
if (!Ty->isFirstClassType() || Ty->isLabelTy())
return Error(ID.Loc, "invalid type for undef constant");
V = UndefValue::get(Ty);
return false;
case ValID::t_EmptyArray:
if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
return Error(ID.Loc, "invalid empty array initializer");
V = UndefValue::get(Ty);
return false;
case ValID::t_Zero:
// FIXME: LabelTy should not be a first-class type.
if (!Ty->isFirstClassType() || Ty->isLabelTy())
return Error(ID.Loc, "invalid type for null constant");
V = Constant::getNullValue(Ty);
return false;
case ValID::t_Constant:
if (ID.ConstantVal->getType() != Ty)
return Error(ID.Loc, "constant expression type mismatch");
V = ID.ConstantVal;
return false;
case ValID::t_ConstantStruct:
case ValID::t_PackedConstantStruct:
if (StructType *ST = dyn_cast<StructType>(Ty)) {
if (ST->getNumElements() != ID.UIntVal)
return Error(ID.Loc,
"initializer with struct type has wrong # elements");
if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
return Error(ID.Loc, "packed'ness of initializer and type don't match");
// Verify that the elements are compatible with the structtype.
for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
return Error(ID.Loc, "element " + Twine(i) +
" of struct initializer doesn't match struct element type");
V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
ID.UIntVal));
} else
return Error(ID.Loc, "constant expression type mismatch");
return false;
}
llvm_unreachable("Invalid ValID");
}
bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
V = nullptr;
ValID ID;
return ParseValID(ID, PFS) ||
ConvertValIDToValue(Ty, ID, V, PFS);
}
bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
Type *Ty = nullptr;
return ParseType(Ty) ||
ParseValue(Ty, V, PFS);
}
bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
PerFunctionState &PFS) {
Value *V;
Loc = Lex.getLoc();
if (ParseTypeAndValue(V, PFS)) return true;
if (!isa<BasicBlock>(V))
return Error(Loc, "expected a basic block");
BB = cast<BasicBlock>(V);
return false;
}
/// FunctionHeader
/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
/// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
/// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
// Parse the linkage.
LocTy LinkageLoc = Lex.getLoc();
unsigned Linkage;
unsigned Visibility;
unsigned DLLStorageClass;
AttrBuilder RetAttrs;
unsigned CC;
Type *RetType = nullptr;
LocTy RetTypeLoc = Lex.getLoc();
if (ParseOptionalLinkage(Linkage) ||
ParseOptionalVisibility(Visibility) ||
ParseOptionalDLLStorageClass(DLLStorageClass) ||
ParseOptionalCallingConv(CC) ||
ParseOptionalReturnAttrs(RetAttrs) ||
ParseType(RetType, RetTypeLoc, true /*void allowed*/))
return true;
// Verify that the linkage is ok.
switch ((GlobalValue::LinkageTypes)Linkage) {
case GlobalValue::ExternalLinkage:
break; // always ok.
case GlobalValue::ExternalWeakLinkage:
if (isDefine)
return Error(LinkageLoc, "invalid linkage for function definition");
break;
case GlobalValue::PrivateLinkage:
case GlobalValue::InternalLinkage:
case GlobalValue::AvailableExternallyLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
if (!isDefine)
return Error(LinkageLoc, "invalid linkage for function declaration");
break;
case GlobalValue::AppendingLinkage:
case GlobalValue::CommonLinkage:
return Error(LinkageLoc, "invalid function linkage type");
}
if (!isValidVisibilityForLinkage(Visibility, Linkage))
return Error(LinkageLoc,
"symbol with local linkage must have default visibility");
if (!FunctionType::isValidReturnType(RetType))
return Error(RetTypeLoc, "invalid function return type");
LocTy NameLoc = Lex.getLoc();
std::string FunctionName;
if (Lex.getKind() == lltok::GlobalVar) {
FunctionName = Lex.getStrVal();
} else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
unsigned NameID = Lex.getUIntVal();
if (NameID != NumberedVals.size())
return TokError("function expected to be numbered '%" +
Twine(NumberedVals.size()) + "'");
} else {
return TokError("expected function name");
}
Lex.Lex();
if (Lex.getKind() != lltok::lparen)
return TokError("expected '(' in function argument list");
SmallVector<ArgInfo, 8> ArgList;
bool isVarArg;
AttrBuilder FuncAttrs;
std::vector<unsigned> FwdRefAttrGrps;
LocTy BuiltinLoc;
std::string Section;
unsigned Alignment;
std::string GC;
bool UnnamedAddr;
LocTy UnnamedAddrLoc;
Constant *Prefix = nullptr;
Constant *Prologue = nullptr;
Constant *PersonalityFn = nullptr;
Comdat *C;
if (ParseArgumentList(ArgList, isVarArg) ||
ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
&UnnamedAddrLoc) ||
ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
BuiltinLoc) ||
(EatIfPresent(lltok::kw_section) &&
ParseStringConstant(Section)) ||
parseOptionalComdat(FunctionName, C) ||
ParseOptionalAlignment(Alignment) ||
(EatIfPresent(lltok::kw_gc) &&
ParseStringConstant(GC)) ||
(EatIfPresent(lltok::kw_prefix) &&
ParseGlobalTypeAndValue(Prefix)) ||
(EatIfPresent(lltok::kw_prologue) &&
ParseGlobalTypeAndValue(Prologue)) ||
(EatIfPresent(lltok::kw_personality) &&
ParseGlobalTypeAndValue(PersonalityFn)))
return true;
if (FuncAttrs.contains(Attribute::Builtin))
return Error(BuiltinLoc, "'builtin' attribute not valid on function");
// If the alignment was parsed as an attribute, move to the alignment field.
if (FuncAttrs.hasAlignmentAttr()) {
Alignment = FuncAttrs.getAlignment();
FuncAttrs.removeAttribute(Attribute::Alignment);
}
// Okay, if we got here, the function is syntactically valid. Convert types
// and do semantic checks.
std::vector<Type*> ParamTypeList;
SmallVector<AttributeSet, 8> Attrs;
if (RetAttrs.hasAttributes())
Attrs.push_back(AttributeSet::get(RetType->getContext(),
AttributeSet::ReturnIndex,
RetAttrs));
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
ParamTypeList.push_back(ArgList[i].Ty);
if (ArgList[i].Attrs.hasAttributes(i + 1)) {
AttrBuilder B(ArgList[i].Attrs, i + 1);
Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
}
}
if (FuncAttrs.hasAttributes())
Attrs.push_back(AttributeSet::get(RetType->getContext(),
AttributeSet::FunctionIndex,
FuncAttrs));
AttributeSet PAL = AttributeSet::get(Context, Attrs);
if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
return Error(RetTypeLoc, "functions with 'sret' argument must return void");
FunctionType *FT =
FunctionType::get(RetType, ParamTypeList, isVarArg);
PointerType *PFT = PointerType::getUnqual(FT);
Fn = nullptr;
if (!FunctionName.empty()) {
// If this was a definition of a forward reference, remove the definition
// from the forward reference table and fill in the forward ref.
std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
ForwardRefVals.find(FunctionName);
if (FRVI != ForwardRefVals.end()) {
Fn = M->getFunction(FunctionName);
if (!Fn)
return Error(FRVI->second.second, "invalid forward reference to "
"function as global value!");
if (Fn->getType() != PFT)
return Error(FRVI->second.second, "invalid forward reference to "
"function '" + FunctionName + "' with wrong type!");
ForwardRefVals.erase(FRVI);
} else if ((Fn = M->getFunction(FunctionName))) {
// Reject redefinitions.
return Error(NameLoc, "invalid redefinition of function '" +
FunctionName + "'");
} else if (M->getNamedValue(FunctionName)) {
return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
}
} else {
// If this is a definition of a forward referenced function, make sure the
// types agree.
std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
= ForwardRefValIDs.find(NumberedVals.size());
if (I != ForwardRefValIDs.end()) {
Fn = cast<Function>(I->second.first);
if (Fn->getType() != PFT)
return Error(NameLoc, "type of definition and forward reference of '@" +
Twine(NumberedVals.size()) + "' disagree");
ForwardRefValIDs.erase(I);
}
}
if (!Fn)
Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
else // Move the forward-reference to the correct spot in the module.
M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
if (FunctionName.empty())
NumberedVals.push_back(Fn);
Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
Fn->setCallingConv(CC);
Fn->setAttributes(PAL);
Fn->setUnnamedAddr(UnnamedAddr);
Fn->setAlignment(Alignment);
Fn->setSection(Section);
Fn->setComdat(C);
Fn->setPersonalityFn(PersonalityFn);
if (!GC.empty()) Fn->setGC(GC.c_str());
Fn->setPrefixData(Prefix);
Fn->setPrologueData(Prologue);
ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
// Add all of the arguments we parsed to the function.
Function::arg_iterator ArgIt = Fn->arg_begin();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
// If the argument has a name, insert it into the argument symbol table.
if (ArgList[i].Name.empty()) continue;
// Set the name, if it conflicted, it will be auto-renamed.
ArgIt->setName(ArgList[i].Name);
if (ArgIt->getName() != ArgList[i].Name)
return Error(ArgList[i].Loc, "redefinition of argument '%" +
ArgList[i].Name + "'");
}
if (isDefine)
return false;
// Check the declaration has no block address forward references.
ValID ID;
if (FunctionName.empty()) {
ID.Kind = ValID::t_GlobalID;
ID.UIntVal = NumberedVals.size() - 1;
} else {
ID.Kind = ValID::t_GlobalName;
ID.StrVal = FunctionName;
}
auto Blocks = ForwardRefBlockAddresses.find(ID);
if (Blocks != ForwardRefBlockAddresses.end())
return Error(Blocks->first.Loc,
"cannot take blockaddress inside a declaration");
return false;
}
bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
ValID ID;
if (FunctionNumber == -1) {
ID.Kind = ValID::t_GlobalName;
ID.StrVal = F.getName();
} else {
ID.Kind = ValID::t_GlobalID;
ID.UIntVal = FunctionNumber;
}
auto Blocks = P.ForwardRefBlockAddresses.find(ID);
if (Blocks == P.ForwardRefBlockAddresses.end())
return false;
for (const auto &I : Blocks->second) {
const ValID &BBID = I.first;
GlobalValue *GV = I.second;
assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
"Expected local id or name");
BasicBlock *BB;
if (BBID.Kind == ValID::t_LocalName)
BB = GetBB(BBID.StrVal, BBID.Loc);
else
BB = GetBB(BBID.UIntVal, BBID.Loc);
if (!BB)
return P.Error(BBID.Loc, "referenced value is not a basic block");
GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
GV->eraseFromParent();
}
P.ForwardRefBlockAddresses.erase(Blocks);
return false;
}
/// ParseFunctionBody
/// ::= '{' BasicBlock+ UseListOrderDirective* '}'
bool LLParser::ParseFunctionBody(Function &Fn) {
if (Lex.getKind() != lltok::lbrace)
return TokError("expected '{' in function body");
Lex.Lex(); // eat the {.
int FunctionNumber = -1;
if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
PerFunctionState PFS(*this, Fn, FunctionNumber);
// Resolve block addresses and allow basic blocks to be forward-declared
// within this function.
if (PFS.resolveForwardRefBlockAddresses())
return true;
SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
// We need at least one basic block.
if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
return TokError("function body requires at least one basic block");
while (Lex.getKind() != lltok::rbrace &&
Lex.getKind() != lltok::kw_uselistorder)
if (ParseBasicBlock(PFS)) return true;
while (Lex.getKind() != lltok::rbrace)
if (ParseUseListOrder(&PFS))
return true;
// Eat the }.
Lex.Lex();
// Verify function is ok.
return PFS.FinishFunction();
}
/// ParseBasicBlock
/// ::= LabelStr? Instruction*
bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
// If this basic block starts out with a name, remember it.
std::string Name;
LocTy NameLoc = Lex.getLoc();
if (Lex.getKind() == lltok::LabelStr) {
Name = Lex.getStrVal();
Lex.Lex();
}
BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
if (!BB)
return Error(NameLoc,
"unable to create block named '" + Name + "'");
std::string NameStr;
// Parse the instructions in this block until we get a terminator.
Instruction *Inst;
do {
// This instruction may have three possibilities for a name: a) none
// specified, b) name specified "%foo =", c) number specified: "%4 =".
LocTy NameLoc = Lex.getLoc();
int NameID = -1;
NameStr = "";
if (Lex.getKind() == lltok::LocalVarID) {
NameID = Lex.getUIntVal();
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after instruction id"))
return true;
} else if (Lex.getKind() == lltok::LocalVar) {
NameStr = Lex.getStrVal();
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after instruction name"))
return true;
}
switch (ParseInstruction(Inst, BB, PFS)) {
default: llvm_unreachable("Unknown ParseInstruction result!");
case InstError: return true;
case InstNormal:
BB->getInstList().push_back(Inst);
// With a normal result, we check to see if the instruction is followed by
// a comma and metadata.
if (EatIfPresent(lltok::comma))
if (ParseInstructionMetadata(*Inst))
return true;
break;
case InstExtraComma:
BB->getInstList().push_back(Inst);
// If the instruction parser ate an extra comma at the end of it, it
// *must* be followed by metadata.
if (ParseInstructionMetadata(*Inst))
return true;
break;
}
// Set the name on the instruction.
if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
} while (!isa<TerminatorInst>(Inst));
return false;
}
//===----------------------------------------------------------------------===//
// Instruction Parsing.
//===----------------------------------------------------------------------===//
/// ParseInstruction - Parse one of the many different instructions.
///
int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
PerFunctionState &PFS) {
lltok::Kind Token = Lex.getKind();
if (Token == lltok::Eof)
return TokError("found end of file when expecting more instructions");
LocTy Loc = Lex.getLoc();
unsigned KeywordVal = Lex.getUIntVal();
Lex.Lex(); // Eat the keyword.
switch (Token) {
default: return Error(Loc, "expected instruction opcode");
// Terminator Instructions.
case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
case lltok::kw_br: return ParseBr(Inst, PFS);
case lltok::kw_switch: return ParseSwitch(Inst, PFS);
case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
case lltok::kw_resume: return ParseResume(Inst, PFS);
// Binary Operators.
case lltok::kw_add:
case lltok::kw_sub:
case lltok::kw_mul:
case lltok::kw_shl: {
bool NUW = EatIfPresent(lltok::kw_nuw);
bool NSW = EatIfPresent(lltok::kw_nsw);
if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
return false;
}
case lltok::kw_fadd:
case lltok::kw_fsub:
case lltok::kw_fmul:
case lltok::kw_fdiv:
case lltok::kw_frem: {
FastMathFlags FMF = EatFastMathFlagsIfPresent();
int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
if (Res != 0)
return Res;
if (FMF.any())
Inst->setFastMathFlags(FMF);
return 0;
}
case lltok::kw_sdiv:
case lltok::kw_udiv:
case lltok::kw_lshr:
case lltok::kw_ashr: {
bool Exact = EatIfPresent(lltok::kw_exact);
if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
return false;
}
case lltok::kw_urem:
case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
case lltok::kw_and:
case lltok::kw_or:
case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal);
case lltok::kw_fcmp: {
FastMathFlags FMF = EatFastMathFlagsIfPresent();
int Res = ParseCompare(Inst, PFS, KeywordVal);
if (Res != 0)
return Res;
if (FMF.any())
Inst->setFastMathFlags(FMF);
return 0;
}
// Casts.
case lltok::kw_trunc:
case lltok::kw_zext:
case lltok::kw_sext:
case lltok::kw_fptrunc:
case lltok::kw_fpext:
case lltok::kw_bitcast:
case lltok::kw_addrspacecast:
case lltok::kw_uitofp:
case lltok::kw_sitofp:
case lltok::kw_fptoui:
case lltok::kw_fptosi:
case lltok::kw_inttoptr:
case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
// Other.
case lltok::kw_select: return ParseSelect(Inst, PFS);
case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
case lltok::kw_phi: return ParsePHI(Inst, PFS);
case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS);
// Call.
case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None);
case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail);
case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
// Memory.
case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
case lltok::kw_load: return ParseLoad(Inst, PFS);
case lltok::kw_store: return ParseStore(Inst, PFS);
case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS);
case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS);
case lltok::kw_fence: return ParseFence(Inst, PFS);
case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
}
}
/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
if (Opc == Instruction::FCmp) {
switch (Lex.getKind()) {
default: return TokError("expected fcmp predicate (e.g. 'oeq')");
case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
}
} else {
switch (Lex.getKind()) {
default: return TokError("expected icmp predicate (e.g. 'eq')");
case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
}
}
Lex.Lex();
return false;
}
//===----------------------------------------------------------------------===//
// Terminator Instructions.
//===----------------------------------------------------------------------===//
/// ParseRet - Parse a return instruction.
/// ::= 'ret' void (',' !dbg, !1)*
/// ::= 'ret' TypeAndValue (',' !dbg, !1)*
bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
PerFunctionState &PFS) {
SMLoc TypeLoc = Lex.getLoc();
Type *Ty = nullptr;
if (ParseType(Ty, true /*void allowed*/)) return true;
Type *ResType = PFS.getFunction().getReturnType();
if (Ty->isVoidTy()) {
if (!ResType->isVoidTy())
return Error(TypeLoc, "value doesn't match function result type '" +
getTypeString(ResType) + "'");
Inst = ReturnInst::Create(Context);
return false;
}
Value *RV;
if (ParseValue(Ty, RV, PFS)) return true;
if (ResType != RV->getType())
return Error(TypeLoc, "value doesn't match function result type '" +
getTypeString(ResType) + "'");
Inst = ReturnInst::Create(Context, RV);
return false;
}
/// ParseBr
/// ::= 'br' TypeAndValue
/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc, Loc2;
Value *Op0;
BasicBlock *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
Inst = BranchInst::Create(BB);
return false;
}
if (Op0->getType() != Type::getInt1Ty(Context))
return Error(Loc, "branch condition must have 'i1' type");
if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after true destination") ||
ParseTypeAndBasicBlock(Op2, Loc2, PFS))
return true;
Inst = BranchInst::Create(Op1, Op2, Op0);
return false;
}
/// ParseSwitch
/// Instruction
/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
/// JumpTable
/// ::= (TypeAndValue ',' TypeAndValue)*
bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
LocTy CondLoc, BBLoc;
Value *Cond;
BasicBlock *DefaultBB;
if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after switch condition") ||
ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
ParseToken(lltok::lsquare, "expected '[' with switch table"))
return true;
if (!Cond->getType()->isIntegerTy())
return Error(CondLoc, "switch condition must have integer type");
// Parse the jump table pairs.
SmallPtrSet<Value*, 32> SeenCases;
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
while (Lex.getKind() != lltok::rsquare) {
Value *Constant;
BasicBlock *DestBB;
if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after case value") ||
ParseTypeAndBasicBlock(DestBB, PFS))
return true;
if (!SeenCases.insert(Constant).second)
return Error(CondLoc, "duplicate case value in switch");
if (!isa<ConstantInt>(Constant))
return Error(CondLoc, "case value is not a constant integer");
Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
}
Lex.Lex(); // Eat the ']'.
SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
for (unsigned i = 0, e = Table.size(); i != e; ++i)
SI->addCase(Table[i].first, Table[i].second);
Inst = SI;
return false;
}
/// ParseIndirectBr
/// Instruction
/// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
LocTy AddrLoc;
Value *Address;
if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
return true;
if (!Address->getType()->isPointerTy())
return Error(AddrLoc, "indirectbr address must have pointer type");
// Parse the destination list.
SmallVector<BasicBlock*, 16> DestList;
if (Lex.getKind() != lltok::rsquare) {
BasicBlock *DestBB;
if (ParseTypeAndBasicBlock(DestBB, PFS))
return true;
DestList.push_back(DestBB);
while (EatIfPresent(lltok::comma)) {
if (ParseTypeAndBasicBlock(DestBB, PFS))
return true;
DestList.push_back(DestBB);
}
}
if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
return true;
IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
for (unsigned i = 0, e = DestList.size(); i != e; ++i)
IBI->addDestination(DestList[i]);
Inst = IBI;
return false;
}
/// ParseInvoke
/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
LocTy CallLoc = Lex.getLoc();
AttrBuilder RetAttrs, FnAttrs;
std::vector<unsigned> FwdRefAttrGrps;
LocTy NoBuiltinLoc;
unsigned CC;
Type *RetType = nullptr;
LocTy RetTypeLoc;
ValID CalleeID;
SmallVector<ParamInfo, 16> ArgList;
BasicBlock *NormalBB, *UnwindBB;
if (ParseOptionalCallingConv(CC) ||
ParseOptionalReturnAttrs(RetAttrs) ||
ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
ParseValID(CalleeID) ||
ParseParameterList(ArgList, PFS) ||
ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
NoBuiltinLoc) ||
ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
ParseTypeAndBasicBlock(NormalBB, PFS) ||
ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
ParseTypeAndBasicBlock(UnwindBB, PFS))
return true;
// If RetType is a non-function pointer type, then this is the short syntax
// for the call, which means that RetType is just the return type. Infer the
// rest of the function argument types from the arguments that are present.
FunctionType *Ty = dyn_cast<FunctionType>(RetType);
if (!Ty) {
// Pull out the types of all of the arguments...
std::vector<Type*> ParamTypes;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ParamTypes.push_back(ArgList[i].V->getType());
if (!FunctionType::isValidReturnType(RetType))
return Error(RetTypeLoc, "Invalid result type for LLVM function");
Ty = FunctionType::get(RetType, ParamTypes, false);
}
// Look up the callee.
Value *Callee;
if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
return true;
// Set up the Attribute for the function.
SmallVector<AttributeSet, 8> Attrs;
if (RetAttrs.hasAttributes())
Attrs.push_back(AttributeSet::get(RetType->getContext(),
AttributeSet::ReturnIndex,
RetAttrs));
SmallVector<Value*, 8> Args;
// Loop through FunctionType's arguments and ensure they are specified
// correctly. Also, gather any parameter attributes.
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
Type *ExpectedTy = nullptr;
if (I != E) {
ExpectedTy = *I++;
} else if (!Ty->isVarArg()) {
return Error(ArgList[i].Loc, "too many arguments specified");
}
if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
return Error(ArgList[i].Loc, "argument is not of expected type '" +
getTypeString(ExpectedTy) + "'");
Args.push_back(ArgList[i].V);
if (ArgList[i].Attrs.hasAttributes(i + 1)) {
AttrBuilder B(ArgList[i].Attrs, i + 1);
Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
}
}
if (I != E)
return Error(CallLoc, "not enough parameters specified for call");
if (FnAttrs.hasAttributes()) {
if (FnAttrs.hasAlignmentAttr())
return Error(CallLoc, "invoke instructions may not have an alignment");
Attrs.push_back(AttributeSet::get(RetType->getContext(),
AttributeSet::FunctionIndex,
FnAttrs));
}
// Finish off the Attribute and check them
AttributeSet PAL = AttributeSet::get(Context, Attrs);
InvokeInst *II = InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args);
II->setCallingConv(CC);
II->setAttributes(PAL);
ForwardRefAttrGroups[II] = FwdRefAttrGrps;
Inst = II;
return false;
}
/// ParseResume
/// ::= 'resume' TypeAndValue
bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
Value *Exn; LocTy ExnLoc;
if (ParseTypeAndValue(Exn, ExnLoc, PFS))
return true;
ResumeInst *RI = ResumeInst::Create(Exn);
Inst = RI;
return false;
}
//===----------------------------------------------------------------------===//
// Binary Operators.
//===----------------------------------------------------------------------===//
/// ParseArithmetic
/// ::= ArithmeticOps TypeAndValue ',' Value
///
/// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc, unsigned OperandType) {
LocTy Loc; Value *LHS, *RHS;
if (ParseTypeAndValue(LHS, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
ParseValue(LHS->getType(), RHS, PFS))
return true;
bool Valid;
switch (OperandType) {
default: llvm_unreachable("Unknown operand type!");
case 0: // int or FP.
Valid = LHS->getType()->isIntOrIntVectorTy() ||
LHS->getType()->isFPOrFPVectorTy();
break;
case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
}
if (!Valid)
return Error(Loc, "invalid operand type for instruction");
Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
return false;
}
/// ParseLogical
/// ::= ArithmeticOps TypeAndValue ',' Value {
bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
LocTy Loc; Value *LHS, *RHS;
if (ParseTypeAndValue(LHS, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' in logical operation") ||
ParseValue(LHS->getType(), RHS, PFS))
return true;
if (!LHS->getType()->isIntOrIntVectorTy())
return Error(Loc,"instruction requires integer or integer vector operands");
Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
return false;
}
/// ParseCompare
/// ::= 'icmp' IPredicates TypeAndValue ',' Value
/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
// Parse the integer/fp comparison predicate.
LocTy Loc;
unsigned Pred;
Value *LHS, *RHS;
if (ParseCmpPredicate(Pred, Opc) ||
ParseTypeAndValue(LHS, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after compare value") ||
ParseValue(LHS->getType(), RHS, PFS))
return true;
if (Opc == Instruction::FCmp) {
if (!LHS->getType()->isFPOrFPVectorTy())
return Error(Loc, "fcmp requires floating point operands");
Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
} else {
assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
if (!LHS->getType()->isIntOrIntVectorTy() &&
!LHS->getType()->getScalarType()->isPointerTy())
return Error(Loc, "icmp requires integer operands");
Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
}
return false;
}
//===----------------------------------------------------------------------===//
// Other Instructions.
//===----------------------------------------------------------------------===//
/// ParseCast
/// ::= CastOpc TypeAndValue 'to' Type
bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
LocTy Loc;
Value *Op;
Type *DestTy = nullptr;
if (ParseTypeAndValue(Op, Loc, PFS) ||
ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
ParseType(DestTy))
return true;
if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
return Error(Loc, "invalid cast opcode for cast from '" +
getTypeString(Op->getType()) + "' to '" +
getTypeString(DestTy) + "'");
}
Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
return false;
}
/// ParseSelect
/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after select condition") ||
ParseTypeAndValue(Op1, PFS) ||
ParseToken(lltok::comma, "expected ',' after select value") ||
ParseTypeAndValue(Op2, PFS))
return true;
if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
return Error(Loc, Reason);
Inst = SelectInst::Create(Op0, Op1, Op2);
return false;
}
/// ParseVA_Arg
/// ::= 'va_arg' TypeAndValue ',' Type
bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
Value *Op;
Type *EltTy = nullptr;
LocTy TypeLoc;
if (ParseTypeAndValue(Op, PFS) ||
ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
ParseType(EltTy, TypeLoc))
return true;
if (!EltTy->isFirstClassType())
return Error(TypeLoc, "va_arg requires operand with first class type");
Inst = new VAArgInst(Op, EltTy);
return false;
}
/// ParseExtractElement
/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after extract value") ||
ParseTypeAndValue(Op1, PFS))
return true;
if (!ExtractElementInst::isValidOperands(Op0, Op1))
return Error(Loc, "invalid extractelement operands");
Inst = ExtractElementInst::Create(Op0, Op1);
return false;
}
/// ParseInsertElement
/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseTypeAndValue(Op1, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseTypeAndValue(Op2, PFS))
return true;
if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
return Error(Loc, "invalid insertelement operands");
Inst = InsertElementInst::Create(Op0, Op1, Op2);
return false;
}
/// ParseShuffleVector
/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
ParseTypeAndValue(Op1, PFS) ||
ParseToken(lltok::comma, "expected ',' after shuffle value") ||
ParseTypeAndValue(Op2, PFS))
return true;
if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
return Error(Loc, "invalid shufflevector operands");
Inst = new ShuffleVectorInst(Op0, Op1, Op2);
return false;
}
/// ParsePHI
/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
Type *Ty = nullptr; LocTy TypeLoc;
Value *Op0, *Op1;
if (ParseType(Ty, TypeLoc) ||
ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
ParseValue(Ty, Op0, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
ParseToken(lltok::rsquare, "expected ']' in phi value list"))
return true;
bool AteExtraComma = false;
SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
while (1) {
PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
if (!EatIfPresent(lltok::comma))
break;
if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
break;
}
if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
ParseValue(Ty, Op0, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
ParseToken(lltok::rsquare, "expected ']' in phi value list"))
return true;
}
if (!Ty->isFirstClassType())
return Error(TypeLoc, "phi node must have first class type");
PHINode *PN = PHINode::Create(Ty, PHIVals.size());
for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
Inst = PN;
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseLandingPad
/// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
/// Clause
/// ::= 'catch' TypeAndValue
/// ::= 'filter'
/// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
Type *Ty = nullptr; LocTy TyLoc;
if (ParseType(Ty, TyLoc))
return true;
std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
LandingPadInst::ClauseType CT;
if (EatIfPresent(lltok::kw_catch))
CT = LandingPadInst::Catch;
else if (EatIfPresent(lltok::kw_filter))
CT = LandingPadInst::Filter;
else
return TokError("expected 'catch' or 'filter' clause type");
Value *V;
LocTy VLoc;
if (ParseTypeAndValue(V, VLoc, PFS))
return true;
// A 'catch' type expects a non-array constant. A filter clause expects an
// array constant.
if (CT == LandingPadInst::Catch) {
if (isa<ArrayType>(V->getType()))
Error(VLoc, "'catch' clause has an invalid type");
} else {
if (!isa<ArrayType>(V->getType()))
Error(VLoc, "'filter' clause has an invalid type");
}
Constant *CV = dyn_cast<Constant>(V);
if (!CV)
return Error(VLoc, "clause argument must be a constant");
LP->addClause(CV);
}
Inst = LP.release();
return false;
}
/// ParseCall
/// ::= 'call' OptionalCallingConv OptionalAttrs Type Value
/// ParameterList OptionalAttrs
/// ::= 'tail' 'call' OptionalCallingConv OptionalAttrs Type Value
/// ParameterList OptionalAttrs
/// ::= 'musttail' 'call' OptionalCallingConv OptionalAttrs Type Value
/// ParameterList OptionalAttrs
bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
CallInst::TailCallKind TCK) {
AttrBuilder RetAttrs, FnAttrs;
std::vector<unsigned> FwdRefAttrGrps;
LocTy BuiltinLoc;
unsigned CC;
Type *RetType = nullptr;
LocTy RetTypeLoc;
ValID CalleeID;
SmallVector<ParamInfo, 16> ArgList;
LocTy CallLoc = Lex.getLoc();
if ((TCK != CallInst::TCK_None &&
ParseToken(lltok::kw_call, "expected 'tail call'")) ||
ParseOptionalCallingConv(CC) ||
ParseOptionalReturnAttrs(RetAttrs) ||
ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
ParseValID(CalleeID) ||
ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
PFS.getFunction().isVarArg()) ||
ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
BuiltinLoc))
return true;
// If RetType is a non-function pointer type, then this is the short syntax
// for the call, which means that RetType is just the return type. Infer the
// rest of the function argument types from the arguments that are present.
FunctionType *Ty = dyn_cast<FunctionType>(RetType);
if (!Ty) {
// Pull out the types of all of the arguments...
std::vector<Type*> ParamTypes;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ParamTypes.push_back(ArgList[i].V->getType());
if (!FunctionType::isValidReturnType(RetType))
return Error(RetTypeLoc, "Invalid result type for LLVM function");
Ty = FunctionType::get(RetType, ParamTypes, false);
}
// Look up the callee.
Value *Callee;
if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
return true;
// Set up the Attribute for the function.
SmallVector<AttributeSet, 8> Attrs;
if (RetAttrs.hasAttributes())
Attrs.push_back(AttributeSet::get(RetType->getContext(),
AttributeSet::ReturnIndex,
RetAttrs));
SmallVector<Value*, 8> Args;
// Loop through FunctionType's arguments and ensure they are specified
// correctly. Also, gather any parameter attributes.
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
Type *ExpectedTy = nullptr;
if (I != E) {
ExpectedTy = *I++;
} else if (!Ty->isVarArg()) {
return Error(ArgList[i].Loc, "too many arguments specified");
}
if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
return Error(ArgList[i].Loc, "argument is not of expected type '" +
getTypeString(ExpectedTy) + "'");
Args.push_back(ArgList[i].V);
if (ArgList[i].Attrs.hasAttributes(i + 1)) {
AttrBuilder B(ArgList[i].Attrs, i + 1);
Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
}
}
if (I != E)
return Error(CallLoc, "not enough parameters specified for call");
if (FnAttrs.hasAttributes()) {
if (FnAttrs.hasAlignmentAttr())
return Error(CallLoc, "call instructions may not have an alignment");
Attrs.push_back(AttributeSet::get(RetType->getContext(),
AttributeSet::FunctionIndex,
FnAttrs));
}
// Finish off the Attribute and check them
AttributeSet PAL = AttributeSet::get(Context, Attrs);
CallInst *CI = CallInst::Create(Ty, Callee, Args);
CI->setTailCallKind(TCK);
CI->setCallingConv(CC);
CI->setAttributes(PAL);
ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
Inst = CI;
return false;
}
//===----------------------------------------------------------------------===//
// Memory Instructions.
//===----------------------------------------------------------------------===//
/// ParseAlloc
/// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)?
int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
Value *Size = nullptr;
LocTy SizeLoc, TyLoc;
unsigned Alignment = 0;
Type *Ty = nullptr;
bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
if (ParseType(Ty, TyLoc)) return true;
if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
return Error(TyLoc, "invalid type for alloca");
bool AteExtraComma = false;
if (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::kw_align) {
if (ParseOptionalAlignment(Alignment)) return true;
} else if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
} else {
if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
ParseOptionalCommaAlign(Alignment, AteExtraComma))
return true;
}
}
if (Size && !Size->getType()->isIntegerTy())
return Error(SizeLoc, "element count must have integer type");
AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
AI->setUsedWithInAlloca(IsInAlloca);
Inst = AI;
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseLoad
/// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
/// ::= 'load' 'atomic' 'volatile'? TypeAndValue
/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val; LocTy Loc;
unsigned Alignment = 0;
bool AteExtraComma = false;
bool isAtomic = false;
AtomicOrdering Ordering = NotAtomic;
SynchronizationScope Scope = CrossThread;
if (Lex.getKind() == lltok::kw_atomic) {
isAtomic = true;
Lex.Lex();
}
bool isVolatile = false;
if (Lex.getKind() == lltok::kw_volatile) {
isVolatile = true;
Lex.Lex();
}
Type *Ty;
LocTy ExplicitTypeLoc = Lex.getLoc();
if (ParseType(Ty) ||
ParseToken(lltok::comma, "expected comma after load's type") ||
ParseTypeAndValue(Val, Loc, PFS) ||
ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
ParseOptionalCommaAlign(Alignment, AteExtraComma))
return true;
if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
return Error(Loc, "load operand must be a pointer to a first class type");
if (isAtomic && !Alignment)
return Error(Loc, "atomic load must have explicit non-zero alignment");
if (Ordering == Release || Ordering == AcquireRelease)
return Error(Loc, "atomic load cannot use Release ordering");
if (Ty != cast<PointerType>(Val->getType())->getElementType())
return Error(ExplicitTypeLoc,
"explicit pointee type doesn't match operand's pointee type");
Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseStore
/// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
/// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val, *Ptr; LocTy Loc, PtrLoc;
unsigned Alignment = 0;
bool AteExtraComma = false;
bool isAtomic = false;
AtomicOrdering Ordering = NotAtomic;
SynchronizationScope Scope = CrossThread;
if (Lex.getKind() == lltok::kw_atomic) {
isAtomic = true;
Lex.Lex();
}
bool isVolatile = false;
if (Lex.getKind() == lltok::kw_volatile) {
isVolatile = true;
Lex.Lex();
}
if (ParseTypeAndValue(Val, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after store operand") ||
ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
ParseOptionalCommaAlign(Alignment, AteExtraComma))
return true;
if (!Ptr->getType()->isPointerTy())
return Error(PtrLoc, "store operand must be a pointer");
if (!Val->getType()->isFirstClassType())
return Error(Loc, "store operand must be a first class value");
if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
return Error(Loc, "stored value and pointer type do not match");
if (isAtomic && !Alignment)
return Error(Loc, "atomic store must have explicit non-zero alignment");
if (Ordering == Acquire || Ordering == AcquireRelease)
return Error(Loc, "atomic store cannot use Acquire ordering");
Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseCmpXchg
/// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
/// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
bool AteExtraComma = false;
AtomicOrdering SuccessOrdering = NotAtomic;
AtomicOrdering FailureOrdering = NotAtomic;
SynchronizationScope Scope = CrossThread;
bool isVolatile = false;
bool isWeak = false;
if (EatIfPresent(lltok::kw_weak))
isWeak = true;
if (EatIfPresent(lltok::kw_volatile))
isVolatile = true;
if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
ParseTypeAndValue(New, NewLoc, PFS) ||
ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
ParseOrdering(FailureOrdering))
return true;
if (SuccessOrdering == Unordered || FailureOrdering == Unordered)
return TokError("cmpxchg cannot be unordered");
if (SuccessOrdering < FailureOrdering)
return TokError("cmpxchg must be at least as ordered on success as failure");
if (FailureOrdering == Release || FailureOrdering == AcquireRelease)
return TokError("cmpxchg failure ordering cannot include release semantics");
if (!Ptr->getType()->isPointerTy())
return Error(PtrLoc, "cmpxchg operand must be a pointer");
if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
return Error(CmpLoc, "compare value and pointer type do not match");
if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
return Error(NewLoc, "new value and pointer type do not match");
if (!New->getType()->isIntegerTy())
return Error(NewLoc, "cmpxchg operand must be an integer");
unsigned Size = New->getType()->getPrimitiveSizeInBits();
if (Size < 8 || (Size & (Size - 1)))
return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
" integer");
AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
CXI->setVolatile(isVolatile);
CXI->setWeak(isWeak);
Inst = CXI;
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseAtomicRMW
/// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
/// 'singlethread'? AtomicOrdering
int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
bool AteExtraComma = false;
AtomicOrdering Ordering = NotAtomic;
SynchronizationScope Scope = CrossThread;
bool isVolatile = false;
AtomicRMWInst::BinOp Operation;
if (EatIfPresent(lltok::kw_volatile))
isVolatile = true;
switch (Lex.getKind()) {
default: return TokError("expected binary operation in atomicrmw");
case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
case lltok::kw_and: Operation = AtomicRMWInst::And; break;
case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
}
Lex.Lex(); // Eat the operation.
if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
ParseTypeAndValue(Val, ValLoc, PFS) ||
ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
return true;
if (Ordering == Unordered)
return TokError("atomicrmw cannot be unordered");
if (!Ptr->getType()->isPointerTy())
return Error(PtrLoc, "atomicrmw operand must be a pointer");
if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
return Error(ValLoc, "atomicrmw value and pointer type do not match");
if (!Val->getType()->isIntegerTy())
return Error(ValLoc, "atomicrmw operand must be an integer");
unsigned Size = Val->getType()->getPrimitiveSizeInBits();
if (Size < 8 || (Size & (Size - 1)))
return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
" integer");
AtomicRMWInst *RMWI =
new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
RMWI->setVolatile(isVolatile);
Inst = RMWI;
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseFence
/// ::= 'fence' 'singlethread'? AtomicOrdering
int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
AtomicOrdering Ordering = NotAtomic;
SynchronizationScope Scope = CrossThread;
if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
return true;
if (Ordering == Unordered)
return TokError("fence cannot be unordered");
if (Ordering == Monotonic)
return TokError("fence cannot be monotonic");
Inst = new FenceInst(Context, Ordering, Scope);
return InstNormal;
}
/// ParseGetElementPtr
/// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
Value *Ptr = nullptr;
Value *Val = nullptr;
LocTy Loc, EltLoc;
bool InBounds = EatIfPresent(lltok::kw_inbounds);
Type *Ty = nullptr;
LocTy ExplicitTypeLoc = Lex.getLoc();
if (ParseType(Ty) ||
ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
ParseTypeAndValue(Ptr, Loc, PFS))
return true;
Type *BaseType = Ptr->getType();
PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
if (!BasePointerType)
return Error(Loc, "base of getelementptr must be a pointer");
if (Ty != BasePointerType->getElementType())
return Error(ExplicitTypeLoc,
"explicit pointee type doesn't match operand's pointee type");
SmallVector<Value*, 16> Indices;
bool AteExtraComma = false;
// GEP returns a vector of pointers if at least one of parameters is a vector.
// All vector parameters should have the same vector width.
unsigned GEPWidth = BaseType->isVectorTy() ?
BaseType->getVectorNumElements() : 0;
while (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::MetadataVar) {
AteExtraComma = true;
break;
}
if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
if (!Val->getType()->getScalarType()->isIntegerTy())
return Error(EltLoc, "getelementptr index must be an integer");
if (Val->getType()->isVectorTy()) {
unsigned ValNumEl = Val->getType()->getVectorNumElements();
if (GEPWidth && GEPWidth != ValNumEl)
return Error(EltLoc,
"getelementptr vector index has a wrong number of elements");
GEPWidth = ValNumEl;
}
Indices.push_back(Val);
}
SmallPtrSet<const Type*, 4> Visited;
if (!Indices.empty() && !Ty->isSized(&Visited))
return Error(Loc, "base element of getelementptr must be sized");
if (!GetElementPtrInst::getIndexedType(Ty, Indices))
return Error(Loc, "invalid getelementptr indices");
Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
if (InBounds)
cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseExtractValue
/// ::= 'extractvalue' TypeAndValue (',' uint32)+
int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val; LocTy Loc;
SmallVector<unsigned, 4> Indices;
bool AteExtraComma;
if (ParseTypeAndValue(Val, Loc, PFS) ||
ParseIndexList(Indices, AteExtraComma))
return true;
if (!Val->getType()->isAggregateType())
return Error(Loc, "extractvalue operand must be aggregate type");
if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
return Error(Loc, "invalid indices for extractvalue");
Inst = ExtractValueInst::Create(Val, Indices);
return AteExtraComma ? InstExtraComma : InstNormal;
}
/// ParseInsertValue
/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val0, *Val1; LocTy Loc0, Loc1;
SmallVector<unsigned, 4> Indices;
bool AteExtraComma;
if (ParseTypeAndValue(Val0, Loc0, PFS) ||
ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
ParseTypeAndValue(Val1, Loc1, PFS) ||
ParseIndexList(Indices, AteExtraComma))
return true;
if (!Val0->getType()->isAggregateType())
return Error(Loc0, "insertvalue operand must be aggregate type");
Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
if (!IndexedType)
return Error(Loc0, "invalid indices for insertvalue");
if (IndexedType != Val1->getType())
return Error(Loc1, "insertvalue operand and field disagree in type: '" +
getTypeString(Val1->getType()) + "' instead of '" +
getTypeString(IndexedType) + "'");
Inst = InsertValueInst::Create(Val0, Val1, Indices);
return AteExtraComma ? InstExtraComma : InstNormal;
}
//===----------------------------------------------------------------------===//
// Embedded metadata.
//===----------------------------------------------------------------------===//
/// ParseMDNodeVector
/// ::= { Element (',' Element)* }
/// Element
/// ::= 'null' | TypeAndValue
bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
if (ParseToken(lltok::lbrace, "expected '{' here"))
return true;
// Check for an empty list.
if (EatIfPresent(lltok::rbrace))
return false;
do {
// Null is a special case since it is typeless.
if (EatIfPresent(lltok::kw_null)) {
Elts.push_back(nullptr);
continue;
}
Metadata *MD;
if (ParseMetadata(MD, nullptr))
return true;
Elts.push_back(MD);
} while (EatIfPresent(lltok::comma));
return ParseToken(lltok::rbrace, "expected end of metadata node");
}
//===----------------------------------------------------------------------===//
// Use-list order directives.
//===----------------------------------------------------------------------===//
bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
SMLoc Loc) {
if (V->use_empty())
return Error(Loc, "value has no uses");
unsigned NumUses = 0;
SmallDenseMap<const Use *, unsigned, 16> Order;
for (const Use &U : V->uses()) {
if (++NumUses > Indexes.size())
break;
Order[&U] = Indexes[NumUses - 1];
}
if (NumUses < 2)
return Error(Loc, "value only has one use");
if (Order.size() != Indexes.size() || NumUses > Indexes.size())
return Error(Loc, "wrong number of indexes, expected " +
Twine(std::distance(V->use_begin(), V->use_end())));
V->sortUseList([&](const Use &L, const Use &R) {
return Order.lookup(&L) < Order.lookup(&R);
});
return false;
}
/// ParseUseListOrderIndexes
/// ::= '{' uint32 (',' uint32)+ '}'
bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
SMLoc Loc = Lex.getLoc();
if (ParseToken(lltok::lbrace, "expected '{' here"))
return true;
if (Lex.getKind() == lltok::rbrace)
return Lex.Error("expected non-empty list of uselistorder indexes");
// Use Offset, Max, and IsOrdered to check consistency of indexes. The
// indexes should be distinct numbers in the range [0, size-1], and should
// not be in order.
unsigned Offset = 0;
unsigned Max = 0;
bool IsOrdered = true;
assert(Indexes.empty() && "Expected empty order vector");
do {
unsigned Index;
if (ParseUInt32(Index))
return true;
// Update consistency checks.
Offset += Index - Indexes.size();
Max = std::max(Max, Index);
IsOrdered &= Index == Indexes.size();
Indexes.push_back(Index);
} while (EatIfPresent(lltok::comma));
if (ParseToken(lltok::rbrace, "expected '}' here"))
return true;
if (Indexes.size() < 2)
return Error(Loc, "expected >= 2 uselistorder indexes");
if (Offset != 0 || Max >= Indexes.size())
return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
if (IsOrdered)
return Error(Loc, "expected uselistorder indexes to change the order");
return false;
}
/// ParseUseListOrder
/// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
SMLoc Loc = Lex.getLoc();
if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
return true;
Value *V;
SmallVector<unsigned, 16> Indexes;
if (ParseTypeAndValue(V, PFS) ||
ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
ParseUseListOrderIndexes(Indexes))
return true;
return sortUseListOrder(V, Indexes, Loc);
}
/// ParseUseListOrderBB
/// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
bool LLParser::ParseUseListOrderBB() {
assert(Lex.getKind() == lltok::kw_uselistorder_bb);
SMLoc Loc = Lex.getLoc();
Lex.Lex();
ValID Fn, Label;
SmallVector<unsigned, 16> Indexes;
if (ParseValID(Fn) ||
ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
ParseValID(Label) ||
ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
ParseUseListOrderIndexes(Indexes))
return true;
// Check the function.
GlobalValue *GV;
if (Fn.Kind == ValID::t_GlobalName)
GV = M->getNamedValue(Fn.StrVal);
else if (Fn.Kind == ValID::t_GlobalID)
GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
else
return Error(Fn.Loc, "expected function name in uselistorder_bb");
if (!GV)
return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
auto *F = dyn_cast<Function>(GV);
if (!F)
return Error(Fn.Loc, "expected function name in uselistorder_bb");
if (F->isDeclaration())
return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
// Check the basic block.
if (Label.Kind == ValID::t_LocalID)
return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
if (Label.Kind != ValID::t_LocalName)
return Error(Label.Loc, "expected basic block name in uselistorder_bb");
Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
if (!V)
return Error(Label.Loc, "invalid basic block in uselistorder_bb");
if (!isa<BasicBlock>(V))
return Error(Label.Loc, "expected basic block in uselistorder_bb");
return sortUseListOrder(V, Indexes, Loc);
}