mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 11:13:28 +01:00
0ae292d42e
llvm-svn: 257985
324 lines
11 KiB
C++
324 lines
11 KiB
C++
//===- FuzzerMutate.cpp - Mutate a test input -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// Mutate a test input.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <cstring>
|
|
|
|
#include "FuzzerInternal.h"
|
|
|
|
#include <algorithm>
|
|
|
|
namespace fuzzer {
|
|
|
|
struct Mutator {
|
|
size_t (MutationDispatcher::*Fn)(uint8_t *Data, size_t Size, size_t Max);
|
|
const char *Name;
|
|
};
|
|
|
|
struct DictionaryEntry {
|
|
Word W;
|
|
size_t PositionHint;
|
|
};
|
|
|
|
struct Dictionary : public std::vector<DictionaryEntry>{
|
|
bool ContainsWord(const Word &W) const {
|
|
return end() !=
|
|
std::find_if(begin(), end(),
|
|
[&](const DictionaryEntry &DE) { return DE.W == W; });
|
|
}
|
|
};
|
|
|
|
struct MutationDispatcher::Impl {
|
|
// Dictionary provided by the user via -dict=DICT_FILE.
|
|
Dictionary ManualDictionary;
|
|
// Temporary dictionary modified by the fuzzer itself,
|
|
// recreated periodically.
|
|
Dictionary TempAutoDictionary;
|
|
// Persistent dictionary modified by the fuzzer, consists of
|
|
// entries that led to successfull discoveries in the past mutations.
|
|
Dictionary PersistentAutoDictionary;
|
|
|
|
std::vector<Mutator> Mutators;
|
|
std::vector<Mutator> CurrentMutatorSequence;
|
|
Dictionary CurrentDictionaryEntrySequence;
|
|
const std::vector<Unit> *Corpus = nullptr;
|
|
FuzzerRandomBase &Rand;
|
|
|
|
void Add(Mutator M) { Mutators.push_back(M); }
|
|
Impl(FuzzerRandomBase &Rand) : Rand(Rand) {
|
|
Add({&MutationDispatcher::Mutate_EraseByte, "EraseByte"});
|
|
Add({&MutationDispatcher::Mutate_InsertByte, "InsertByte"});
|
|
Add({&MutationDispatcher::Mutate_ChangeByte, "ChangeByte"});
|
|
Add({&MutationDispatcher::Mutate_ChangeBit, "ChangeBit"});
|
|
Add({&MutationDispatcher::Mutate_ShuffleBytes, "ShuffleBytes"});
|
|
Add({&MutationDispatcher::Mutate_ChangeASCIIInteger, "ChangeASCIIInt"});
|
|
Add({&MutationDispatcher::Mutate_CrossOver, "CrossOver"});
|
|
Add({&MutationDispatcher::Mutate_AddWordFromManualDictionary,
|
|
"AddFromManualDict"});
|
|
Add({&MutationDispatcher::Mutate_AddWordFromTemporaryAutoDictionary,
|
|
"AddFromTempAutoDict"});
|
|
Add({&MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary,
|
|
"AddFromPersAutoDict"});
|
|
}
|
|
void SetCorpus(const std::vector<Unit> *Corpus) { this->Corpus = Corpus; }
|
|
size_t AddWordFromDictionary(const std::vector<DictionaryEntry> &D,
|
|
uint8_t *Data, size_t Size, size_t MaxSize);
|
|
};
|
|
|
|
static char FlipRandomBit(char X, FuzzerRandomBase &Rand) {
|
|
int Bit = Rand(8);
|
|
char Mask = 1 << Bit;
|
|
char R;
|
|
if (X & (1 << Bit))
|
|
R = X & ~Mask;
|
|
else
|
|
R = X | Mask;
|
|
assert(R != X);
|
|
return R;
|
|
}
|
|
|
|
static char RandCh(FuzzerRandomBase &Rand) {
|
|
if (Rand.RandBool()) return Rand(256);
|
|
const char *Special = "!*'();:@&=+$,/?%#[]123ABCxyz-`~.";
|
|
return Special[Rand(sizeof(Special) - 1)];
|
|
}
|
|
|
|
size_t MutationDispatcher::Mutate_ShuffleBytes(uint8_t *Data, size_t Size,
|
|
size_t MaxSize) {
|
|
assert(Size);
|
|
size_t ShuffleAmount =
|
|
Rand(std::min(Size, (size_t)8)) + 1; // [1,8] and <= Size.
|
|
size_t ShuffleStart = Rand(Size - ShuffleAmount);
|
|
assert(ShuffleStart + ShuffleAmount <= Size);
|
|
std::random_shuffle(Data + ShuffleStart, Data + ShuffleStart + ShuffleAmount,
|
|
Rand);
|
|
return Size;
|
|
}
|
|
|
|
size_t MutationDispatcher::Mutate_EraseByte(uint8_t *Data, size_t Size,
|
|
size_t MaxSize) {
|
|
assert(Size);
|
|
if (Size == 1) return 0;
|
|
size_t Idx = Rand(Size);
|
|
// Erase Data[Idx].
|
|
memmove(Data + Idx, Data + Idx + 1, Size - Idx - 1);
|
|
return Size - 1;
|
|
}
|
|
|
|
size_t MutationDispatcher::Mutate_InsertByte(uint8_t *Data, size_t Size,
|
|
size_t MaxSize) {
|
|
if (Size == MaxSize) return 0;
|
|
size_t Idx = Rand(Size + 1);
|
|
// Insert new value at Data[Idx].
|
|
memmove(Data + Idx + 1, Data + Idx, Size - Idx);
|
|
Data[Idx] = RandCh(Rand);
|
|
return Size + 1;
|
|
}
|
|
|
|
size_t MutationDispatcher::Mutate_ChangeByte(uint8_t *Data, size_t Size,
|
|
size_t MaxSize) {
|
|
size_t Idx = Rand(Size);
|
|
Data[Idx] = RandCh(Rand);
|
|
return Size;
|
|
}
|
|
|
|
size_t MutationDispatcher::Mutate_ChangeBit(uint8_t *Data, size_t Size,
|
|
size_t MaxSize) {
|
|
size_t Idx = Rand(Size);
|
|
Data[Idx] = FlipRandomBit(Data[Idx], Rand);
|
|
return Size;
|
|
}
|
|
|
|
size_t MutationDispatcher::Mutate_AddWordFromManualDictionary(uint8_t *Data,
|
|
size_t Size,
|
|
size_t MaxSize) {
|
|
return MDImpl->AddWordFromDictionary(MDImpl->ManualDictionary, Data, Size,
|
|
MaxSize);
|
|
}
|
|
|
|
size_t MutationDispatcher::Mutate_AddWordFromTemporaryAutoDictionary(
|
|
uint8_t *Data, size_t Size, size_t MaxSize) {
|
|
return MDImpl->AddWordFromDictionary(MDImpl->TempAutoDictionary, Data, Size,
|
|
MaxSize);
|
|
}
|
|
|
|
size_t MutationDispatcher::Mutate_AddWordFromPersistentAutoDictionary(
|
|
uint8_t *Data, size_t Size, size_t MaxSize) {
|
|
return MDImpl->AddWordFromDictionary(MDImpl->PersistentAutoDictionary, Data, Size,
|
|
MaxSize);
|
|
}
|
|
|
|
size_t MutationDispatcher::Impl::AddWordFromDictionary(
|
|
const std::vector<DictionaryEntry> &D, uint8_t *Data, size_t Size,
|
|
size_t MaxSize) {
|
|
if (D.empty()) return 0;
|
|
const DictionaryEntry &DE = D[Rand(D.size())];
|
|
const Word &W = DE.W;
|
|
size_t PositionHint = DE.PositionHint;
|
|
bool UsePositionHint = PositionHint != std::numeric_limits<size_t>::max() &&
|
|
PositionHint + W.size() < Size && Rand.RandBool();
|
|
if (Rand.RandBool()) { // Insert W.
|
|
if (Size + W.size() > MaxSize) return 0;
|
|
size_t Idx = UsePositionHint ? PositionHint : Rand(Size + 1);
|
|
memmove(Data + Idx + W.size(), Data + Idx, Size - Idx);
|
|
memcpy(Data + Idx, W.data(), W.size());
|
|
Size += W.size();
|
|
} else { // Overwrite some bytes with W.
|
|
if (W.size() > Size) return 0;
|
|
size_t Idx = UsePositionHint ? PositionHint : Rand(Size - W.size());
|
|
memcpy(Data + Idx, W.data(), W.size());
|
|
}
|
|
CurrentDictionaryEntrySequence.push_back(DE);
|
|
return Size;
|
|
}
|
|
|
|
size_t MutationDispatcher::Mutate_ChangeASCIIInteger(uint8_t *Data, size_t Size,
|
|
size_t MaxSize) {
|
|
size_t B = Rand(Size);
|
|
while (B < Size && !isdigit(Data[B])) B++;
|
|
if (B == Size) return 0;
|
|
size_t E = B;
|
|
while (E < Size && isdigit(Data[E])) E++;
|
|
assert(B < E);
|
|
// now we have digits in [B, E).
|
|
// strtol and friends don't accept non-zero-teminated data, parse it manually.
|
|
uint64_t Val = Data[B] - '0';
|
|
for (size_t i = B + 1; i < E; i++)
|
|
Val = Val * 10 + Data[i] - '0';
|
|
|
|
// Mutate the integer value.
|
|
switch(Rand(5)) {
|
|
case 0: Val++; break;
|
|
case 1: Val--; break;
|
|
case 2: Val /= 2; break;
|
|
case 3: Val *= 2; break;
|
|
case 4: Val = Rand(Val * Val); break;
|
|
default: assert(0);
|
|
}
|
|
// Just replace the bytes with the new ones, don't bother moving bytes.
|
|
for (size_t i = B; i < E; i++) {
|
|
size_t Idx = E + B - i - 1;
|
|
assert(Idx >= B && Idx < E);
|
|
Data[Idx] = (Val % 10) + '0';
|
|
Val /= 10;
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
size_t MutationDispatcher::Mutate_CrossOver(uint8_t *Data, size_t Size,
|
|
size_t MaxSize) {
|
|
auto Corpus = MDImpl->Corpus;
|
|
if (!Corpus || Corpus->size() < 2 || Size == 0) return 0;
|
|
size_t Idx = Rand(Corpus->size());
|
|
const Unit &Other = (*Corpus)[Idx];
|
|
if (Other.empty()) return 0;
|
|
Unit U(MaxSize);
|
|
size_t NewSize =
|
|
CrossOver(Data, Size, Other.data(), Other.size(), U.data(), U.size());
|
|
assert(NewSize > 0 && "CrossOver returned empty unit");
|
|
assert(NewSize <= MaxSize && "CrossOver returned overisized unit");
|
|
memcpy(Data, U.data(), NewSize);
|
|
return NewSize;
|
|
}
|
|
|
|
void MutationDispatcher::StartMutationSequence() {
|
|
MDImpl->CurrentMutatorSequence.clear();
|
|
MDImpl->CurrentDictionaryEntrySequence.clear();
|
|
}
|
|
|
|
// Copy successful dictionary entries to PersistentAutoDictionary.
|
|
void MutationDispatcher::RecordSuccessfulMutationSequence() {
|
|
for (auto &DE : MDImpl->CurrentDictionaryEntrySequence)
|
|
// Linear search is fine here as this happens seldom.
|
|
if (!MDImpl->PersistentAutoDictionary.ContainsWord(DE.W))
|
|
MDImpl->PersistentAutoDictionary.push_back(
|
|
{DE.W, std::numeric_limits<size_t>::max()});
|
|
}
|
|
|
|
void MutationDispatcher::PrintRecommendedDictionary() {
|
|
std::vector<Word> V;
|
|
for (auto &DE : MDImpl->PersistentAutoDictionary)
|
|
if (!MDImpl->ManualDictionary.ContainsWord(DE.W))
|
|
V.push_back(DE.W);
|
|
if (V.empty()) return;
|
|
Printf("###### Recommended dictionary. ######\n");
|
|
for (auto &U: V) {
|
|
Printf("\"");
|
|
PrintASCII(U, "\"\n");
|
|
}
|
|
Printf("###### End of recommended dictionary. ######\n");
|
|
}
|
|
|
|
void MutationDispatcher::PrintMutationSequence() {
|
|
Printf("MS: %zd ", MDImpl->CurrentMutatorSequence.size());
|
|
for (auto M : MDImpl->CurrentMutatorSequence)
|
|
Printf("%s-", M.Name);
|
|
if (!MDImpl->CurrentDictionaryEntrySequence.empty()) {
|
|
Printf(" DE: ");
|
|
for (auto &DE : MDImpl->CurrentDictionaryEntrySequence) {
|
|
Printf("\"");
|
|
PrintASCII(DE.W, "\"-");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Mutates Data in place, returns new size.
|
|
size_t MutationDispatcher::Mutate(uint8_t *Data, size_t Size, size_t MaxSize) {
|
|
assert(MaxSize > 0);
|
|
assert(Size <= MaxSize);
|
|
if (Size == 0) {
|
|
for (size_t i = 0; i < MaxSize; i++)
|
|
Data[i] = RandCh(Rand);
|
|
return MaxSize;
|
|
}
|
|
assert(Size > 0);
|
|
// Some mutations may fail (e.g. can't insert more bytes if Size == MaxSize),
|
|
// in which case they will return 0.
|
|
// Try several times before returning un-mutated data.
|
|
for (int Iter = 0; Iter < 10; Iter++) {
|
|
size_t MutatorIdx = Rand(MDImpl->Mutators.size());
|
|
auto M = MDImpl->Mutators[MutatorIdx];
|
|
size_t NewSize = (this->*(M.Fn))(Data, Size, MaxSize);
|
|
if (NewSize) {
|
|
MDImpl->CurrentMutatorSequence.push_back(M);
|
|
return NewSize;
|
|
}
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
void MutationDispatcher::SetCorpus(const std::vector<Unit> *Corpus) {
|
|
MDImpl->SetCorpus(Corpus);
|
|
}
|
|
|
|
void MutationDispatcher::AddWordToManualDictionary(const Word &W) {
|
|
MDImpl->ManualDictionary.push_back(
|
|
{W, std::numeric_limits<size_t>::max()});
|
|
}
|
|
|
|
void MutationDispatcher::AddWordToAutoDictionary(const Word &W,
|
|
size_t PositionHint) {
|
|
static const size_t kMaxAutoDictSize = 1 << 14;
|
|
if (MDImpl->TempAutoDictionary.size() >= kMaxAutoDictSize) return;
|
|
MDImpl->TempAutoDictionary.push_back({W, PositionHint});
|
|
}
|
|
|
|
void MutationDispatcher::ClearAutoDictionary() {
|
|
MDImpl->TempAutoDictionary.clear();
|
|
}
|
|
|
|
MutationDispatcher::MutationDispatcher(FuzzerRandomBase &Rand) : Rand(Rand) {
|
|
MDImpl = new Impl(Rand);
|
|
}
|
|
|
|
MutationDispatcher::~MutationDispatcher() { delete MDImpl; }
|
|
|
|
} // namespace fuzzer
|