1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/lib/CodeGen/SelectionDAG/StatepointLowering.cpp
Philip Reames 781131135a [Statepoints] Reuse stack slots more than once within a basic block
The stack slot reuse code had a really amusing bug. We ended up only reusing a stack slot exact once (initial use + reuse) within a basic block. If we had a third statepoint to process, we ended up allocating a new set of stack slots. If we crossed a basic block boundary, the set got cleared. As a result, code which is invoke heavy doesn't see the problem, but multiple calls within a basic block does. Net result: as we optimize invokes into calls, lowering gets worse.

The root error here is that the bitmap uses by the custom allocator wasn't kept in sync. The result was that we ended up resizing the bitmap on the next statepoint (to handle the cross block case), reset the bit once, but then never reset it again.

Differential Revision: https://reviews.llvm.org/D25243

llvm-svn: 289509
2016-12-13 01:21:15 +00:00

993 lines
41 KiB
C++

//===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file includes support code use by SelectionDAGBuilder when lowering a
// statepoint sequence in SelectionDAG IR.
//
//===----------------------------------------------------------------------===//
#include "StatepointLowering.h"
#include "SelectionDAGBuilder.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/GCStrategy.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Target/TargetLowering.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "statepoint-lowering"
STATISTIC(NumSlotsAllocatedForStatepoints,
"Number of stack slots allocated for statepoints");
STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
STATISTIC(StatepointMaxSlotsRequired,
"Maximum number of stack slots required for a singe statepoint");
static void pushStackMapConstant(SmallVectorImpl<SDValue>& Ops,
SelectionDAGBuilder &Builder, uint64_t Value) {
SDLoc L = Builder.getCurSDLoc();
Ops.push_back(Builder.DAG.getTargetConstant(StackMaps::ConstantOp, L,
MVT::i64));
Ops.push_back(Builder.DAG.getTargetConstant(Value, L, MVT::i64));
}
void StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
// Consistency check
assert(PendingGCRelocateCalls.empty() &&
"Trying to visit statepoint before finished processing previous one");
Locations.clear();
NextSlotToAllocate = 0;
// Need to resize this on each safepoint - we need the two to stay in sync and
// the clear patterns of a SelectionDAGBuilder have no relation to
// FunctionLoweringInfo. Also need to ensure used bits get cleared.
AllocatedStackSlots.clear();
AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
}
void StatepointLoweringState::clear() {
Locations.clear();
AllocatedStackSlots.clear();
assert(PendingGCRelocateCalls.empty() &&
"cleared before statepoint sequence completed");
}
SDValue
StatepointLoweringState::allocateStackSlot(EVT ValueType,
SelectionDAGBuilder &Builder) {
NumSlotsAllocatedForStatepoints++;
MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
unsigned SpillSize = ValueType.getSizeInBits() / 8;
assert((SpillSize * 8) == ValueType.getSizeInBits() && "Size not in bytes?");
// First look for a previously created stack slot which is not in
// use (accounting for the fact arbitrary slots may already be
// reserved), or to create a new stack slot and use it.
const size_t NumSlots = AllocatedStackSlots.size();
assert(NextSlotToAllocate <= NumSlots && "Broken invariant");
assert(AllocatedStackSlots.size() ==
Builder.FuncInfo.StatepointStackSlots.size() &&
"Broken invariant");
for (; NextSlotToAllocate < NumSlots; NextSlotToAllocate++) {
if (!AllocatedStackSlots.test(NextSlotToAllocate)) {
const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
if (MFI.getObjectSize(FI) == SpillSize) {
AllocatedStackSlots.set(NextSlotToAllocate);
// TODO: Is ValueType the right thing to use here?
return Builder.DAG.getFrameIndex(FI, ValueType);
}
}
}
// Couldn't find a free slot, so create a new one:
SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
MFI.markAsStatepointSpillSlotObjectIndex(FI);
Builder.FuncInfo.StatepointStackSlots.push_back(FI);
AllocatedStackSlots.resize(AllocatedStackSlots.size()+1, true);
assert(AllocatedStackSlots.size() ==
Builder.FuncInfo.StatepointStackSlots.size() &&
"Broken invariant");
StatepointMaxSlotsRequired = std::max<unsigned long>(
StatepointMaxSlotsRequired, Builder.FuncInfo.StatepointStackSlots.size());
return SpillSlot;
}
/// Utility function for reservePreviousStackSlotForValue. Tries to find
/// stack slot index to which we have spilled value for previous statepoints.
/// LookUpDepth specifies maximum DFS depth this function is allowed to look.
static Optional<int> findPreviousSpillSlot(const Value *Val,
SelectionDAGBuilder &Builder,
int LookUpDepth) {
// Can not look any further - give up now
if (LookUpDepth <= 0)
return None;
// Spill location is known for gc relocates
if (const auto *Relocate = dyn_cast<GCRelocateInst>(Val)) {
const auto &SpillMap =
Builder.FuncInfo.StatepointSpillMaps[Relocate->getStatepoint()];
auto It = SpillMap.find(Relocate->getDerivedPtr());
if (It == SpillMap.end())
return None;
return It->second;
}
// Look through bitcast instructions.
if (const BitCastInst *Cast = dyn_cast<BitCastInst>(Val))
return findPreviousSpillSlot(Cast->getOperand(0), Builder, LookUpDepth - 1);
// Look through phi nodes
// All incoming values should have same known stack slot, otherwise result
// is unknown.
if (const PHINode *Phi = dyn_cast<PHINode>(Val)) {
Optional<int> MergedResult = None;
for (auto &IncomingValue : Phi->incoming_values()) {
Optional<int> SpillSlot =
findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth - 1);
if (!SpillSlot.hasValue())
return None;
if (MergedResult.hasValue() && *MergedResult != *SpillSlot)
return None;
MergedResult = SpillSlot;
}
return MergedResult;
}
// TODO: We can do better for PHI nodes. In cases like this:
// ptr = phi(relocated_pointer, not_relocated_pointer)
// statepoint(ptr)
// We will return that stack slot for ptr is unknown. And later we might
// assign different stack slots for ptr and relocated_pointer. This limits
// llvm's ability to remove redundant stores.
// Unfortunately it's hard to accomplish in current infrastructure.
// We use this function to eliminate spill store completely, while
// in example we still need to emit store, but instead of any location
// we need to use special "preferred" location.
// TODO: handle simple updates. If a value is modified and the original
// value is no longer live, it would be nice to put the modified value in the
// same slot. This allows folding of the memory accesses for some
// instructions types (like an increment).
// statepoint (i)
// i1 = i+1
// statepoint (i1)
// However we need to be careful for cases like this:
// statepoint(i)
// i1 = i+1
// statepoint(i, i1)
// Here we want to reserve spill slot for 'i', but not for 'i+1'. If we just
// put handling of simple modifications in this function like it's done
// for bitcasts we might end up reserving i's slot for 'i+1' because order in
// which we visit values is unspecified.
// Don't know any information about this instruction
return None;
}
/// Try to find existing copies of the incoming values in stack slots used for
/// statepoint spilling. If we can find a spill slot for the incoming value,
/// mark that slot as allocated, and reuse the same slot for this safepoint.
/// This helps to avoid series of loads and stores that only serve to reshuffle
/// values on the stack between calls.
static void reservePreviousStackSlotForValue(const Value *IncomingValue,
SelectionDAGBuilder &Builder) {
SDValue Incoming = Builder.getValue(IncomingValue);
if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
// We won't need to spill this, so no need to check for previously
// allocated stack slots
return;
}
SDValue OldLocation = Builder.StatepointLowering.getLocation(Incoming);
if (OldLocation.getNode())
// Duplicates in input
return;
const int LookUpDepth = 6;
Optional<int> Index =
findPreviousSpillSlot(IncomingValue, Builder, LookUpDepth);
if (!Index.hasValue())
return;
const auto &StatepointSlots = Builder.FuncInfo.StatepointStackSlots;
auto SlotIt = find(StatepointSlots, *Index);
assert(SlotIt != StatepointSlots.end() &&
"Value spilled to the unknown stack slot");
// This is one of our dedicated lowering slots
const int Offset = std::distance(StatepointSlots.begin(), SlotIt);
if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
// stack slot already assigned to someone else, can't use it!
// TODO: currently we reserve space for gc arguments after doing
// normal allocation for deopt arguments. We should reserve for
// _all_ deopt and gc arguments, then start allocating. This
// will prevent some moves being inserted when vm state changes,
// but gc state doesn't between two calls.
return;
}
// Reserve this stack slot
Builder.StatepointLowering.reserveStackSlot(Offset);
// Cache this slot so we find it when going through the normal
// assignment loop.
SDValue Loc = Builder.DAG.getTargetFrameIndex(*Index, Incoming.getValueType());
Builder.StatepointLowering.setLocation(Incoming, Loc);
}
/// Remove any duplicate (as SDValues) from the derived pointer pairs. This
/// is not required for correctness. It's purpose is to reduce the size of
/// StackMap section. It has no effect on the number of spill slots required
/// or the actual lowering.
static void
removeDuplicateGCPtrs(SmallVectorImpl<const Value *> &Bases,
SmallVectorImpl<const Value *> &Ptrs,
SmallVectorImpl<const GCRelocateInst *> &Relocs,
SelectionDAGBuilder &Builder,
FunctionLoweringInfo::StatepointSpillMap &SSM) {
DenseMap<SDValue, const Value *> Seen;
SmallVector<const Value *, 64> NewBases, NewPtrs;
SmallVector<const GCRelocateInst *, 64> NewRelocs;
for (size_t i = 0, e = Ptrs.size(); i < e; i++) {
SDValue SD = Builder.getValue(Ptrs[i]);
auto SeenIt = Seen.find(SD);
if (SeenIt == Seen.end()) {
// Only add non-duplicates
NewBases.push_back(Bases[i]);
NewPtrs.push_back(Ptrs[i]);
NewRelocs.push_back(Relocs[i]);
Seen[SD] = Ptrs[i];
} else {
// Duplicate pointer found, note in SSM and move on:
SSM.DuplicateMap[Ptrs[i]] = SeenIt->second;
}
}
assert(Bases.size() >= NewBases.size());
assert(Ptrs.size() >= NewPtrs.size());
assert(Relocs.size() >= NewRelocs.size());
Bases = NewBases;
Ptrs = NewPtrs;
Relocs = NewRelocs;
assert(Ptrs.size() == Bases.size());
assert(Ptrs.size() == Relocs.size());
}
/// Extract call from statepoint, lower it and return pointer to the
/// call node. Also update NodeMap so that getValue(statepoint) will
/// reference lowered call result
static std::pair<SDValue, SDNode *> lowerCallFromStatepointLoweringInfo(
SelectionDAGBuilder::StatepointLoweringInfo &SI,
SelectionDAGBuilder &Builder, SmallVectorImpl<SDValue> &PendingExports) {
SDValue ReturnValue, CallEndVal;
std::tie(ReturnValue, CallEndVal) =
Builder.lowerInvokable(SI.CLI, SI.EHPadBB);
SDNode *CallEnd = CallEndVal.getNode();
// Get a call instruction from the call sequence chain. Tail calls are not
// allowed. The following code is essentially reverse engineering X86's
// LowerCallTo.
//
// We are expecting DAG to have the following form:
//
// ch = eh_label (only in case of invoke statepoint)
// ch, glue = callseq_start ch
// ch, glue = X86::Call ch, glue
// ch, glue = callseq_end ch, glue
// get_return_value ch, glue
//
// get_return_value can either be a sequence of CopyFromReg instructions
// to grab the return value from the return register(s), or it can be a LOAD
// to load a value returned by reference via a stack slot.
bool HasDef = !SI.CLI.RetTy->isVoidTy();
if (HasDef) {
if (CallEnd->getOpcode() == ISD::LOAD)
CallEnd = CallEnd->getOperand(0).getNode();
else
while (CallEnd->getOpcode() == ISD::CopyFromReg)
CallEnd = CallEnd->getOperand(0).getNode();
}
assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && "expected!");
return std::make_pair(ReturnValue, CallEnd->getOperand(0).getNode());
}
/// Spill a value incoming to the statepoint. It might be either part of
/// vmstate
/// or gcstate. In both cases unconditionally spill it on the stack unless it
/// is a null constant. Return pair with first element being frame index
/// containing saved value and second element with outgoing chain from the
/// emitted store
static std::pair<SDValue, SDValue>
spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
SelectionDAGBuilder &Builder) {
SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
// Emit new store if we didn't do it for this ptr before
if (!Loc.getNode()) {
Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
Builder);
int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
// We use TargetFrameIndex so that isel will not select it into LEA
Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
// TODO: We can create TokenFactor node instead of
// chaining stores one after another, this may allow
// a bit more optimal scheduling for them
#ifndef NDEBUG
// Right now we always allocate spill slots that are of the same
// size as the value we're about to spill (the size of spillee can
// vary since we spill vectors of pointers too). At some point we
// can consider allowing spills of smaller values to larger slots
// (i.e. change the '==' in the assert below to a '>=').
MachineFrameInfo &MFI = Builder.DAG.getMachineFunction().getFrameInfo();
assert((MFI.getObjectSize(Index) * 8) == Incoming.getValueSizeInBits() &&
"Bad spill: stack slot does not match!");
#endif
Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
MachinePointerInfo::getFixedStack(
Builder.DAG.getMachineFunction(), Index));
Builder.StatepointLowering.setLocation(Incoming, Loc);
}
assert(Loc.getNode());
return std::make_pair(Loc, Chain);
}
/// Lower a single value incoming to a statepoint node. This value can be
/// either a deopt value or a gc value, the handling is the same. We special
/// case constants and allocas, then fall back to spilling if required.
static void lowerIncomingStatepointValue(SDValue Incoming, bool LiveInOnly,
SmallVectorImpl<SDValue> &Ops,
SelectionDAGBuilder &Builder) {
SDValue Chain = Builder.getRoot();
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
// If the original value was a constant, make sure it gets recorded as
// such in the stackmap. This is required so that the consumer can
// parse any internal format to the deopt state. It also handles null
// pointers and other constant pointers in GC states. Note the constant
// vectors do not appear to actually hit this path and that anything larger
// than an i64 value (not type!) will fail asserts here.
pushStackMapConstant(Ops, Builder, C->getSExtValue());
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
// This handles allocas as arguments to the statepoint (this is only
// really meaningful for a deopt value. For GC, we'd be trying to
// relocate the address of the alloca itself?)
Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
Incoming.getValueType()));
} else if (LiveInOnly) {
// If this value is live in (not live-on-return, or live-through), we can
// treat it the same way patchpoint treats it's "live in" values. We'll
// end up folding some of these into stack references, but they'll be
// handled by the register allocator. Note that we do not have the notion
// of a late use so these values might be placed in registers which are
// clobbered by the call. This is fine for live-in.
Ops.push_back(Incoming);
} else {
// Otherwise, locate a spill slot and explicitly spill it so it
// can be found by the runtime later. We currently do not support
// tracking values through callee saved registers to their eventual
// spill location. This would be a useful optimization, but would
// need to be optional since it requires a lot of complexity on the
// runtime side which not all would support.
auto Res = spillIncomingStatepointValue(Incoming, Chain, Builder);
Ops.push_back(Res.first);
Chain = Res.second;
}
Builder.DAG.setRoot(Chain);
}
/// Lower deopt state and gc pointer arguments of the statepoint. The actual
/// lowering is described in lowerIncomingStatepointValue. This function is
/// responsible for lowering everything in the right position and playing some
/// tricks to avoid redundant stack manipulation where possible. On
/// completion, 'Ops' will contain ready to use operands for machine code
/// statepoint. The chain nodes will have already been created and the DAG root
/// will be set to the last value spilled (if any were).
static void
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
SelectionDAGBuilder::StatepointLoweringInfo &SI,
SelectionDAGBuilder &Builder) {
// Lower the deopt and gc arguments for this statepoint. Layout will be:
// deopt argument length, deopt arguments.., gc arguments...
#ifndef NDEBUG
if (auto *GFI = Builder.GFI) {
// Check that each of the gc pointer and bases we've gotten out of the
// safepoint is something the strategy thinks might be a pointer (or vector
// of pointers) into the GC heap. This is basically just here to help catch
// errors during statepoint insertion. TODO: This should actually be in the
// Verifier, but we can't get to the GCStrategy from there (yet).
GCStrategy &S = GFI->getStrategy();
for (const Value *V : SI.Bases) {
auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
if (Opt.hasValue()) {
assert(Opt.getValue() &&
"non gc managed base pointer found in statepoint");
}
}
for (const Value *V : SI.Ptrs) {
auto Opt = S.isGCManagedPointer(V->getType()->getScalarType());
if (Opt.hasValue()) {
assert(Opt.getValue() &&
"non gc managed derived pointer found in statepoint");
}
}
assert(SI.Bases.size() == SI.Ptrs.size() && "Pointer without base!");
} else {
assert(SI.Bases.empty() && "No gc specified, so cannot relocate pointers!");
assert(SI.Ptrs.empty() && "No gc specified, so cannot relocate pointers!");
}
#endif
// Figure out what lowering strategy we're going to use for each part
// Note: Is is conservatively correct to lower both "live-in" and "live-out"
// as "live-through". A "live-through" variable is one which is "live-in",
// "live-out", and live throughout the lifetime of the call (i.e. we can find
// it from any PC within the transitive callee of the statepoint). In
// particular, if the callee spills callee preserved registers we may not
// be able to find a value placed in that register during the call. This is
// fine for live-out, but not for live-through. If we were willing to make
// assumptions about the code generator producing the callee, we could
// potentially allow live-through values in callee saved registers.
const bool LiveInDeopt =
SI.StatepointFlags & (uint64_t)StatepointFlags::DeoptLiveIn;
auto isGCValue =[&](const Value *V) {
return is_contained(SI.Ptrs, V) || is_contained(SI.Bases, V);
};
// Before we actually start lowering (and allocating spill slots for values),
// reserve any stack slots which we judge to be profitable to reuse for a
// particular value. This is purely an optimization over the code below and
// doesn't change semantics at all. It is important for performance that we
// reserve slots for both deopt and gc values before lowering either.
for (const Value *V : SI.DeoptState) {
if (!LiveInDeopt || isGCValue(V))
reservePreviousStackSlotForValue(V, Builder);
}
for (unsigned i = 0; i < SI.Bases.size(); ++i) {
reservePreviousStackSlotForValue(SI.Bases[i], Builder);
reservePreviousStackSlotForValue(SI.Ptrs[i], Builder);
}
// First, prefix the list with the number of unique values to be
// lowered. Note that this is the number of *Values* not the
// number of SDValues required to lower them.
const int NumVMSArgs = SI.DeoptState.size();
pushStackMapConstant(Ops, Builder, NumVMSArgs);
// The vm state arguments are lowered in an opaque manner. We do not know
// what type of values are contained within.
for (const Value *V : SI.DeoptState) {
SDValue Incoming = Builder.getValue(V);
const bool LiveInValue = LiveInDeopt && !isGCValue(V);
lowerIncomingStatepointValue(Incoming, LiveInValue, Ops, Builder);
}
// Finally, go ahead and lower all the gc arguments. There's no prefixed
// length for this one. After lowering, we'll have the base and pointer
// arrays interwoven with each (lowered) base pointer immediately followed by
// it's (lowered) derived pointer. i.e
// (base[0], ptr[0], base[1], ptr[1], ...)
for (unsigned i = 0; i < SI.Bases.size(); ++i) {
const Value *Base = SI.Bases[i];
lowerIncomingStatepointValue(Builder.getValue(Base), /*LiveInOnly*/ false,
Ops, Builder);
const Value *Ptr = SI.Ptrs[i];
lowerIncomingStatepointValue(Builder.getValue(Ptr), /*LiveInOnly*/ false,
Ops, Builder);
}
// If there are any explicit spill slots passed to the statepoint, record
// them, but otherwise do not do anything special. These are user provided
// allocas and give control over placement to the consumer. In this case,
// it is the contents of the slot which may get updated, not the pointer to
// the alloca
for (Value *V : SI.GCArgs) {
SDValue Incoming = Builder.getValue(V);
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
// This handles allocas as arguments to the statepoint
Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
Incoming.getValueType()));
}
}
// Record computed locations for all lowered values.
// This can not be embedded in lowering loops as we need to record *all*
// values, while previous loops account only values with unique SDValues.
const Instruction *StatepointInstr = SI.StatepointInstr;
auto &SpillMap = Builder.FuncInfo.StatepointSpillMaps[StatepointInstr];
for (const GCRelocateInst *Relocate : SI.GCRelocates) {
const Value *V = Relocate->getDerivedPtr();
SDValue SDV = Builder.getValue(V);
SDValue Loc = Builder.StatepointLowering.getLocation(SDV);
if (Loc.getNode()) {
SpillMap.SlotMap[V] = cast<FrameIndexSDNode>(Loc)->getIndex();
} else {
// Record value as visited, but not spilled. This is case for allocas
// and constants. For this values we can avoid emitting spill load while
// visiting corresponding gc_relocate.
// Actually we do not need to record them in this map at all.
// We do this only to check that we are not relocating any unvisited
// value.
SpillMap.SlotMap[V] = None;
// Default llvm mechanisms for exporting values which are used in
// different basic blocks does not work for gc relocates.
// Note that it would be incorrect to teach llvm that all relocates are
// uses of the corresponding values so that it would automatically
// export them. Relocates of the spilled values does not use original
// value.
if (Relocate->getParent() != StatepointInstr->getParent())
Builder.ExportFromCurrentBlock(V);
}
}
}
SDValue SelectionDAGBuilder::LowerAsSTATEPOINT(
SelectionDAGBuilder::StatepointLoweringInfo &SI) {
// The basic scheme here is that information about both the original call and
// the safepoint is encoded in the CallInst. We create a temporary call and
// lower it, then reverse engineer the calling sequence.
NumOfStatepoints++;
// Clear state
StatepointLowering.startNewStatepoint(*this);
#ifndef NDEBUG
// We schedule gc relocates before removeDuplicateGCPtrs since we _will_
// encounter the duplicate gc relocates we elide in removeDuplicateGCPtrs.
for (auto *Reloc : SI.GCRelocates)
if (Reloc->getParent() == SI.StatepointInstr->getParent())
StatepointLowering.scheduleRelocCall(*Reloc);
#endif
// Remove any redundant llvm::Values which map to the same SDValue as another
// input. Also has the effect of removing duplicates in the original
// llvm::Value input list as well. This is a useful optimization for
// reducing the size of the StackMap section. It has no other impact.
removeDuplicateGCPtrs(SI.Bases, SI.Ptrs, SI.GCRelocates, *this,
FuncInfo.StatepointSpillMaps[SI.StatepointInstr]);
assert(SI.Bases.size() == SI.Ptrs.size() &&
SI.Ptrs.size() == SI.GCRelocates.size());
// Lower statepoint vmstate and gcstate arguments
SmallVector<SDValue, 10> LoweredMetaArgs;
lowerStatepointMetaArgs(LoweredMetaArgs, SI, *this);
// Now that we've emitted the spills, we need to update the root so that the
// call sequence is ordered correctly.
SI.CLI.setChain(getRoot());
// Get call node, we will replace it later with statepoint
SDValue ReturnVal;
SDNode *CallNode;
std::tie(ReturnVal, CallNode) =
lowerCallFromStatepointLoweringInfo(SI, *this, PendingExports);
// Construct the actual GC_TRANSITION_START, STATEPOINT, and GC_TRANSITION_END
// nodes with all the appropriate arguments and return values.
// Call Node: Chain, Target, {Args}, RegMask, [Glue]
SDValue Chain = CallNode->getOperand(0);
SDValue Glue;
bool CallHasIncomingGlue = CallNode->getGluedNode();
if (CallHasIncomingGlue) {
// Glue is always last operand
Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
}
// Build the GC_TRANSITION_START node if necessary.
//
// The operands to the GC_TRANSITION_{START,END} nodes are laid out in the
// order in which they appear in the call to the statepoint intrinsic. If
// any of the operands is a pointer-typed, that operand is immediately
// followed by a SRCVALUE for the pointer that may be used during lowering
// (e.g. to form MachinePointerInfo values for loads/stores).
const bool IsGCTransition =
(SI.StatepointFlags & (uint64_t)StatepointFlags::GCTransition) ==
(uint64_t)StatepointFlags::GCTransition;
if (IsGCTransition) {
SmallVector<SDValue, 8> TSOps;
// Add chain
TSOps.push_back(Chain);
// Add GC transition arguments
for (const Value *V : SI.GCTransitionArgs) {
TSOps.push_back(getValue(V));
if (V->getType()->isPointerTy())
TSOps.push_back(DAG.getSrcValue(V));
}
// Add glue if necessary
if (CallHasIncomingGlue)
TSOps.push_back(Glue);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue GCTransitionStart =
DAG.getNode(ISD::GC_TRANSITION_START, getCurSDLoc(), NodeTys, TSOps);
Chain = GCTransitionStart.getValue(0);
Glue = GCTransitionStart.getValue(1);
}
// TODO: Currently, all of these operands are being marked as read/write in
// PrologEpilougeInserter.cpp, we should special case the VMState arguments
// and flags to be read-only.
SmallVector<SDValue, 40> Ops;
// Add the <id> and <numBytes> constants.
Ops.push_back(DAG.getTargetConstant(SI.ID, getCurSDLoc(), MVT::i64));
Ops.push_back(
DAG.getTargetConstant(SI.NumPatchBytes, getCurSDLoc(), MVT::i32));
// Calculate and push starting position of vmstate arguments
// Get number of arguments incoming directly into call node
unsigned NumCallRegArgs =
CallNode->getNumOperands() - (CallHasIncomingGlue ? 4 : 3);
Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, getCurSDLoc(), MVT::i32));
// Add call target
SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
Ops.push_back(CallTarget);
// Add call arguments
// Get position of register mask in the call
SDNode::op_iterator RegMaskIt;
if (CallHasIncomingGlue)
RegMaskIt = CallNode->op_end() - 2;
else
RegMaskIt = CallNode->op_end() - 1;
Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
// Add a constant argument for the calling convention
pushStackMapConstant(Ops, *this, SI.CLI.CallConv);
// Add a constant argument for the flags
uint64_t Flags = SI.StatepointFlags;
assert(((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0) &&
"Unknown flag used");
pushStackMapConstant(Ops, *this, Flags);
// Insert all vmstate and gcstate arguments
Ops.insert(Ops.end(), LoweredMetaArgs.begin(), LoweredMetaArgs.end());
// Add register mask from call node
Ops.push_back(*RegMaskIt);
// Add chain
Ops.push_back(Chain);
// Same for the glue, but we add it only if original call had it
if (Glue.getNode())
Ops.push_back(Glue);
// Compute return values. Provide a glue output since we consume one as
// input. This allows someone else to chain off us as needed.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SDNode *StatepointMCNode =
DAG.getMachineNode(TargetOpcode::STATEPOINT, getCurSDLoc(), NodeTys, Ops);
SDNode *SinkNode = StatepointMCNode;
// Build the GC_TRANSITION_END node if necessary.
//
// See the comment above regarding GC_TRANSITION_START for the layout of
// the operands to the GC_TRANSITION_END node.
if (IsGCTransition) {
SmallVector<SDValue, 8> TEOps;
// Add chain
TEOps.push_back(SDValue(StatepointMCNode, 0));
// Add GC transition arguments
for (const Value *V : SI.GCTransitionArgs) {
TEOps.push_back(getValue(V));
if (V->getType()->isPointerTy())
TEOps.push_back(DAG.getSrcValue(V));
}
// Add glue
TEOps.push_back(SDValue(StatepointMCNode, 1));
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue GCTransitionStart =
DAG.getNode(ISD::GC_TRANSITION_END, getCurSDLoc(), NodeTys, TEOps);
SinkNode = GCTransitionStart.getNode();
}
// Replace original call
DAG.ReplaceAllUsesWith(CallNode, SinkNode); // This may update Root
// Remove original call node
DAG.DeleteNode(CallNode);
// DON'T set the root - under the assumption that it's already set past the
// inserted node we created.
// TODO: A better future implementation would be to emit a single variable
// argument, variable return value STATEPOINT node here and then hookup the
// return value of each gc.relocate to the respective output of the
// previously emitted STATEPOINT value. Unfortunately, this doesn't appear
// to actually be possible today.
return ReturnVal;
}
void
SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
const BasicBlock *EHPadBB /*= nullptr*/) {
assert(ISP.getCallSite().getCallingConv() != CallingConv::AnyReg &&
"anyregcc is not supported on statepoints!");
#ifndef NDEBUG
// If this is a malformed statepoint, report it early to simplify debugging.
// This should catch any IR level mistake that's made when constructing or
// transforming statepoints.
ISP.verify();
// Check that the associated GCStrategy expects to encounter statepoints.
assert(GFI->getStrategy().useStatepoints() &&
"GCStrategy does not expect to encounter statepoints");
#endif
SDValue ActualCallee;
if (ISP.getNumPatchBytes() > 0) {
// If we've been asked to emit a nop sequence instead of a call instruction
// for this statepoint then don't lower the call target, but use a constant
// `null` instead. Not lowering the call target lets statepoint clients get
// away without providing a physical address for the symbolic call target at
// link time.
const auto &TLI = DAG.getTargetLoweringInfo();
const auto &DL = DAG.getDataLayout();
unsigned AS = ISP.getCalledValue()->getType()->getPointerAddressSpace();
ActualCallee = DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(DL, AS));
} else {
ActualCallee = getValue(ISP.getCalledValue());
}
StatepointLoweringInfo SI(DAG);
populateCallLoweringInfo(SI.CLI, ISP.getCallSite(),
ImmutableStatepoint::CallArgsBeginPos,
ISP.getNumCallArgs(), ActualCallee,
ISP.getActualReturnType(), false /* IsPatchPoint */);
for (const GCRelocateInst *Relocate : ISP.getRelocates()) {
SI.GCRelocates.push_back(Relocate);
SI.Bases.push_back(Relocate->getBasePtr());
SI.Ptrs.push_back(Relocate->getDerivedPtr());
}
SI.GCArgs = ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
SI.StatepointInstr = ISP.getInstruction();
SI.GCTransitionArgs =
ArrayRef<const Use>(ISP.gc_args_begin(), ISP.gc_args_end());
SI.ID = ISP.getID();
SI.DeoptState = ArrayRef<const Use>(ISP.vm_state_begin(), ISP.vm_state_end());
SI.StatepointFlags = ISP.getFlags();
SI.NumPatchBytes = ISP.getNumPatchBytes();
SI.EHPadBB = EHPadBB;
SDValue ReturnValue = LowerAsSTATEPOINT(SI);
// Export the result value if needed
const GCResultInst *GCResult = ISP.getGCResult();
Type *RetTy = ISP.getActualReturnType();
if (!RetTy->isVoidTy() && GCResult) {
if (GCResult->getParent() != ISP.getCallSite().getParent()) {
// Result value will be used in a different basic block so we need to
// export it now. Default exporting mechanism will not work here because
// statepoint call has a different type than the actual call. It means
// that by default llvm will create export register of the wrong type
// (always i32 in our case). So instead we need to create export register
// with correct type manually.
// TODO: To eliminate this problem we can remove gc.result intrinsics
// completely and make statepoint call to return a tuple.
unsigned Reg = FuncInfo.CreateRegs(RetTy);
RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
DAG.getDataLayout(), Reg, RetTy);
SDValue Chain = DAG.getEntryNode();
RFV.getCopyToRegs(ReturnValue, DAG, getCurSDLoc(), Chain, nullptr);
PendingExports.push_back(Chain);
FuncInfo.ValueMap[ISP.getInstruction()] = Reg;
} else {
// Result value will be used in a same basic block. Don't export it or
// perform any explicit register copies.
// We'll replace the actuall call node shortly. gc_result will grab
// this value.
setValue(ISP.getInstruction(), ReturnValue);
}
} else {
// The token value is never used from here on, just generate a poison value
setValue(ISP.getInstruction(), DAG.getIntPtrConstant(-1, getCurSDLoc()));
}
}
void SelectionDAGBuilder::LowerCallSiteWithDeoptBundleImpl(
ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB,
bool VarArgDisallowed, bool ForceVoidReturnTy) {
StatepointLoweringInfo SI(DAG);
unsigned ArgBeginIndex = CS.arg_begin() - CS.getInstruction()->op_begin();
populateCallLoweringInfo(
SI.CLI, CS, ArgBeginIndex, CS.getNumArgOperands(), Callee,
ForceVoidReturnTy ? Type::getVoidTy(*DAG.getContext()) : CS.getType(),
false);
if (!VarArgDisallowed)
SI.CLI.IsVarArg = CS.getFunctionType()->isVarArg();
auto DeoptBundle = *CS.getOperandBundle(LLVMContext::OB_deopt);
unsigned DefaultID = StatepointDirectives::DeoptBundleStatepointID;
auto SD = parseStatepointDirectivesFromAttrs(CS.getAttributes());
SI.ID = SD.StatepointID.getValueOr(DefaultID);
SI.NumPatchBytes = SD.NumPatchBytes.getValueOr(0);
SI.DeoptState =
ArrayRef<const Use>(DeoptBundle.Inputs.begin(), DeoptBundle.Inputs.end());
SI.StatepointFlags = static_cast<uint64_t>(StatepointFlags::None);
SI.EHPadBB = EHPadBB;
// NB! The GC arguments are deliberately left empty.
if (SDValue ReturnVal = LowerAsSTATEPOINT(SI)) {
const Instruction *Inst = CS.getInstruction();
ReturnVal = lowerRangeToAssertZExt(DAG, *Inst, ReturnVal);
setValue(Inst, ReturnVal);
}
}
void SelectionDAGBuilder::LowerCallSiteWithDeoptBundle(
ImmutableCallSite CS, SDValue Callee, const BasicBlock *EHPadBB) {
LowerCallSiteWithDeoptBundleImpl(CS, Callee, EHPadBB,
/* VarArgDisallowed = */ false,
/* ForceVoidReturnTy = */ false);
}
void SelectionDAGBuilder::visitGCResult(const GCResultInst &CI) {
// The result value of the gc_result is simply the result of the actual
// call. We've already emitted this, so just grab the value.
const Instruction *I = CI.getStatepoint();
if (I->getParent() != CI.getParent()) {
// Statepoint is in different basic block so we should have stored call
// result in a virtual register.
// We can not use default getValue() functionality to copy value from this
// register because statepoint and actual call return types can be
// different, and getValue() will use CopyFromReg of the wrong type,
// which is always i32 in our case.
PointerType *CalleeType = cast<PointerType>(
ImmutableStatepoint(I).getCalledValue()->getType());
Type *RetTy =
cast<FunctionType>(CalleeType->getElementType())->getReturnType();
SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
assert(CopyFromReg.getNode());
setValue(&CI, CopyFromReg);
} else {
setValue(&CI, getValue(I));
}
}
void SelectionDAGBuilder::visitGCRelocate(const GCRelocateInst &Relocate) {
#ifndef NDEBUG
// Consistency check
// We skip this check for relocates not in the same basic block as their
// statepoint. It would be too expensive to preserve validation info through
// different basic blocks.
if (Relocate.getStatepoint()->getParent() == Relocate.getParent())
StatepointLowering.relocCallVisited(Relocate);
auto *Ty = Relocate.getType()->getScalarType();
if (auto IsManaged = GFI->getStrategy().isGCManagedPointer(Ty))
assert(*IsManaged && "Non gc managed pointer relocated!");
#endif
const Value *DerivedPtr = Relocate.getDerivedPtr();
SDValue SD = getValue(DerivedPtr);
auto &SpillMap = FuncInfo.StatepointSpillMaps[Relocate.getStatepoint()];
auto SlotIt = SpillMap.find(DerivedPtr);
assert(SlotIt != SpillMap.end() && "Relocating not lowered gc value");
Optional<int> DerivedPtrLocation = SlotIt->second;
// We didn't need to spill these special cases (constants and allocas).
// See the handling in spillIncomingValueForStatepoint for detail.
if (!DerivedPtrLocation) {
setValue(&Relocate, SD);
return;
}
SDValue SpillSlot = DAG.getTargetFrameIndex(*DerivedPtrLocation,
SD.getValueType());
// Be conservative: flush all pending loads
// TODO: Probably we can be less restrictive on this,
// it may allow more scheduling opportunities.
SDValue Chain = getRoot();
SDValue SpillLoad =
DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain, SpillSlot,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(),
*DerivedPtrLocation));
// Again, be conservative, don't emit pending loads
DAG.setRoot(SpillLoad.getValue(1));
assert(SpillLoad.getNode());
setValue(&Relocate, SpillLoad);
}
void SelectionDAGBuilder::LowerDeoptimizeCall(const CallInst *CI) {
const auto &TLI = DAG.getTargetLoweringInfo();
SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(RTLIB::DEOPTIMIZE),
TLI.getPointerTy(DAG.getDataLayout()));
// We don't lower calls to __llvm_deoptimize as varargs, but as a regular
// call. We also do not lower the return value to any virtual register, and
// change the immediately following return to a trap instruction.
LowerCallSiteWithDeoptBundleImpl(CI, Callee, /* EHPadBB = */ nullptr,
/* VarArgDisallowed = */ true,
/* ForceVoidReturnTy = */ true);
}
void SelectionDAGBuilder::LowerDeoptimizingReturn() {
// We do not lower the return value from llvm.deoptimize to any virtual
// register, and change the immediately following return to a trap
// instruction.
if (DAG.getTarget().Options.TrapUnreachable)
DAG.setRoot(
DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
}