1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/lib/Analysis/ConstantFolding.cpp
Jay Foad 92cac194bd [AMDGPU][ConstantFolding] Fold llvm.amdgcn.fmul.legacy intrinsic
Reviewers: arsenm, rampitec, nhaehnle

Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D74835
2020-02-19 16:01:30 +00:00

2678 lines
95 KiB
C++

//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines routines for folding instructions into constants.
//
// Also, to supplement the basic IR ConstantExpr simplifications,
// this file defines some additional folding routines that can make use of
// DataLayout information. These functions cannot go in IR due to library
// dependency issues.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/Config/config.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cerrno>
#include <cfenv>
#include <cmath>
#include <cstddef>
#include <cstdint>
using namespace llvm;
namespace {
//===----------------------------------------------------------------------===//
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//
static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
Constant *C, Type *SrcEltTy,
unsigned NumSrcElts,
const DataLayout &DL) {
// Now that we know that the input value is a vector of integers, just shift
// and insert them into our result.
unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
for (unsigned i = 0; i != NumSrcElts; ++i) {
Constant *Element;
if (DL.isLittleEndian())
Element = C->getAggregateElement(NumSrcElts - i - 1);
else
Element = C->getAggregateElement(i);
if (Element && isa<UndefValue>(Element)) {
Result <<= BitShift;
continue;
}
auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
if (!ElementCI)
return ConstantExpr::getBitCast(C, DestTy);
Result <<= BitShift;
Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
}
return nullptr;
}
/// Constant fold bitcast, symbolically evaluating it with DataLayout.
/// This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
"Invalid constantexpr bitcast!");
// Catch the obvious splat cases.
if (C->isNullValue() && !DestTy->isX86_MMXTy())
return Constant::getNullValue(DestTy);
if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
!DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
return Constant::getAllOnesValue(DestTy);
if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
// Handle a vector->scalar integer/fp cast.
if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
unsigned NumSrcElts = VTy->getNumElements();
Type *SrcEltTy = VTy->getElementType();
// If the vector is a vector of floating point, convert it to vector of int
// to simplify things.
if (SrcEltTy->isFloatingPointTy()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
Type *SrcIVTy =
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
// Ask IR to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
}
APInt Result(DL.getTypeSizeInBits(DestTy), 0);
if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
SrcEltTy, NumSrcElts, DL))
return CE;
if (isa<IntegerType>(DestTy))
return ConstantInt::get(DestTy, Result);
APFloat FP(DestTy->getFltSemantics(), Result);
return ConstantFP::get(DestTy->getContext(), FP);
}
}
// The code below only handles casts to vectors currently.
auto *DestVTy = dyn_cast<VectorType>(DestTy);
if (!DestVTy)
return ConstantExpr::getBitCast(C, DestTy);
// If this is a scalar -> vector cast, convert the input into a <1 x scalar>
// vector so the code below can handle it uniformly.
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
Constant *Ops = C; // don't take the address of C!
return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
}
// If this is a bitcast from constant vector -> vector, fold it.
if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
return ConstantExpr::getBitCast(C, DestTy);
// If the element types match, IR can fold it.
unsigned NumDstElt = DestVTy->getNumElements();
unsigned NumSrcElt = C->getType()->getVectorNumElements();
if (NumDstElt == NumSrcElt)
return ConstantExpr::getBitCast(C, DestTy);
Type *SrcEltTy = C->getType()->getVectorElementType();
Type *DstEltTy = DestVTy->getElementType();
// Otherwise, we're changing the number of elements in a vector, which
// requires endianness information to do the right thing. For example,
// bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
// folds to (little endian):
// <4 x i32> <i32 0, i32 0, i32 1, i32 0>
// and to (big endian):
// <4 x i32> <i32 0, i32 0, i32 0, i32 1>
// First thing is first. We only want to think about integer here, so if
// we have something in FP form, recast it as integer.
if (DstEltTy->isFloatingPointTy()) {
// Fold to an vector of integers with same size as our FP type.
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
Type *DestIVTy =
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
// Recursively handle this integer conversion, if possible.
C = FoldBitCast(C, DestIVTy, DL);
// Finally, IR can handle this now that #elts line up.
return ConstantExpr::getBitCast(C, DestTy);
}
// Okay, we know the destination is integer, if the input is FP, convert
// it to integer first.
if (SrcEltTy->isFloatingPointTy()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
Type *SrcIVTy =
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
// Ask IR to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
// If IR wasn't able to fold it, bail out.
if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
!isa<ConstantDataVector>(C))
return C;
}
// Now we know that the input and output vectors are both integer vectors
// of the same size, and that their #elements is not the same. Do the
// conversion here, which depends on whether the input or output has
// more elements.
bool isLittleEndian = DL.isLittleEndian();
SmallVector<Constant*, 32> Result;
if (NumDstElt < NumSrcElt) {
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
Constant *Zero = Constant::getNullValue(DstEltTy);
unsigned Ratio = NumSrcElt/NumDstElt;
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
unsigned SrcElt = 0;
for (unsigned i = 0; i != NumDstElt; ++i) {
// Build each element of the result.
Constant *Elt = Zero;
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
Constant *Src = C->getAggregateElement(SrcElt++);
if (Src && isa<UndefValue>(Src))
Src = Constant::getNullValue(C->getType()->getVectorElementType());
else
Src = dyn_cast_or_null<ConstantInt>(Src);
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
// Zero extend the element to the right size.
Src = ConstantExpr::getZExt(Src, Elt->getType());
// Shift it to the right place, depending on endianness.
Src = ConstantExpr::getShl(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
// Mix it in.
Elt = ConstantExpr::getOr(Elt, Src);
}
Result.push_back(Elt);
}
return ConstantVector::get(Result);
}
// Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
unsigned Ratio = NumDstElt/NumSrcElt;
unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
// Loop over each source value, expanding into multiple results.
for (unsigned i = 0; i != NumSrcElt; ++i) {
auto *Element = C->getAggregateElement(i);
if (!Element) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
if (isa<UndefValue>(Element)) {
// Correctly Propagate undef values.
Result.append(Ratio, UndefValue::get(DstEltTy));
continue;
}
auto *Src = dyn_cast<ConstantInt>(Element);
if (!Src)
return ConstantExpr::getBitCast(C, DestTy);
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
// Shift the piece of the value into the right place, depending on
// endianness.
Constant *Elt = ConstantExpr::getLShr(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
// Truncate the element to an integer with the same pointer size and
// convert the element back to a pointer using a inttoptr.
if (DstEltTy->isPointerTy()) {
IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
continue;
}
// Truncate and remember this piece.
Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
}
}
return ConstantVector::get(Result);
}
} // end anonymous namespace
/// If this constant is a constant offset from a global, return the global and
/// the constant. Because of constantexprs, this function is recursive.
bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
APInt &Offset, const DataLayout &DL) {
// Trivial case, constant is the global.
if ((GV = dyn_cast<GlobalValue>(C))) {
unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
Offset = APInt(BitWidth, 0);
return true;
}
// Otherwise, if this isn't a constant expr, bail out.
auto *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return false;
// Look through ptr->int and ptr->ptr casts.
if (CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::BitCast)
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
auto *GEP = dyn_cast<GEPOperator>(CE);
if (!GEP)
return false;
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
APInt TmpOffset(BitWidth, 0);
// If the base isn't a global+constant, we aren't either.
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
return false;
// Otherwise, add any offset that our operands provide.
if (!GEP->accumulateConstantOffset(DL, TmpOffset))
return false;
Offset = TmpOffset;
return true;
}
Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
const DataLayout &DL) {
do {
Type *SrcTy = C->getType();
// If the type sizes are the same and a cast is legal, just directly
// cast the constant.
if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
Instruction::CastOps Cast = Instruction::BitCast;
// If we are going from a pointer to int or vice versa, we spell the cast
// differently.
if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
Cast = Instruction::IntToPtr;
else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
Cast = Instruction::PtrToInt;
if (CastInst::castIsValid(Cast, C, DestTy))
return ConstantExpr::getCast(Cast, C, DestTy);
}
// If this isn't an aggregate type, there is nothing we can do to drill down
// and find a bitcastable constant.
if (!SrcTy->isAggregateType())
return nullptr;
// We're simulating a load through a pointer that was bitcast to point to
// a different type, so we can try to walk down through the initial
// elements of an aggregate to see if some part of the aggregate is
// castable to implement the "load" semantic model.
if (SrcTy->isStructTy()) {
// Struct types might have leading zero-length elements like [0 x i32],
// which are certainly not what we are looking for, so skip them.
unsigned Elem = 0;
Constant *ElemC;
do {
ElemC = C->getAggregateElement(Elem++);
} while (ElemC && DL.getTypeSizeInBits(ElemC->getType()) == 0);
C = ElemC;
} else {
C = C->getAggregateElement(0u);
}
} while (C);
return nullptr;
}
namespace {
/// Recursive helper to read bits out of global. C is the constant being copied
/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
/// results into and BytesLeft is the number of bytes left in
/// the CurPtr buffer. DL is the DataLayout.
bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
unsigned BytesLeft, const DataLayout &DL) {
assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
"Out of range access");
// If this element is zero or undefined, we can just return since *CurPtr is
// zero initialized.
if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
return true;
if (auto *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getBitWidth() > 64 ||
(CI->getBitWidth() & 7) != 0)
return false;
uint64_t Val = CI->getZExtValue();
unsigned IntBytes = unsigned(CI->getBitWidth()/8);
for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
int n = ByteOffset;
if (!DL.isLittleEndian())
n = IntBytes - n - 1;
CurPtr[i] = (unsigned char)(Val >> (n * 8));
++ByteOffset;
}
return true;
}
if (auto *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isDoubleTy()) {
C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
if (CFP->getType()->isFloatTy()){
C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
if (CFP->getType()->isHalfTy()){
C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
}
return false;
}
if (auto *CS = dyn_cast<ConstantStruct>(C)) {
const StructLayout *SL = DL.getStructLayout(CS->getType());
unsigned Index = SL->getElementContainingOffset(ByteOffset);
uint64_t CurEltOffset = SL->getElementOffset(Index);
ByteOffset -= CurEltOffset;
while (true) {
// If the element access is to the element itself and not to tail padding,
// read the bytes from the element.
uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
if (ByteOffset < EltSize &&
!ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
BytesLeft, DL))
return false;
++Index;
// Check to see if we read from the last struct element, if so we're done.
if (Index == CS->getType()->getNumElements())
return true;
// If we read all of the bytes we needed from this element we're done.
uint64_t NextEltOffset = SL->getElementOffset(Index);
if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
return true;
// Move to the next element of the struct.
CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
ByteOffset = 0;
CurEltOffset = NextEltOffset;
}
// not reached.
}
if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
isa<ConstantDataSequential>(C)) {
Type *EltTy = C->getType()->getSequentialElementType();
uint64_t EltSize = DL.getTypeAllocSize(EltTy);
uint64_t Index = ByteOffset / EltSize;
uint64_t Offset = ByteOffset - Index * EltSize;
uint64_t NumElts;
if (auto *AT = dyn_cast<ArrayType>(C->getType()))
NumElts = AT->getNumElements();
else
NumElts = C->getType()->getVectorNumElements();
for (; Index != NumElts; ++Index) {
if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
BytesLeft, DL))
return false;
uint64_t BytesWritten = EltSize - Offset;
assert(BytesWritten <= EltSize && "Not indexing into this element?");
if (BytesWritten >= BytesLeft)
return true;
Offset = 0;
BytesLeft -= BytesWritten;
CurPtr += BytesWritten;
}
return true;
}
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr &&
CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
BytesLeft, DL);
}
}
// Otherwise, unknown initializer type.
return false;
}
Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
const DataLayout &DL) {
// Bail out early. Not expect to load from scalable global variable.
if (LoadTy->isVectorTy() && LoadTy->getVectorIsScalable())
return nullptr;
auto *PTy = cast<PointerType>(C->getType());
auto *IntType = dyn_cast<IntegerType>(LoadTy);
// If this isn't an integer load we can't fold it directly.
if (!IntType) {
unsigned AS = PTy->getAddressSpace();
// If this is a float/double load, we can try folding it as an int32/64 load
// and then bitcast the result. This can be useful for union cases. Note
// that address spaces don't matter here since we're not going to result in
// an actual new load.
Type *MapTy;
if (LoadTy->isHalfTy())
MapTy = Type::getInt16Ty(C->getContext());
else if (LoadTy->isFloatTy())
MapTy = Type::getInt32Ty(C->getContext());
else if (LoadTy->isDoubleTy())
MapTy = Type::getInt64Ty(C->getContext());
else if (LoadTy->isVectorTy()) {
MapTy = PointerType::getIntNTy(
C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
} else
return nullptr;
C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
// Materializing a zero can be done trivially without a bitcast
return Constant::getNullValue(LoadTy);
Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
Res = FoldBitCast(Res, CastTy, DL);
if (LoadTy->isPtrOrPtrVectorTy()) {
// For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
return Constant::getNullValue(LoadTy);
if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
// Be careful not to replace a load of an addrspace value with an inttoptr here
return nullptr;
Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
}
return Res;
}
return nullptr;
}
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
if (BytesLoaded > 32 || BytesLoaded == 0)
return nullptr;
GlobalValue *GVal;
APInt OffsetAI;
if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
return nullptr;
auto *GV = dyn_cast<GlobalVariable>(GVal);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
!GV->getInitializer()->getType()->isSized())
return nullptr;
int64_t Offset = OffsetAI.getSExtValue();
int64_t InitializerSize =
DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize();
// If we're not accessing anything in this constant, the result is undefined.
if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
return UndefValue::get(IntType);
// If we're not accessing anything in this constant, the result is undefined.
if (Offset >= InitializerSize)
return UndefValue::get(IntType);
unsigned char RawBytes[32] = {0};
unsigned char *CurPtr = RawBytes;
unsigned BytesLeft = BytesLoaded;
// If we're loading off the beginning of the global, some bytes may be valid.
if (Offset < 0) {
CurPtr += -Offset;
BytesLeft += Offset;
Offset = 0;
}
if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
return nullptr;
APInt ResultVal = APInt(IntType->getBitWidth(), 0);
if (DL.isLittleEndian()) {
ResultVal = RawBytes[BytesLoaded - 1];
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= RawBytes[BytesLoaded - 1 - i];
}
} else {
ResultVal = RawBytes[0];
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= RawBytes[i];
}
}
return ConstantInt::get(IntType->getContext(), ResultVal);
}
Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
const DataLayout &DL) {
auto *SrcPtr = CE->getOperand(0);
auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
if (!SrcPtrTy)
return nullptr;
Type *SrcTy = SrcPtrTy->getPointerElementType();
Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
if (!C)
return nullptr;
return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
}
} // end anonymous namespace
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
const DataLayout &DL) {
// First, try the easy cases:
if (auto *GV = dyn_cast<GlobalVariable>(C))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
return GV->getInitializer();
if (auto *GA = dyn_cast<GlobalAlias>(C))
if (GA->getAliasee() && !GA->isInterposable())
return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
// If the loaded value isn't a constant expr, we can't handle it.
auto *CE = dyn_cast<ConstantExpr>(C);
if (!CE)
return nullptr;
if (CE->getOpcode() == Instruction::GetElementPtr) {
if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
return V;
}
}
}
if (CE->getOpcode() == Instruction::BitCast)
if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
return LoadedC;
// Instead of loading constant c string, use corresponding integer value
// directly if string length is small enough.
StringRef Str;
if (getConstantStringInfo(CE, Str) && !Str.empty()) {
size_t StrLen = Str.size();
unsigned NumBits = Ty->getPrimitiveSizeInBits();
// Replace load with immediate integer if the result is an integer or fp
// value.
if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
(isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
APInt StrVal(NumBits, 0);
APInt SingleChar(NumBits, 0);
if (DL.isLittleEndian()) {
for (unsigned char C : reverse(Str.bytes())) {
SingleChar = static_cast<uint64_t>(C);
StrVal = (StrVal << 8) | SingleChar;
}
} else {
for (unsigned char C : Str.bytes()) {
SingleChar = static_cast<uint64_t>(C);
StrVal = (StrVal << 8) | SingleChar;
}
// Append NULL at the end.
SingleChar = 0;
StrVal = (StrVal << 8) | SingleChar;
}
Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
if (Ty->isFloatingPointTy())
Res = ConstantExpr::getBitCast(Res, Ty);
return Res;
}
}
// If this load comes from anywhere in a constant global, and if the global
// is all undef or zero, we know what it loads.
if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
if (GV->getInitializer()->isNullValue())
return Constant::getNullValue(Ty);
if (isa<UndefValue>(GV->getInitializer()))
return UndefValue::get(Ty);
}
}
// Try hard to fold loads from bitcasted strange and non-type-safe things.
return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
}
namespace {
Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
if (LI->isVolatile()) return nullptr;
if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
return nullptr;
}
/// One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
/// these together. If target data info is available, it is provided as DL,
/// otherwise DL is null.
Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
const DataLayout &DL) {
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
// bits.
if (Opc == Instruction::And) {
KnownBits Known0 = computeKnownBits(Op0, DL);
KnownBits Known1 = computeKnownBits(Op1, DL);
if ((Known1.One | Known0.Zero).isAllOnesValue()) {
// All the bits of Op0 that the 'and' could be masking are already zero.
return Op0;
}
if ((Known0.One | Known1.Zero).isAllOnesValue()) {
// All the bits of Op1 that the 'and' could be masking are already zero.
return Op1;
}
Known0.Zero |= Known1.Zero;
Known0.One &= Known1.One;
if (Known0.isConstant())
return ConstantInt::get(Op0->getType(), Known0.getConstant());
}
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
// constant. This happens frequently when iterating over a global array.
if (Opc == Instruction::Sub) {
GlobalValue *GV1, *GV2;
APInt Offs1, Offs2;
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
// PtrToInt may change the bitwidth so we have convert to the right size
// first.
return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
Offs2.zextOrTrunc(OpSize));
}
}
return nullptr;
}
/// If array indices are not pointer-sized integers, explicitly cast them so
/// that they aren't implicitly casted by the getelementptr.
Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
Type *ResultTy, Optional<unsigned> InRangeIndex,
const DataLayout &DL, const TargetLibraryInfo *TLI) {
Type *IntIdxTy = DL.getIndexType(ResultTy);
Type *IntIdxScalarTy = IntIdxTy->getScalarType();
bool Any = false;
SmallVector<Constant*, 32> NewIdxs;
for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
if ((i == 1 ||
!isa<StructType>(GetElementPtrInst::getIndexedType(
SrcElemTy, Ops.slice(1, i - 1)))) &&
Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
Any = true;
Type *NewType = Ops[i]->getType()->isVectorTy()
? IntIdxTy
: IntIdxScalarTy;
NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
true,
NewType,
true),
Ops[i], NewType));
} else
NewIdxs.push_back(Ops[i]);
}
if (!Any)
return nullptr;
Constant *C = ConstantExpr::getGetElementPtr(
SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
if (Constant *Folded = ConstantFoldConstant(C, DL, TLI))
C = Folded;
return C;
}
/// Strip the pointer casts, but preserve the address space information.
Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) {
assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
auto *OldPtrTy = cast<PointerType>(Ptr->getType());
Ptr = cast<Constant>(Ptr->stripPointerCasts());
auto *NewPtrTy = cast<PointerType>(Ptr->getType());
ElemTy = NewPtrTy->getPointerElementType();
// Preserve the address space number of the pointer.
if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
}
return Ptr;
}
/// If we can symbolically evaluate the GEP constant expression, do so.
Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
const GEPOperator *InnermostGEP = GEP;
bool InBounds = GEP->isInBounds();
Type *SrcElemTy = GEP->getSourceElementType();
Type *ResElemTy = GEP->getResultElementType();
Type *ResTy = GEP->getType();
if (!SrcElemTy->isSized() ||
(SrcElemTy->isVectorTy() && SrcElemTy->getVectorIsScalable()))
return nullptr;
if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
GEP->getInRangeIndex(), DL, TLI))
return C;
Constant *Ptr = Ops[0];
if (!Ptr->getType()->isPointerTy())
return nullptr;
Type *IntIdxTy = DL.getIndexType(Ptr->getType());
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
if (!isa<ConstantInt>(Ops[i])) {
// If this is "gep i8* Ptr, (sub 0, V)", fold this as:
// "inttoptr (sub (ptrtoint Ptr), V)"
if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
assert((!CE || CE->getType() == IntIdxTy) &&
"CastGEPIndices didn't canonicalize index types!");
if (CE && CE->getOpcode() == Instruction::Sub &&
CE->getOperand(0)->isNullValue()) {
Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
Res = ConstantExpr::getSub(Res, CE->getOperand(1));
Res = ConstantExpr::getIntToPtr(Res, ResTy);
if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI))
Res = FoldedRes;
return Res;
}
}
return nullptr;
}
unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
APInt Offset =
APInt(BitWidth,
DL.getIndexedOffsetInType(
SrcElemTy,
makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
// If this is a GEP of a GEP, fold it all into a single GEP.
while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
InnermostGEP = GEP;
InBounds &= GEP->isInBounds();
SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
// Do not try the incorporate the sub-GEP if some index is not a number.
bool AllConstantInt = true;
for (Value *NestedOp : NestedOps)
if (!isa<ConstantInt>(NestedOp)) {
AllConstantInt = false;
break;
}
if (!AllConstantInt)
break;
Ptr = cast<Constant>(GEP->getOperand(0));
SrcElemTy = GEP->getSourceElementType();
Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
}
// If the base value for this address is a literal integer value, fold the
// getelementptr to the resulting integer value casted to the pointer type.
APInt BasePtr(BitWidth, 0);
if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
if (CE->getOpcode() == Instruction::IntToPtr) {
if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
BasePtr = Base->getValue().zextOrTrunc(BitWidth);
}
}
auto *PTy = cast<PointerType>(Ptr->getType());
if ((Ptr->isNullValue() || BasePtr != 0) &&
!DL.isNonIntegralPointerType(PTy)) {
Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
return ConstantExpr::getIntToPtr(C, ResTy);
}
// Otherwise form a regular getelementptr. Recompute the indices so that
// we eliminate over-indexing of the notional static type array bounds.
// This makes it easy to determine if the getelementptr is "inbounds".
// Also, this helps GlobalOpt do SROA on GlobalVariables.
Type *Ty = PTy;
SmallVector<Constant *, 32> NewIdxs;
do {
if (!Ty->isStructTy()) {
if (Ty->isPointerTy()) {
// The only pointer indexing we'll do is on the first index of the GEP.
if (!NewIdxs.empty())
break;
Ty = SrcElemTy;
// Only handle pointers to sized types, not pointers to functions.
if (!Ty->isSized())
return nullptr;
} else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
Ty = ATy->getElementType();
} else {
// We've reached some non-indexable type.
break;
}
// Determine which element of the array the offset points into.
APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
if (ElemSize == 0) {
// The element size is 0. This may be [0 x Ty]*, so just use a zero
// index for this level and proceed to the next level to see if it can
// accommodate the offset.
NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
} else {
// The element size is non-zero divide the offset by the element
// size (rounding down), to compute the index at this level.
bool Overflow;
APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
if (Overflow)
break;
Offset -= NewIdx * ElemSize;
NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
}
} else {
auto *STy = cast<StructType>(Ty);
// If we end up with an offset that isn't valid for this struct type, we
// can't re-form this GEP in a regular form, so bail out. The pointer
// operand likely went through casts that are necessary to make the GEP
// sensible.
const StructLayout &SL = *DL.getStructLayout(STy);
if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
break;
// Determine which field of the struct the offset points into. The
// getZExtValue is fine as we've already ensured that the offset is
// within the range representable by the StructLayout API.
unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
ElIdx));
Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
Ty = STy->getTypeAtIndex(ElIdx);
}
} while (Ty != ResElemTy);
// If we haven't used up the entire offset by descending the static
// type, then the offset is pointing into the middle of an indivisible
// member, so we can't simplify it.
if (Offset != 0)
return nullptr;
// Preserve the inrange index from the innermost GEP if possible. We must
// have calculated the same indices up to and including the inrange index.
Optional<unsigned> InRangeIndex;
if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
if (SrcElemTy == InnermostGEP->getSourceElementType() &&
NewIdxs.size() > *LastIRIndex) {
InRangeIndex = LastIRIndex;
for (unsigned I = 0; I <= *LastIRIndex; ++I)
if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
return nullptr;
}
// Create a GEP.
Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
InBounds, InRangeIndex);
assert(C->getType()->getPointerElementType() == Ty &&
"Computed GetElementPtr has unexpected type!");
// If we ended up indexing a member with a type that doesn't match
// the type of what the original indices indexed, add a cast.
if (Ty != ResElemTy)
C = FoldBitCast(C, ResTy, DL);
return C;
}
/// Attempt to constant fold an instruction with the
/// specified opcode and operands. If successful, the constant result is
/// returned, if not, null is returned. Note that this function can fail when
/// attempting to fold instructions like loads and stores, which have no
/// constant expression form.
Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
Type *DestTy = InstOrCE->getType();
if (Instruction::isUnaryOp(Opcode))
return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
if (Instruction::isBinaryOp(Opcode))
return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
if (Instruction::isCast(Opcode))
return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
return C;
return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
Ops.slice(1), GEP->isInBounds(),
GEP->getInRangeIndex());
}
if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
return CE->getWithOperands(Ops);
switch (Opcode) {
default: return nullptr;
case Instruction::ICmp:
case Instruction::FCmp: llvm_unreachable("Invalid for compares");
case Instruction::Call:
if (auto *F = dyn_cast<Function>(Ops.back())) {
const auto *Call = cast<CallBase>(InstOrCE);
if (canConstantFoldCallTo(Call, F))
return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
}
return nullptr;
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::ExtractValue:
return ConstantExpr::getExtractValue(
Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
}
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Constant Folding public APIs
//===----------------------------------------------------------------------===//
namespace {
Constant *
ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
const TargetLibraryInfo *TLI,
SmallDenseMap<Constant *, Constant *> &FoldedOps) {
if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
return nullptr;
SmallVector<Constant *, 8> Ops;
for (const Use &NewU : C->operands()) {
auto *NewC = cast<Constant>(&NewU);
// Recursively fold the ConstantExpr's operands. If we have already folded
// a ConstantExpr, we don't have to process it again.
if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) {
auto It = FoldedOps.find(NewC);
if (It == FoldedOps.end()) {
if (auto *FoldedC =
ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) {
FoldedOps.insert({NewC, FoldedC});
NewC = FoldedC;
} else {
FoldedOps.insert({NewC, NewC});
}
} else {
NewC = It->second;
}
}
Ops.push_back(NewC);
}
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->isCompare())
return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
DL, TLI);
return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
}
assert(isa<ConstantVector>(C));
return ConstantVector::get(Ops);
}
} // end anonymous namespace
Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
// Handle PHI nodes quickly here...
if (auto *PN = dyn_cast<PHINode>(I)) {
Constant *CommonValue = nullptr;
SmallDenseMap<Constant *, Constant *> FoldedOps;
for (Value *Incoming : PN->incoming_values()) {
// If the incoming value is undef then skip it. Note that while we could
// skip the value if it is equal to the phi node itself we choose not to
// because that would break the rule that constant folding only applies if
// all operands are constants.
if (isa<UndefValue>(Incoming))
continue;
// If the incoming value is not a constant, then give up.
auto *C = dyn_cast<Constant>(Incoming);
if (!C)
return nullptr;
// Fold the PHI's operands.
if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps))
C = FoldedC;
// If the incoming value is a different constant to
// the one we saw previously, then give up.
if (CommonValue && C != CommonValue)
return nullptr;
CommonValue = C;
}
// If we reach here, all incoming values are the same constant or undef.
return CommonValue ? CommonValue : UndefValue::get(PN->getType());
}
// Scan the operand list, checking to see if they are all constants, if so,
// hand off to ConstantFoldInstOperandsImpl.
if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
return nullptr;
SmallDenseMap<Constant *, Constant *> FoldedOps;
SmallVector<Constant *, 8> Ops;
for (const Use &OpU : I->operands()) {
auto *Op = cast<Constant>(&OpU);
// Fold the Instruction's operands.
if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps))
Op = FoldedOp;
Ops.push_back(Op);
}
if (const auto *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
DL, TLI);
if (const auto *LI = dyn_cast<LoadInst>(I))
return ConstantFoldLoadInst(LI, DL);
if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
return ConstantExpr::getInsertValue(
cast<Constant>(IVI->getAggregateOperand()),
cast<Constant>(IVI->getInsertedValueOperand()),
IVI->getIndices());
}
if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
return ConstantExpr::getExtractValue(
cast<Constant>(EVI->getAggregateOperand()),
EVI->getIndices());
}
return ConstantFoldInstOperands(I, Ops, DL, TLI);
}
Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
const TargetLibraryInfo *TLI) {
SmallDenseMap<Constant *, Constant *> FoldedOps;
return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
}
Constant *llvm::ConstantFoldInstOperands(Instruction *I,
ArrayRef<Constant *> Ops,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
}
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *Ops0, Constant *Ops1,
const DataLayout &DL,
const TargetLibraryInfo *TLI) {
// fold: icmp (inttoptr x), null -> icmp x, 0
// fold: icmp null, (inttoptr x) -> icmp 0, x
// fold: icmp (ptrtoint x), 0 -> icmp x, null
// fold: icmp 0, (ptrtoint x) -> icmp null, x
// fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
// fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
//
// FIXME: The following comment is out of data and the DataLayout is here now.
// ConstantExpr::getCompare cannot do this, because it doesn't have DL
// around to know if bit truncation is happening.
if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
if (Ops1->isNullValue()) {
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
}
}
}
if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
if (CE0->getOpcode() == CE1->getOpcode()) {
if (CE0->getOpcode() == Instruction::IntToPtr) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
IntPtrTy, false);
return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt) {
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
if (CE0->getType() == IntPtrTy &&
CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
return ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
}
}
}
}
// icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
// icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
Constant *LHS = ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(0), Ops1, DL, TLI);
Constant *RHS = ConstantFoldCompareInstOperands(
Predicate, CE0->getOperand(1), Ops1, DL, TLI);
unsigned OpC =
Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
}
} else if (isa<ConstantExpr>(Ops1)) {
// If RHS is a constant expression, but the left side isn't, swap the
// operands and try again.
Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
}
return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
}
Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
const DataLayout &DL) {
assert(Instruction::isUnaryOp(Opcode));
return ConstantExpr::get(Opcode, Op);
}
Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
Constant *RHS,
const DataLayout &DL) {
assert(Instruction::isBinaryOp(Opcode));
if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
return C;
return ConstantExpr::get(Opcode, LHS, RHS);
}
Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
Type *DestTy, const DataLayout &DL) {
assert(Instruction::isCast(Opcode));
switch (Opcode) {
default:
llvm_unreachable("Missing case");
case Instruction::PtrToInt:
// If the input is a inttoptr, eliminate the pair. This requires knowing
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr) {
Constant *Input = CE->getOperand(0);
unsigned InWidth = Input->getType()->getScalarSizeInBits();
unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
if (PtrWidth < InWidth) {
Constant *Mask =
ConstantInt::get(CE->getContext(),
APInt::getLowBitsSet(InWidth, PtrWidth));
Input = ConstantExpr::getAnd(Input, Mask);
}
// Do a zext or trunc to get to the dest size.
return ConstantExpr::getIntegerCast(Input, DestTy, false);
}
}
return ConstantExpr::getCast(Opcode, C, DestTy);
case Instruction::IntToPtr:
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
// the int size is >= the ptr size and the address spaces are the same.
// This requires knowing the width of a pointer, so it can't be done in
// ConstantExpr::getCast.
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::PtrToInt) {
Constant *SrcPtr = CE->getOperand(0);
unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
if (MidIntSize >= SrcPtrSize) {
unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
if (SrcAS == DestTy->getPointerAddressSpace())
return FoldBitCast(CE->getOperand(0), DestTy, DL);
}
}
}
return ConstantExpr::getCast(Opcode, C, DestTy);
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::AddrSpaceCast:
return ConstantExpr::getCast(Opcode, C, DestTy);
case Instruction::BitCast:
return FoldBitCast(C, DestTy, DL);
}
}
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
ConstantExpr *CE) {
if (!CE->getOperand(1)->isNullValue())
return nullptr; // Do not allow stepping over the value!
// Loop over all of the operands, tracking down which value we are
// addressing.
for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
C = C->getAggregateElement(CE->getOperand(i));
if (!C)
return nullptr;
}
return C;
}
Constant *
llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
ArrayRef<Constant *> Indices) {
// Loop over all of the operands, tracking down which value we are
// addressing.
for (Constant *Index : Indices) {
C = C->getAggregateElement(Index);
if (!C)
return nullptr;
}
return C;
}
//===----------------------------------------------------------------------===//
// Constant Folding for Calls
//
bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
if (Call->isNoBuiltin() || Call->isStrictFP())
return false;
switch (F->getIntrinsicID()) {
case Intrinsic::fabs:
case Intrinsic::minnum:
case Intrinsic::maxnum:
case Intrinsic::minimum:
case Intrinsic::maximum:
case Intrinsic::log:
case Intrinsic::log2:
case Intrinsic::log10:
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::floor:
case Intrinsic::ceil:
case Intrinsic::sqrt:
case Intrinsic::sin:
case Intrinsic::cos:
case Intrinsic::trunc:
case Intrinsic::rint:
case Intrinsic::nearbyint:
case Intrinsic::pow:
case Intrinsic::powi:
case Intrinsic::bswap:
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
case Intrinsic::fshl:
case Intrinsic::fshr:
case Intrinsic::fma:
case Intrinsic::fmuladd:
case Intrinsic::copysign:
case Intrinsic::launder_invariant_group:
case Intrinsic::strip_invariant_group:
case Intrinsic::round:
case Intrinsic::masked_load:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
case Intrinsic::sadd_sat:
case Intrinsic::uadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::usub_sat:
case Intrinsic::smul_fix:
case Intrinsic::smul_fix_sat:
case Intrinsic::convert_from_fp16:
case Intrinsic::convert_to_fp16:
case Intrinsic::bitreverse:
case Intrinsic::amdgcn_fmul_legacy:
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
case Intrinsic::x86_avx512_vcvtss2si32:
case Intrinsic::x86_avx512_vcvtss2si64:
case Intrinsic::x86_avx512_cvttss2si:
case Intrinsic::x86_avx512_cvttss2si64:
case Intrinsic::x86_avx512_vcvtsd2si32:
case Intrinsic::x86_avx512_vcvtsd2si64:
case Intrinsic::x86_avx512_cvttsd2si:
case Intrinsic::x86_avx512_cvttsd2si64:
case Intrinsic::x86_avx512_vcvtss2usi32:
case Intrinsic::x86_avx512_vcvtss2usi64:
case Intrinsic::x86_avx512_cvttss2usi:
case Intrinsic::x86_avx512_cvttss2usi64:
case Intrinsic::x86_avx512_vcvtsd2usi32:
case Intrinsic::x86_avx512_vcvtsd2usi64:
case Intrinsic::x86_avx512_cvttsd2usi:
case Intrinsic::x86_avx512_cvttsd2usi64:
case Intrinsic::is_constant:
return true;
default:
return false;
case Intrinsic::not_intrinsic: break;
}
if (!F->hasName())
return false;
// In these cases, the check of the length is required. We don't want to
// return true for a name like "cos\0blah" which strcmp would return equal to
// "cos", but has length 8.
StringRef Name = F->getName();
switch (Name[0]) {
default:
return false;
case 'a':
return Name == "acos" || Name == "acosf" ||
Name == "asin" || Name == "asinf" ||
Name == "atan" || Name == "atanf" ||
Name == "atan2" || Name == "atan2f";
case 'c':
return Name == "ceil" || Name == "ceilf" ||
Name == "cos" || Name == "cosf" ||
Name == "cosh" || Name == "coshf";
case 'e':
return Name == "exp" || Name == "expf" ||
Name == "exp2" || Name == "exp2f";
case 'f':
return Name == "fabs" || Name == "fabsf" ||
Name == "floor" || Name == "floorf" ||
Name == "fmod" || Name == "fmodf";
case 'l':
return Name == "log" || Name == "logf" ||
Name == "log2" || Name == "log2f" ||
Name == "log10" || Name == "log10f";
case 'n':
return Name == "nearbyint" || Name == "nearbyintf";
case 'p':
return Name == "pow" || Name == "powf";
case 'r':
return Name == "remainder" || Name == "remainderf" ||
Name == "rint" || Name == "rintf" ||
Name == "round" || Name == "roundf";
case 's':
return Name == "sin" || Name == "sinf" ||
Name == "sinh" || Name == "sinhf" ||
Name == "sqrt" || Name == "sqrtf";
case 't':
return Name == "tan" || Name == "tanf" ||
Name == "tanh" || Name == "tanhf" ||
Name == "trunc" || Name == "truncf";
case '_':
// Check for various function names that get used for the math functions
// when the header files are preprocessed with the macro
// __FINITE_MATH_ONLY__ enabled.
// The '12' here is the length of the shortest name that can match.
// We need to check the size before looking at Name[1] and Name[2]
// so we may as well check a limit that will eliminate mismatches.
if (Name.size() < 12 || Name[1] != '_')
return false;
switch (Name[2]) {
default:
return false;
case 'a':
return Name == "__acos_finite" || Name == "__acosf_finite" ||
Name == "__asin_finite" || Name == "__asinf_finite" ||
Name == "__atan2_finite" || Name == "__atan2f_finite";
case 'c':
return Name == "__cosh_finite" || Name == "__coshf_finite";
case 'e':
return Name == "__exp_finite" || Name == "__expf_finite" ||
Name == "__exp2_finite" || Name == "__exp2f_finite";
case 'l':
return Name == "__log_finite" || Name == "__logf_finite" ||
Name == "__log10_finite" || Name == "__log10f_finite";
case 'p':
return Name == "__pow_finite" || Name == "__powf_finite";
case 's':
return Name == "__sinh_finite" || Name == "__sinhf_finite";
}
}
}
namespace {
Constant *GetConstantFoldFPValue(double V, Type *Ty) {
if (Ty->isHalfTy() || Ty->isFloatTy()) {
APFloat APF(V);
bool unused;
APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
return ConstantFP::get(Ty->getContext(), APF);
}
if (Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(), APFloat(V));
llvm_unreachable("Can only constant fold half/float/double");
}
/// Clear the floating-point exception state.
inline void llvm_fenv_clearexcept() {
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
feclearexcept(FE_ALL_EXCEPT);
#endif
errno = 0;
}
/// Test if a floating-point exception was raised.
inline bool llvm_fenv_testexcept() {
int errno_val = errno;
if (errno_val == ERANGE || errno_val == EDOM)
return true;
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
return true;
#endif
return false;
}
Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
llvm_fenv_clearexcept();
V = NativeFP(V);
if (llvm_fenv_testexcept()) {
llvm_fenv_clearexcept();
return nullptr;
}
return GetConstantFoldFPValue(V, Ty);
}
Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
double W, Type *Ty) {
llvm_fenv_clearexcept();
V = NativeFP(V, W);
if (llvm_fenv_testexcept()) {
llvm_fenv_clearexcept();
return nullptr;
}
return GetConstantFoldFPValue(V, Ty);
}
/// Attempt to fold an SSE floating point to integer conversion of a constant
/// floating point. If roundTowardZero is false, the default IEEE rounding is
/// used (toward nearest, ties to even). This matches the behavior of the
/// non-truncating SSE instructions in the default rounding mode. The desired
/// integer type Ty is used to select how many bits are available for the
/// result. Returns null if the conversion cannot be performed, otherwise
/// returns the Constant value resulting from the conversion.
Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
Type *Ty, bool IsSigned) {
// All of these conversion intrinsics form an integer of at most 64bits.
unsigned ResultWidth = Ty->getIntegerBitWidth();
assert(ResultWidth <= 64 &&
"Can only constant fold conversions to 64 and 32 bit ints");
uint64_t UIntVal;
bool isExact = false;
APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
: APFloat::rmNearestTiesToEven;
APFloat::opStatus status =
Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
IsSigned, mode, &isExact);
if (status != APFloat::opOK &&
(!roundTowardZero || status != APFloat::opInexact))
return nullptr;
return ConstantInt::get(Ty, UIntVal, IsSigned);
}
double getValueAsDouble(ConstantFP *Op) {
Type *Ty = Op->getType();
if (Ty->isFloatTy())
return Op->getValueAPF().convertToFloat();
if (Ty->isDoubleTy())
return Op->getValueAPF().convertToDouble();
bool unused;
APFloat APF = Op->getValueAPF();
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
return APF.convertToDouble();
}
static bool isManifestConstant(const Constant *c) {
if (isa<ConstantData>(c)) {
return true;
} else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
for (const Value *subc : c->operand_values()) {
if (!isManifestConstant(cast<Constant>(subc)))
return false;
}
return true;
}
return false;
}
static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
if (auto *CI = dyn_cast<ConstantInt>(Op)) {
C = &CI->getValue();
return true;
}
if (isa<UndefValue>(Op)) {
C = nullptr;
return true;
}
return false;
}
static Constant *ConstantFoldScalarCall1(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
assert(Operands.size() == 1 && "Wrong number of operands.");
if (IntrinsicID == Intrinsic::is_constant) {
// We know we have a "Constant" argument. But we want to only
// return true for manifest constants, not those that depend on
// constants with unknowable values, e.g. GlobalValue or BlockAddress.
if (isManifestConstant(Operands[0]))
return ConstantInt::getTrue(Ty->getContext());
return nullptr;
}
if (isa<UndefValue>(Operands[0])) {
// cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
// ctpop() is between 0 and bitwidth, pick 0 for undef.
if (IntrinsicID == Intrinsic::cos ||
IntrinsicID == Intrinsic::ctpop)
return Constant::getNullValue(Ty);
if (IntrinsicID == Intrinsic::bswap ||
IntrinsicID == Intrinsic::bitreverse ||
IntrinsicID == Intrinsic::launder_invariant_group ||
IntrinsicID == Intrinsic::strip_invariant_group)
return Operands[0];
}
if (isa<ConstantPointerNull>(Operands[0])) {
// launder(null) == null == strip(null) iff in addrspace 0
if (IntrinsicID == Intrinsic::launder_invariant_group ||
IntrinsicID == Intrinsic::strip_invariant_group) {
// If instruction is not yet put in a basic block (e.g. when cloning
// a function during inlining), Call's caller may not be available.
// So check Call's BB first before querying Call->getCaller.
const Function *Caller =
Call->getParent() ? Call->getCaller() : nullptr;
if (Caller &&
!NullPointerIsDefined(
Caller, Operands[0]->getType()->getPointerAddressSpace())) {
return Operands[0];
}
return nullptr;
}
}
if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
if (IntrinsicID == Intrinsic::convert_to_fp16) {
APFloat Val(Op->getValueAPF());
bool lost = false;
Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
}
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return nullptr;
// Use internal versions of these intrinsics.
APFloat U = Op->getValueAPF();
if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
U.roundToIntegral(APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::round) {
U.roundToIntegral(APFloat::rmNearestTiesToAway);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::ceil) {
U.roundToIntegral(APFloat::rmTowardPositive);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::floor) {
U.roundToIntegral(APFloat::rmTowardNegative);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::trunc) {
U.roundToIntegral(APFloat::rmTowardZero);
return ConstantFP::get(Ty->getContext(), U);
}
if (IntrinsicID == Intrinsic::fabs) {
U.clearSign();
return ConstantFP::get(Ty->getContext(), U);
}
/// We only fold functions with finite arguments. Folding NaN and inf is
/// likely to be aborted with an exception anyway, and some host libms
/// have known errors raising exceptions.
if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
return nullptr;
/// Currently APFloat versions of these functions do not exist, so we use
/// the host native double versions. Float versions are not called
/// directly but for all these it is true (float)(f((double)arg)) ==
/// f(arg). Long double not supported yet.
double V = getValueAsDouble(Op);
switch (IntrinsicID) {
default: break;
case Intrinsic::log:
return ConstantFoldFP(log, V, Ty);
case Intrinsic::log2:
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(Log2, V, Ty);
case Intrinsic::log10:
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(log10, V, Ty);
case Intrinsic::exp:
return ConstantFoldFP(exp, V, Ty);
case Intrinsic::exp2:
// Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
case Intrinsic::sin:
return ConstantFoldFP(sin, V, Ty);
case Intrinsic::cos:
return ConstantFoldFP(cos, V, Ty);
case Intrinsic::sqrt:
return ConstantFoldFP(sqrt, V, Ty);
}
if (!TLI)
return nullptr;
LibFunc Func = NotLibFunc;
TLI->getLibFunc(Name, Func);
switch (Func) {
default:
break;
case LibFunc_acos:
case LibFunc_acosf:
case LibFunc_acos_finite:
case LibFunc_acosf_finite:
if (TLI->has(Func))
return ConstantFoldFP(acos, V, Ty);
break;
case LibFunc_asin:
case LibFunc_asinf:
case LibFunc_asin_finite:
case LibFunc_asinf_finite:
if (TLI->has(Func))
return ConstantFoldFP(asin, V, Ty);
break;
case LibFunc_atan:
case LibFunc_atanf:
if (TLI->has(Func))
return ConstantFoldFP(atan, V, Ty);
break;
case LibFunc_ceil:
case LibFunc_ceilf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardPositive);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_cos:
case LibFunc_cosf:
if (TLI->has(Func))
return ConstantFoldFP(cos, V, Ty);
break;
case LibFunc_cosh:
case LibFunc_coshf:
case LibFunc_cosh_finite:
case LibFunc_coshf_finite:
if (TLI->has(Func))
return ConstantFoldFP(cosh, V, Ty);
break;
case LibFunc_exp:
case LibFunc_expf:
case LibFunc_exp_finite:
case LibFunc_expf_finite:
if (TLI->has(Func))
return ConstantFoldFP(exp, V, Ty);
break;
case LibFunc_exp2:
case LibFunc_exp2f:
case LibFunc_exp2_finite:
case LibFunc_exp2f_finite:
if (TLI->has(Func))
// Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
break;
case LibFunc_fabs:
case LibFunc_fabsf:
if (TLI->has(Func)) {
U.clearSign();
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_floor:
case LibFunc_floorf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardNegative);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_log:
case LibFunc_logf:
case LibFunc_log_finite:
case LibFunc_logf_finite:
if (V > 0.0 && TLI->has(Func))
return ConstantFoldFP(log, V, Ty);
break;
case LibFunc_log2:
case LibFunc_log2f:
case LibFunc_log2_finite:
case LibFunc_log2f_finite:
if (V > 0.0 && TLI->has(Func))
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(Log2, V, Ty);
break;
case LibFunc_log10:
case LibFunc_log10f:
case LibFunc_log10_finite:
case LibFunc_log10f_finite:
if (V > 0.0 && TLI->has(Func))
// TODO: What about hosts that lack a C99 library?
return ConstantFoldFP(log10, V, Ty);
break;
case LibFunc_nearbyint:
case LibFunc_nearbyintf:
case LibFunc_rint:
case LibFunc_rintf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_round:
case LibFunc_roundf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmNearestTiesToAway);
return ConstantFP::get(Ty->getContext(), U);
}
break;
case LibFunc_sin:
case LibFunc_sinf:
if (TLI->has(Func))
return ConstantFoldFP(sin, V, Ty);
break;
case LibFunc_sinh:
case LibFunc_sinhf:
case LibFunc_sinh_finite:
case LibFunc_sinhf_finite:
if (TLI->has(Func))
return ConstantFoldFP(sinh, V, Ty);
break;
case LibFunc_sqrt:
case LibFunc_sqrtf:
if (V >= 0.0 && TLI->has(Func))
return ConstantFoldFP(sqrt, V, Ty);
break;
case LibFunc_tan:
case LibFunc_tanf:
if (TLI->has(Func))
return ConstantFoldFP(tan, V, Ty);
break;
case LibFunc_tanh:
case LibFunc_tanhf:
if (TLI->has(Func))
return ConstantFoldFP(tanh, V, Ty);
break;
case LibFunc_trunc:
case LibFunc_truncf:
if (TLI->has(Func)) {
U.roundToIntegral(APFloat::rmTowardZero);
return ConstantFP::get(Ty->getContext(), U);
}
break;
}
return nullptr;
}
if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
switch (IntrinsicID) {
case Intrinsic::bswap:
return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
case Intrinsic::ctpop:
return ConstantInt::get(Ty, Op->getValue().countPopulation());
case Intrinsic::bitreverse:
return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
case Intrinsic::convert_from_fp16: {
APFloat Val(APFloat::IEEEhalf(), Op->getValue());
bool lost = false;
APFloat::opStatus status = Val.convert(
Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
// Conversion is always precise.
(void)status;
assert(status == APFloat::opOK && !lost &&
"Precision lost during fp16 constfolding");
return ConstantFP::get(Ty->getContext(), Val);
}
default:
return nullptr;
}
}
// Support ConstantVector in case we have an Undef in the top.
if (isa<ConstantVector>(Operands[0]) ||
isa<ConstantDataVector>(Operands[0])) {
auto *Op = cast<Constant>(Operands[0]);
switch (IntrinsicID) {
default: break;
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/false, Ty,
/*IsSigned*/true);
break;
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/true, Ty,
/*IsSigned*/true);
break;
}
}
return nullptr;
}
static Constant *ConstantFoldScalarCall2(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
assert(Operands.size() == 2 && "Wrong number of operands.");
if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
return nullptr;
double Op1V = getValueAsDouble(Op1);
if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (Op2->getType() != Op1->getType())
return nullptr;
double Op2V = getValueAsDouble(Op2);
if (IntrinsicID == Intrinsic::pow) {
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
}
if (IntrinsicID == Intrinsic::copysign) {
APFloat V1 = Op1->getValueAPF();
const APFloat &V2 = Op2->getValueAPF();
V1.copySign(V2);
return ConstantFP::get(Ty->getContext(), V1);
}
if (IntrinsicID == Intrinsic::minnum) {
const APFloat &C1 = Op1->getValueAPF();
const APFloat &C2 = Op2->getValueAPF();
return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
}
if (IntrinsicID == Intrinsic::maxnum) {
const APFloat &C1 = Op1->getValueAPF();
const APFloat &C2 = Op2->getValueAPF();
return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
}
if (IntrinsicID == Intrinsic::minimum) {
const APFloat &C1 = Op1->getValueAPF();
const APFloat &C2 = Op2->getValueAPF();
return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
}
if (IntrinsicID == Intrinsic::maximum) {
const APFloat &C1 = Op1->getValueAPF();
const APFloat &C2 = Op2->getValueAPF();
return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
}
if (IntrinsicID == Intrinsic::amdgcn_fmul_legacy) {
const APFloat &C1 = Op1->getValueAPF();
const APFloat &C2 = Op2->getValueAPF();
// The legacy behaviour is that multiplying zero by anything, even NaN
// or infinity, gives +0.0.
if (C1.isZero() || C2.isZero())
return ConstantFP::getNullValue(Ty);
return ConstantFP::get(Ty->getContext(), C1 * C2);
}
if (!TLI)
return nullptr;
LibFunc Func = NotLibFunc;
TLI->getLibFunc(Name, Func);
switch (Func) {
default:
break;
case LibFunc_pow:
case LibFunc_powf:
case LibFunc_pow_finite:
case LibFunc_powf_finite:
if (TLI->has(Func))
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
break;
case LibFunc_fmod:
case LibFunc_fmodf:
if (TLI->has(Func)) {
APFloat V = Op1->getValueAPF();
if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
return ConstantFP::get(Ty->getContext(), V);
}
break;
case LibFunc_remainder:
case LibFunc_remainderf:
if (TLI->has(Func)) {
APFloat V = Op1->getValueAPF();
if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
return ConstantFP::get(Ty->getContext(), V);
}
break;
case LibFunc_atan2:
case LibFunc_atan2f:
case LibFunc_atan2_finite:
case LibFunc_atan2f_finite:
if (TLI->has(Func))
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
break;
}
} else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
return ConstantFP::get(Ty->getContext(),
APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
return ConstantFP::get(Ty->getContext(),
APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(),
APFloat((double)std::pow((double)Op1V,
(int)Op2C->getZExtValue())));
}
return nullptr;
}
if (Operands[0]->getType()->isIntegerTy() &&
Operands[1]->getType()->isIntegerTy()) {
const APInt *C0, *C1;
if (!getConstIntOrUndef(Operands[0], C0) ||
!getConstIntOrUndef(Operands[1], C1))
return nullptr;
switch (IntrinsicID) {
default: break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
// X - undef -> { undef, false }
// undef - X -> { undef, false }
// X + undef -> { undef, false }
// undef + x -> { undef, false }
if (!C0 || !C1) {
return ConstantStruct::get(
cast<StructType>(Ty),
{UndefValue::get(Ty->getStructElementType(0)),
Constant::getNullValue(Ty->getStructElementType(1))});
}
LLVM_FALLTHROUGH;
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
// undef * X -> { 0, false }
// X * undef -> { 0, false }
if (!C0 || !C1)
return Constant::getNullValue(Ty);
APInt Res;
bool Overflow;
switch (IntrinsicID) {
default: llvm_unreachable("Invalid case");
case Intrinsic::sadd_with_overflow:
Res = C0->sadd_ov(*C1, Overflow);
break;
case Intrinsic::uadd_with_overflow:
Res = C0->uadd_ov(*C1, Overflow);
break;
case Intrinsic::ssub_with_overflow:
Res = C0->ssub_ov(*C1, Overflow);
break;
case Intrinsic::usub_with_overflow:
Res = C0->usub_ov(*C1, Overflow);
break;
case Intrinsic::smul_with_overflow:
Res = C0->smul_ov(*C1, Overflow);
break;
case Intrinsic::umul_with_overflow:
Res = C0->umul_ov(*C1, Overflow);
break;
}
Constant *Ops[] = {
ConstantInt::get(Ty->getContext(), Res),
ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
};
return ConstantStruct::get(cast<StructType>(Ty), Ops);
}
case Intrinsic::uadd_sat:
case Intrinsic::sadd_sat:
if (!C0 && !C1)
return UndefValue::get(Ty);
if (!C0 || !C1)
return Constant::getAllOnesValue(Ty);
if (IntrinsicID == Intrinsic::uadd_sat)
return ConstantInt::get(Ty, C0->uadd_sat(*C1));
else
return ConstantInt::get(Ty, C0->sadd_sat(*C1));
case Intrinsic::usub_sat:
case Intrinsic::ssub_sat:
if (!C0 && !C1)
return UndefValue::get(Ty);
if (!C0 || !C1)
return Constant::getNullValue(Ty);
if (IntrinsicID == Intrinsic::usub_sat)
return ConstantInt::get(Ty, C0->usub_sat(*C1));
else
return ConstantInt::get(Ty, C0->ssub_sat(*C1));
case Intrinsic::cttz:
case Intrinsic::ctlz:
assert(C1 && "Must be constant int");
// cttz(0, 1) and ctlz(0, 1) are undef.
if (C1->isOneValue() && (!C0 || C0->isNullValue()))
return UndefValue::get(Ty);
if (!C0)
return Constant::getNullValue(Ty);
if (IntrinsicID == Intrinsic::cttz)
return ConstantInt::get(Ty, C0->countTrailingZeros());
else
return ConstantInt::get(Ty, C0->countLeadingZeros());
}
return nullptr;
}
// Support ConstantVector in case we have an Undef in the top.
if ((isa<ConstantVector>(Operands[0]) ||
isa<ConstantDataVector>(Operands[0])) &&
// Check for default rounding mode.
// FIXME: Support other rounding modes?
isa<ConstantInt>(Operands[1]) &&
cast<ConstantInt>(Operands[1])->getValue() == 4) {
auto *Op = cast<Constant>(Operands[0]);
switch (IntrinsicID) {
default: break;
case Intrinsic::x86_avx512_vcvtss2si32:
case Intrinsic::x86_avx512_vcvtss2si64:
case Intrinsic::x86_avx512_vcvtsd2si32:
case Intrinsic::x86_avx512_vcvtsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/false, Ty,
/*IsSigned*/true);
break;
case Intrinsic::x86_avx512_vcvtss2usi32:
case Intrinsic::x86_avx512_vcvtss2usi64:
case Intrinsic::x86_avx512_vcvtsd2usi32:
case Intrinsic::x86_avx512_vcvtsd2usi64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/false, Ty,
/*IsSigned*/false);
break;
case Intrinsic::x86_avx512_cvttss2si:
case Intrinsic::x86_avx512_cvttss2si64:
case Intrinsic::x86_avx512_cvttsd2si:
case Intrinsic::x86_avx512_cvttsd2si64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/true, Ty,
/*IsSigned*/true);
break;
case Intrinsic::x86_avx512_cvttss2usi:
case Intrinsic::x86_avx512_cvttss2usi64:
case Intrinsic::x86_avx512_cvttsd2usi:
case Intrinsic::x86_avx512_cvttsd2usi64:
if (ConstantFP *FPOp =
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
/*roundTowardZero=*/true, Ty,
/*IsSigned*/false);
break;
}
}
return nullptr;
}
static Constant *ConstantFoldScalarCall3(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
assert(Operands.size() == 3 && "Wrong number of operands.");
if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
switch (IntrinsicID) {
default: break;
case Intrinsic::fma:
case Intrinsic::fmuladd: {
APFloat V = Op1->getValueAPF();
V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(),
APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty->getContext(), V);
}
}
}
}
}
if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) {
switch (IntrinsicID) {
default: break;
case Intrinsic::smul_fix:
case Intrinsic::smul_fix_sat: {
// This code performs rounding towards negative infinity in case the
// result cannot be represented exactly for the given scale. Targets
// that do care about rounding should use a target hook for specifying
// how rounding should be done, and provide their own folding to be
// consistent with rounding. This is the same approach as used by
// DAGTypeLegalizer::ExpandIntRes_MULFIX.
APInt Lhs = Op1->getValue();
APInt Rhs = Op2->getValue();
unsigned Scale = Op3->getValue().getZExtValue();
unsigned Width = Lhs.getBitWidth();
assert(Scale < Width && "Illegal scale.");
unsigned ExtendedWidth = Width * 2;
APInt Product = (Lhs.sextOrSelf(ExtendedWidth) *
Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale);
if (IntrinsicID == Intrinsic::smul_fix_sat) {
APInt MaxValue =
APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
APInt MinValue =
APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
Product = APIntOps::smin(Product, MaxValue);
Product = APIntOps::smax(Product, MinValue);
}
return ConstantInt::get(Ty->getContext(),
Product.sextOrTrunc(Width));
}
}
}
}
}
if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
const APInt *C0, *C1, *C2;
if (!getConstIntOrUndef(Operands[0], C0) ||
!getConstIntOrUndef(Operands[1], C1) ||
!getConstIntOrUndef(Operands[2], C2))
return nullptr;
bool IsRight = IntrinsicID == Intrinsic::fshr;
if (!C2)
return Operands[IsRight ? 1 : 0];
if (!C0 && !C1)
return UndefValue::get(Ty);
// The shift amount is interpreted as modulo the bitwidth. If the shift
// amount is effectively 0, avoid UB due to oversized inverse shift below.
unsigned BitWidth = C2->getBitWidth();
unsigned ShAmt = C2->urem(BitWidth);
if (!ShAmt)
return Operands[IsRight ? 1 : 0];
// (C0 << ShlAmt) | (C1 >> LshrAmt)
unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
if (!C0)
return ConstantInt::get(Ty, C1->lshr(LshrAmt));
if (!C1)
return ConstantInt::get(Ty, C0->shl(ShlAmt));
return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
}
return nullptr;
}
static Constant *ConstantFoldScalarCall(StringRef Name,
Intrinsic::ID IntrinsicID,
Type *Ty,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
if (Operands.size() == 1)
return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
if (Operands.size() == 2)
return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
if (Operands.size() == 3)
return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
return nullptr;
}
static Constant *ConstantFoldVectorCall(StringRef Name,
Intrinsic::ID IntrinsicID,
VectorType *VTy,
ArrayRef<Constant *> Operands,
const DataLayout &DL,
const TargetLibraryInfo *TLI,
const CallBase *Call) {
SmallVector<Constant *, 4> Result(VTy->getNumElements());
SmallVector<Constant *, 4> Lane(Operands.size());
Type *Ty = VTy->getElementType();
// Do not iterate on scalable vector. The number of elements is unknown at
// compile-time.
if (VTy->getVectorIsScalable())
return nullptr;
if (IntrinsicID == Intrinsic::masked_load) {
auto *SrcPtr = Operands[0];
auto *Mask = Operands[2];
auto *Passthru = Operands[3];
Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);
SmallVector<Constant *, 32> NewElements;
for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
auto *MaskElt = Mask->getAggregateElement(I);
if (!MaskElt)
break;
auto *PassthruElt = Passthru->getAggregateElement(I);
auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
if (isa<UndefValue>(MaskElt)) {
if (PassthruElt)
NewElements.push_back(PassthruElt);
else if (VecElt)
NewElements.push_back(VecElt);
else
return nullptr;
}
if (MaskElt->isNullValue()) {
if (!PassthruElt)
return nullptr;
NewElements.push_back(PassthruElt);
} else if (MaskElt->isOneValue()) {
if (!VecElt)
return nullptr;
NewElements.push_back(VecElt);
} else {
return nullptr;
}
}
if (NewElements.size() != VTy->getNumElements())
return nullptr;
return ConstantVector::get(NewElements);
}
for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
// Gather a column of constants.
for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
// Some intrinsics use a scalar type for certain arguments.
if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
Lane[J] = Operands[J];
continue;
}
Constant *Agg = Operands[J]->getAggregateElement(I);
if (!Agg)
return nullptr;
Lane[J] = Agg;
}
// Use the regular scalar folding to simplify this column.
Constant *Folded =
ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
if (!Folded)
return nullptr;
Result[I] = Folded;
}
return ConstantVector::get(Result);
}
} // end anonymous namespace
Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI) {
if (Call->isNoBuiltin() || Call->isStrictFP())
return nullptr;
if (!F->hasName())
return nullptr;
StringRef Name = F->getName();
Type *Ty = F->getReturnType();
if (auto *VTy = dyn_cast<VectorType>(Ty))
return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
F->getParent()->getDataLayout(), TLI, Call);
return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
Call);
}
bool llvm::isMathLibCallNoop(const CallBase *Call,
const TargetLibraryInfo *TLI) {
// FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
// (and to some extent ConstantFoldScalarCall).
if (Call->isNoBuiltin() || Call->isStrictFP())
return false;
Function *F = Call->getCalledFunction();
if (!F)
return false;
LibFunc Func;
if (!TLI || !TLI->getLibFunc(*F, Func))
return false;
if (Call->getNumArgOperands() == 1) {
if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
const APFloat &Op = OpC->getValueAPF();
switch (Func) {
case LibFunc_logl:
case LibFunc_log:
case LibFunc_logf:
case LibFunc_log2l:
case LibFunc_log2:
case LibFunc_log2f:
case LibFunc_log10l:
case LibFunc_log10:
case LibFunc_log10f:
return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
case LibFunc_expl:
case LibFunc_exp:
case LibFunc_expf:
// FIXME: These boundaries are slightly conservative.
if (OpC->getType()->isDoubleTy())
return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan &&
Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan;
if (OpC->getType()->isFloatTy())
return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan &&
Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan;
break;
case LibFunc_exp2l:
case LibFunc_exp2:
case LibFunc_exp2f:
// FIXME: These boundaries are slightly conservative.
if (OpC->getType()->isDoubleTy())
return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan &&
Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan;
if (OpC->getType()->isFloatTy())
return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan &&
Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan;
break;
case LibFunc_sinl:
case LibFunc_sin:
case LibFunc_sinf:
case LibFunc_cosl:
case LibFunc_cos:
case LibFunc_cosf:
return !Op.isInfinity();
case LibFunc_tanl:
case LibFunc_tan:
case LibFunc_tanf: {
// FIXME: Stop using the host math library.
// FIXME: The computation isn't done in the right precision.
Type *Ty = OpC->getType();
if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
double OpV = getValueAsDouble(OpC);
return ConstantFoldFP(tan, OpV, Ty) != nullptr;
}
break;
}
case LibFunc_asinl:
case LibFunc_asin:
case LibFunc_asinf:
case LibFunc_acosl:
case LibFunc_acos:
case LibFunc_acosf:
return Op.compare(APFloat(Op.getSemantics(), "-1")) !=
APFloat::cmpLessThan &&
Op.compare(APFloat(Op.getSemantics(), "1")) !=
APFloat::cmpGreaterThan;
case LibFunc_sinh:
case LibFunc_cosh:
case LibFunc_sinhf:
case LibFunc_coshf:
case LibFunc_sinhl:
case LibFunc_coshl:
// FIXME: These boundaries are slightly conservative.
if (OpC->getType()->isDoubleTy())
return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan &&
Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan;
if (OpC->getType()->isFloatTy())
return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan &&
Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan;
break;
case LibFunc_sqrtl:
case LibFunc_sqrt:
case LibFunc_sqrtf:
return Op.isNaN() || Op.isZero() || !Op.isNegative();
// FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
// maybe others?
default:
break;
}
}
}
if (Call->getNumArgOperands() == 2) {
ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
if (Op0C && Op1C) {
const APFloat &Op0 = Op0C->getValueAPF();
const APFloat &Op1 = Op1C->getValueAPF();
switch (Func) {
case LibFunc_powl:
case LibFunc_pow:
case LibFunc_powf: {
// FIXME: Stop using the host math library.
// FIXME: The computation isn't done in the right precision.
Type *Ty = Op0C->getType();
if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
if (Ty == Op1C->getType()) {
double Op0V = getValueAsDouble(Op0C);
double Op1V = getValueAsDouble(Op1C);
return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
}
}
break;
}
case LibFunc_fmodl:
case LibFunc_fmod:
case LibFunc_fmodf:
case LibFunc_remainderl:
case LibFunc_remainder:
case LibFunc_remainderf:
return Op0.isNaN() || Op1.isNaN() ||
(!Op0.isInfinity() && !Op1.isZero());
default:
break;
}
}
}
return false;
}
void TargetFolder::anchor() {}