1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/lib/Target/Hexagon/MCTargetDesc/HexagonMCCodeEmitter.cpp
Peter Collingbourne a2edc5eab3 Support: Simplify endian stream interface. NFCI.
Provide some free functions to reduce verbosity of endian-writing
a single value, and replace the endianness template parameter with
a field.

Part of PR37466.

Differential Revision: https://reviews.llvm.org/D47032

llvm-svn: 332757
2018-05-18 19:46:24 +00:00

804 lines
36 KiB
C++

//===- HexagonMCCodeEmitter.cpp - Hexagon Target Descriptions -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/HexagonMCCodeEmitter.h"
#include "Hexagon.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonFixupKinds.h"
#include "MCTargetDesc/HexagonMCExpr.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <string>
#include <vector>
#define DEBUG_TYPE "mccodeemitter"
using namespace llvm;
using namespace Hexagon;
STATISTIC(MCNumEmitted, "Number of MC instructions emitted");
static const unsigned fixup_Invalid = ~0u;
#define _ fixup_Invalid
#define P(x) Hexagon::fixup_Hexagon##x
static const std::map<unsigned, std::vector<unsigned>> ExtFixups = {
{ MCSymbolRefExpr::VK_DTPREL,
{ _, _, _, _,
_, _, P(_DTPREL_16_X), P(_DTPREL_11_X),
P(_DTPREL_11_X), P(_9_X), _, P(_DTPREL_11_X),
P(_DTPREL_16_X), _, _, _,
P(_DTPREL_16_X), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_DTPREL_32_6_X) }},
{ MCSymbolRefExpr::VK_GOT,
{ _, _, _, _,
_, _, P(_GOT_11_X), _ /* [1] */,
_ /* [1] */, P(_9_X), _, P(_GOT_11_X),
P(_GOT_16_X), _, _, _,
P(_GOT_16_X), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_GOT_32_6_X) }},
{ MCSymbolRefExpr::VK_GOTREL,
{ _, _, _, _,
_, _, P(_GOTREL_11_X), P(_GOTREL_11_X),
P(_GOTREL_11_X), P(_9_X), _, P(_GOTREL_11_X),
P(_GOTREL_16_X), _, _, _,
P(_GOTREL_16_X), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_GOTREL_32_6_X) }},
{ MCSymbolRefExpr::VK_TPREL,
{ _, _, _, _,
_, _, P(_TPREL_16_X), P(_TPREL_11_X),
P(_TPREL_11_X), P(_9_X), _, P(_TPREL_11_X),
P(_TPREL_16_X), _, _, _,
P(_TPREL_16_X), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_TPREL_32_6_X) }},
{ MCSymbolRefExpr::VK_Hexagon_GD_GOT,
{ _, _, _, _,
_, _, P(_GD_GOT_16_X), P(_GD_GOT_11_X),
P(_GD_GOT_11_X), P(_9_X), _, P(_GD_GOT_11_X),
P(_GD_GOT_16_X), _, _, _,
P(_GD_GOT_16_X), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_GD_GOT_32_6_X) }},
{ MCSymbolRefExpr::VK_Hexagon_GD_PLT,
{ _, _, _, _,
_, _, _, _,
_, P(_9_X), _, P(_GD_PLT_B22_PCREL_X),
_, _, _, _,
_, _, _, _,
_, _, P(_GD_PLT_B22_PCREL_X), _,
_, _, _, _,
_, _, _, _,
_ }},
{ MCSymbolRefExpr::VK_Hexagon_IE,
{ _, _, _, _,
_, _, P(_IE_16_X), _,
_, P(_9_X), _, _,
P(_IE_16_X), _, _, _,
P(_IE_16_X), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_IE_32_6_X) }},
{ MCSymbolRefExpr::VK_Hexagon_IE_GOT,
{ _, _, _, _,
_, _, P(_IE_GOT_11_X), P(_IE_GOT_11_X),
P(_IE_GOT_11_X), P(_9_X), _, P(_IE_GOT_11_X),
P(_IE_GOT_16_X), _, _, _,
P(_IE_GOT_16_X), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_IE_GOT_32_6_X) }},
{ MCSymbolRefExpr::VK_Hexagon_LD_GOT,
{ _, _, _, _,
_, _, P(_LD_GOT_11_X), P(_LD_GOT_11_X),
P(_LD_GOT_11_X), P(_9_X), _, P(_LD_GOT_11_X),
P(_LD_GOT_16_X), _, _, _,
P(_LD_GOT_16_X), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_LD_GOT_32_6_X) }},
{ MCSymbolRefExpr::VK_Hexagon_LD_PLT,
{ _, _, _, _,
_, _, _, _,
_, P(_9_X), _, P(_LD_PLT_B22_PCREL_X),
_, _, _, _,
_, _, _, _,
_, _, P(_LD_PLT_B22_PCREL_X), _,
_, _, _, _,
_, _, _, _,
_ }},
{ MCSymbolRefExpr::VK_Hexagon_PCREL,
{ _, _, _, _,
_, _, P(_6_PCREL_X), _,
_, P(_9_X), _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_32_PCREL) }},
{ MCSymbolRefExpr::VK_None,
{ _, _, _, _,
_, _, P(_6_X), P(_8_X),
P(_8_X), P(_9_X), P(_10_X), P(_11_X),
P(_12_X), P(_B13_PCREL), _, P(_B15_PCREL_X),
P(_16_X), _, _, _,
_, _, P(_B22_PCREL_X), _,
_, _, _, _,
_, _, _, _,
P(_32_6_X) }},
};
// [1] The fixup is GOT_16_X for signed values and GOT_11_X for unsigned.
static const std::map<unsigned, std::vector<unsigned>> StdFixups = {
{ MCSymbolRefExpr::VK_DTPREL,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_DTPREL_16), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_DTPREL_32) }},
{ MCSymbolRefExpr::VK_GOT,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_GOT_32) }},
{ MCSymbolRefExpr::VK_GOTREL,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_ /* [2] */, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_GOTREL_32) }},
{ MCSymbolRefExpr::VK_PLT,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, P(_PLT_B22_PCREL), _,
_, _, _, _,
_, _, _, _,
_ }},
{ MCSymbolRefExpr::VK_TPREL,
{ _, _, _, _,
_, _, _, _,
_, _, _, P(_TPREL_11_X),
_, _, _, _,
P(_TPREL_16), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_TPREL_32) }},
{ MCSymbolRefExpr::VK_Hexagon_GD_GOT,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_GD_GOT_16), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_GD_GOT_32) }},
{ MCSymbolRefExpr::VK_Hexagon_GD_PLT,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, P(_GD_PLT_B22_PCREL), _,
_, _, _, _,
_, _, _, _,
_ }},
{ MCSymbolRefExpr::VK_Hexagon_GPREL,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_GPREL16_0), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_ }},
{ MCSymbolRefExpr::VK_Hexagon_HI16,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_HI16), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_ }},
{ MCSymbolRefExpr::VK_Hexagon_IE,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_IE_32) }},
{ MCSymbolRefExpr::VK_Hexagon_IE_GOT,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_IE_GOT_16), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_IE_GOT_32) }},
{ MCSymbolRefExpr::VK_Hexagon_LD_GOT,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_LD_GOT_16), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_LD_GOT_32) }},
{ MCSymbolRefExpr::VK_Hexagon_LD_PLT,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, P(_LD_PLT_B22_PCREL), _,
_, _, _, _,
_, _, _, _,
_ }},
{ MCSymbolRefExpr::VK_Hexagon_LO16,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_LO16), _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_ }},
{ MCSymbolRefExpr::VK_Hexagon_PCREL,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
_, _, _, _,
P(_32_PCREL) }},
{ MCSymbolRefExpr::VK_None,
{ _, _, _, _,
_, _, _, _,
_, _, _, _,
_, P(_B13_PCREL), _, P(_B15_PCREL),
_, _, _, _,
_, _, P(_B22_PCREL), _,
_, _, _, _,
_, _, _, _,
P(_32) }},
};
//
// [2] The actual fixup is LO16 or HI16, depending on the instruction.
#undef P
#undef _
uint32_t HexagonMCCodeEmitter::parseBits(size_t Last, MCInst const &MCB,
MCInst const &MCI) const {
bool Duplex = HexagonMCInstrInfo::isDuplex(MCII, MCI);
if (State.Index == 0) {
if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
assert(!Duplex);
assert(State.Index != Last);
return HexagonII::INST_PARSE_LOOP_END;
}
}
if (State.Index == 1) {
if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
assert(!Duplex);
assert(State.Index != Last);
return HexagonII::INST_PARSE_LOOP_END;
}
}
if (Duplex) {
assert(State.Index == Last);
return HexagonII::INST_PARSE_DUPLEX;
}
if (State.Index == Last)
return HexagonII::INST_PARSE_PACKET_END;
return HexagonII::INST_PARSE_NOT_END;
}
/// Emit the bundle.
void HexagonMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
MCInst &HMB = const_cast<MCInst &>(MI);
assert(HexagonMCInstrInfo::isBundle(HMB));
LLVM_DEBUG(dbgs() << "Encoding bundle\n";);
State.Addend = 0;
State.Extended = false;
State.Bundle = &MI;
State.Index = 0;
size_t Last = HexagonMCInstrInfo::bundleSize(HMB) - 1;
uint64_t Features = computeAvailableFeatures(STI.getFeatureBits());
for (auto &I : HexagonMCInstrInfo::bundleInstructions(HMB)) {
MCInst &HMI = const_cast<MCInst &>(*I.getInst());
verifyInstructionPredicates(HMI, Features);
EncodeSingleInstruction(HMI, OS, Fixups, STI, parseBits(Last, HMB, HMI));
State.Extended = HexagonMCInstrInfo::isImmext(HMI);
State.Addend += HEXAGON_INSTR_SIZE;
++State.Index;
}
}
static bool RegisterMatches(unsigned Consumer, unsigned Producer,
unsigned Producer2) {
if (Consumer == Producer)
return true;
if (Consumer == Producer2)
return true;
// Calculate if we're a single vector consumer referencing a double producer
if (Producer >= Hexagon::W0 && Producer <= Hexagon::W15)
if (Consumer >= Hexagon::V0 && Consumer <= Hexagon::V31)
return ((Consumer - Hexagon::V0) >> 1) == (Producer - Hexagon::W0);
return false;
}
/// EncodeSingleInstruction - Emit a single
void HexagonMCCodeEmitter::EncodeSingleInstruction(const MCInst &MI,
raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI, uint32_t Parse) const {
assert(!HexagonMCInstrInfo::isBundle(MI));
uint64_t Binary;
// Pseudo instructions don't get encoded and shouldn't be here
// in the first place!
assert(!HexagonMCInstrInfo::getDesc(MCII, MI).isPseudo() &&
"pseudo-instruction found");
LLVM_DEBUG(dbgs() << "Encoding insn `"
<< HexagonMCInstrInfo::getName(MCII, MI) << "'\n");
Binary = getBinaryCodeForInstr(MI, Fixups, STI);
unsigned Opc = MI.getOpcode();
// Check for unimplemented instructions. Immediate extenders
// are encoded as zero, so they need to be accounted for.
if (!Binary && Opc != DuplexIClass0 && Opc != A4_ext) {
LLVM_DEBUG(dbgs() << "Unimplemented inst `"
<< HexagonMCInstrInfo::getName(MCII, MI) << "'\n");
llvm_unreachable("Unimplemented Instruction");
}
Binary |= Parse;
// if we need to emit a duplexed instruction
if (Opc >= Hexagon::DuplexIClass0 && Opc <= Hexagon::DuplexIClassF) {
assert(Parse == HexagonII::INST_PARSE_DUPLEX &&
"Emitting duplex without duplex parse bits");
unsigned DupIClass = MI.getOpcode() - Hexagon::DuplexIClass0;
// 29 is the bit position.
// 0b1110 =0xE bits are masked off and down shifted by 1 bit.
// Last bit is moved to bit position 13
Binary = ((DupIClass & 0xE) << (29 - 1)) | ((DupIClass & 0x1) << 13);
const MCInst *Sub0 = MI.getOperand(0).getInst();
const MCInst *Sub1 = MI.getOperand(1).getInst();
// Get subinstruction slot 0.
unsigned SubBits0 = getBinaryCodeForInstr(*Sub0, Fixups, STI);
// Get subinstruction slot 1.
State.SubInst1 = true;
unsigned SubBits1 = getBinaryCodeForInstr(*Sub1, Fixups, STI);
State.SubInst1 = false;
Binary |= SubBits0 | (SubBits1 << 16);
}
support::endian::write<uint32_t>(OS, Binary, support::little);
++MCNumEmitted;
}
LLVM_ATTRIBUTE_NORETURN
static void raise_relocation_error(unsigned Width, unsigned Kind) {
std::string Text;
raw_string_ostream Stream(Text);
Stream << "Unrecognized relocation combination: width=" << Width
<< " kind=" << Kind;
report_fatal_error(Stream.str());
}
/// Some insns are not extended and thus have no bits. These cases require
/// a more brute force method for determining the correct relocation.
Hexagon::Fixups HexagonMCCodeEmitter::getFixupNoBits(
MCInstrInfo const &MCII, const MCInst &MI, const MCOperand &MO,
const MCSymbolRefExpr::VariantKind VarKind) const {
const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MI);
unsigned InsnType = HexagonMCInstrInfo::getType(MCII, MI);
using namespace Hexagon;
if (InsnType == HexagonII::TypeEXTENDER) {
if (VarKind == MCSymbolRefExpr::VK_None) {
auto Instrs = HexagonMCInstrInfo::bundleInstructions(*State.Bundle);
for (auto I = Instrs.begin(), N = Instrs.end(); I != N; ++I) {
if (I->getInst() != &MI)
continue;
assert(I+1 != N && "Extender cannot be last in packet");
const MCInst &NextI = *(I+1)->getInst();
const MCInstrDesc &NextD = HexagonMCInstrInfo::getDesc(MCII, NextI);
if (NextD.isBranch() || NextD.isCall() ||
HexagonMCInstrInfo::getType(MCII, NextI) == HexagonII::TypeCR)
return fixup_Hexagon_B32_PCREL_X;
return fixup_Hexagon_32_6_X;
}
}
static const std::map<unsigned,unsigned> Relocs = {
{ MCSymbolRefExpr::VK_GOTREL, fixup_Hexagon_GOTREL_32_6_X },
{ MCSymbolRefExpr::VK_GOT, fixup_Hexagon_GOT_32_6_X },
{ MCSymbolRefExpr::VK_TPREL, fixup_Hexagon_TPREL_32_6_X },
{ MCSymbolRefExpr::VK_DTPREL, fixup_Hexagon_DTPREL_32_6_X },
{ MCSymbolRefExpr::VK_Hexagon_GD_GOT, fixup_Hexagon_GD_GOT_32_6_X },
{ MCSymbolRefExpr::VK_Hexagon_LD_GOT, fixup_Hexagon_LD_GOT_32_6_X },
{ MCSymbolRefExpr::VK_Hexagon_IE, fixup_Hexagon_IE_32_6_X },
{ MCSymbolRefExpr::VK_Hexagon_IE_GOT, fixup_Hexagon_IE_GOT_32_6_X },
{ MCSymbolRefExpr::VK_Hexagon_PCREL, fixup_Hexagon_B32_PCREL_X },
{ MCSymbolRefExpr::VK_Hexagon_GD_PLT, fixup_Hexagon_GD_PLT_B32_PCREL_X },
{ MCSymbolRefExpr::VK_Hexagon_LD_PLT, fixup_Hexagon_LD_PLT_B32_PCREL_X },
};
auto F = Relocs.find(VarKind);
if (F != Relocs.end())
return Hexagon::Fixups(F->second);
raise_relocation_error(0, VarKind);
}
if (MCID.isBranch())
return fixup_Hexagon_B13_PCREL;
static const std::map<unsigned,unsigned> RelocsLo = {
{ MCSymbolRefExpr::VK_GOT, fixup_Hexagon_GOT_LO16 },
{ MCSymbolRefExpr::VK_GOTREL, fixup_Hexagon_GOTREL_LO16 },
{ MCSymbolRefExpr::VK_Hexagon_GD_GOT, fixup_Hexagon_GD_GOT_LO16 },
{ MCSymbolRefExpr::VK_Hexagon_LD_GOT, fixup_Hexagon_LD_GOT_LO16 },
{ MCSymbolRefExpr::VK_Hexagon_IE, fixup_Hexagon_IE_LO16 },
{ MCSymbolRefExpr::VK_Hexagon_IE_GOT, fixup_Hexagon_IE_GOT_LO16 },
{ MCSymbolRefExpr::VK_TPREL, fixup_Hexagon_TPREL_LO16 },
{ MCSymbolRefExpr::VK_DTPREL, fixup_Hexagon_DTPREL_LO16 },
{ MCSymbolRefExpr::VK_None, fixup_Hexagon_LO16 },
};
static const std::map<unsigned,unsigned> RelocsHi = {
{ MCSymbolRefExpr::VK_GOT, fixup_Hexagon_GOT_HI16 },
{ MCSymbolRefExpr::VK_GOTREL, fixup_Hexagon_GOTREL_HI16 },
{ MCSymbolRefExpr::VK_Hexagon_GD_GOT, fixup_Hexagon_GD_GOT_HI16 },
{ MCSymbolRefExpr::VK_Hexagon_LD_GOT, fixup_Hexagon_LD_GOT_HI16 },
{ MCSymbolRefExpr::VK_Hexagon_IE, fixup_Hexagon_IE_HI16 },
{ MCSymbolRefExpr::VK_Hexagon_IE_GOT, fixup_Hexagon_IE_GOT_HI16 },
{ MCSymbolRefExpr::VK_TPREL, fixup_Hexagon_TPREL_HI16 },
{ MCSymbolRefExpr::VK_DTPREL, fixup_Hexagon_DTPREL_HI16 },
{ MCSymbolRefExpr::VK_None, fixup_Hexagon_HI16 },
};
switch (MCID.getOpcode()) {
case Hexagon::LO:
case Hexagon::A2_tfril: {
auto F = RelocsLo.find(VarKind);
if (F != RelocsLo.end())
return Hexagon::Fixups(F->second);
break;
}
case Hexagon::HI:
case Hexagon::A2_tfrih: {
auto F = RelocsHi.find(VarKind);
if (F != RelocsHi.end())
return Hexagon::Fixups(F->second);
break;
}
}
raise_relocation_error(0, VarKind);
}
static bool isPCRel(unsigned Kind) {
switch (Kind){
case fixup_Hexagon_B22_PCREL:
case fixup_Hexagon_B15_PCREL:
case fixup_Hexagon_B7_PCREL:
case fixup_Hexagon_B13_PCREL:
case fixup_Hexagon_B9_PCREL:
case fixup_Hexagon_B32_PCREL_X:
case fixup_Hexagon_B22_PCREL_X:
case fixup_Hexagon_B15_PCREL_X:
case fixup_Hexagon_B13_PCREL_X:
case fixup_Hexagon_B9_PCREL_X:
case fixup_Hexagon_B7_PCREL_X:
case fixup_Hexagon_32_PCREL:
case fixup_Hexagon_PLT_B22_PCREL:
case fixup_Hexagon_GD_PLT_B22_PCREL:
case fixup_Hexagon_LD_PLT_B22_PCREL:
case fixup_Hexagon_GD_PLT_B22_PCREL_X:
case fixup_Hexagon_LD_PLT_B22_PCREL_X:
case fixup_Hexagon_6_PCREL_X:
return true;
default:
return false;
}
}
unsigned HexagonMCCodeEmitter::getExprOpValue(const MCInst &MI,
const MCOperand &MO, const MCExpr *ME, SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
if (isa<HexagonMCExpr>(ME))
ME = &HexagonMCInstrInfo::getExpr(*ME);
int64_t Value;
if (ME->evaluateAsAbsolute(Value)) {
bool InstExtendable = HexagonMCInstrInfo::isExtendable(MCII, MI) ||
HexagonMCInstrInfo::isExtended(MCII, MI);
// Only sub-instruction #1 can be extended in a duplex. If MI is a
// sub-instruction #0, it is not extended even if Extended is true
// (it can be true for the duplex as a whole).
bool IsSub0 = HexagonMCInstrInfo::isSubInstruction(MI) && !State.SubInst1;
if (State.Extended && InstExtendable && !IsSub0) {
unsigned OpIdx = ~0u;
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
if (&MO != &MI.getOperand(I))
continue;
OpIdx = I;
break;
}
assert(OpIdx != ~0u);
if (OpIdx == HexagonMCInstrInfo::getExtendableOp(MCII, MI)) {
unsigned Shift = HexagonMCInstrInfo::getExtentAlignment(MCII, MI);
Value = (Value & 0x3f) << Shift;
}
}
return Value;
}
assert(ME->getKind() == MCExpr::SymbolRef ||
ME->getKind() == MCExpr::Binary);
if (ME->getKind() == MCExpr::Binary) {
MCBinaryExpr const *Binary = cast<MCBinaryExpr>(ME);
getExprOpValue(MI, MO, Binary->getLHS(), Fixups, STI);
getExprOpValue(MI, MO, Binary->getRHS(), Fixups, STI);
return 0;
}
unsigned FixupKind = fixup_Invalid;
const MCSymbolRefExpr *MCSRE = static_cast<const MCSymbolRefExpr *>(ME);
const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MI);
unsigned FixupWidth = HexagonMCInstrInfo::getExtentBits(MCII, MI) -
HexagonMCInstrInfo::getExtentAlignment(MCII, MI);
MCSymbolRefExpr::VariantKind VarKind = MCSRE->getKind();
unsigned Opc = MCID.getOpcode();
unsigned IType = HexagonMCInstrInfo::getType(MCII, MI);
LLVM_DEBUG(dbgs() << "----------------------------------------\n"
<< "Opcode Name: " << HexagonMCInstrInfo::getName(MCII, MI)
<< "\nOpcode: " << Opc << "\nRelocation bits: "
<< FixupWidth << "\nAddend: " << State.Addend
<< "\nVariant: " << unsigned(VarKind)
<< "\n----------------------------------------\n");
// Pick the applicable fixup kind for the symbol.
// Handle special cases first, the rest will be looked up in the tables.
if (FixupWidth == 16 && !State.Extended) {
if (VarKind == MCSymbolRefExpr::VK_None) {
if (HexagonMCInstrInfo::s27_2_reloc(*MO.getExpr())) {
// A2_iconst.
FixupKind = Hexagon::fixup_Hexagon_27_REG;
} else {
// Look for GP-relative fixups.
unsigned Shift = HexagonMCInstrInfo::getExtentAlignment(MCII, MI);
static const Hexagon::Fixups GPRelFixups[] = {
Hexagon::fixup_Hexagon_GPREL16_0, Hexagon::fixup_Hexagon_GPREL16_1,
Hexagon::fixup_Hexagon_GPREL16_2, Hexagon::fixup_Hexagon_GPREL16_3
};
assert(Shift < array_lengthof(GPRelFixups));
auto UsesGP = [] (const MCInstrDesc &D) {
for (const MCPhysReg *U = D.getImplicitUses(); U && *U; ++U)
if (*U == Hexagon::GP)
return true;
return false;
};
if (UsesGP(MCID))
FixupKind = GPRelFixups[Shift];
}
} else if (VarKind == MCSymbolRefExpr::VK_GOTREL) {
// Select between LO/HI.
if (Opc == Hexagon::LO)
FixupKind = Hexagon::fixup_Hexagon_GOTREL_LO16;
else if (Opc == Hexagon::HI)
FixupKind = Hexagon::fixup_Hexagon_GOTREL_HI16;
}
} else {
bool BranchOrCR = MCID.isBranch() || IType == HexagonII::TypeCR;
switch (FixupWidth) {
case 9:
if (BranchOrCR)
FixupKind = State.Extended ? Hexagon::fixup_Hexagon_B9_PCREL_X
: Hexagon::fixup_Hexagon_B9_PCREL;
break;
case 8:
case 7:
if (State.Extended && VarKind == MCSymbolRefExpr::VK_GOT)
FixupKind = HexagonMCInstrInfo::isExtentSigned(MCII, MI)
? Hexagon::fixup_Hexagon_GOT_16_X
: Hexagon::fixup_Hexagon_GOT_11_X;
else if (FixupWidth == 7 && BranchOrCR)
FixupKind = State.Extended ? Hexagon::fixup_Hexagon_B7_PCREL_X
: Hexagon::fixup_Hexagon_B7_PCREL;
break;
case 0:
FixupKind = getFixupNoBits(MCII, MI, MO, VarKind);
break;
}
}
if (FixupKind == fixup_Invalid) {
const auto &FixupTable = State.Extended ? ExtFixups : StdFixups;
auto FindVK = FixupTable.find(VarKind);
if (FindVK != FixupTable.end())
FixupKind = FindVK->second[FixupWidth];
}
if (FixupKind == fixup_Invalid)
raise_relocation_error(FixupWidth, VarKind);
const MCExpr *FixupExpr = MO.getExpr();
if (State.Addend != 0 && isPCRel(FixupKind)) {
const MCExpr *C = MCConstantExpr::create(State.Addend, MCT);
FixupExpr = MCBinaryExpr::createAdd(FixupExpr, C, MCT);
}
MCFixup Fixup = MCFixup::create(State.Addend, FixupExpr,
MCFixupKind(FixupKind), MI.getLoc());
Fixups.push_back(Fixup);
// All of the information is in the fixup.
return 0;
}
unsigned
HexagonMCCodeEmitter::getMachineOpValue(MCInst const &MI, MCOperand const &MO,
SmallVectorImpl<MCFixup> &Fixups,
MCSubtargetInfo const &STI) const {
#ifndef NDEBUG
size_t OperandNumber = ~0U;
for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i)
if (&MI.getOperand(i) == &MO) {
OperandNumber = i;
break;
}
assert((OperandNumber != ~0U) && "Operand not found");
#endif
if (HexagonMCInstrInfo::isNewValue(MCII, MI) &&
&MO == &HexagonMCInstrInfo::getNewValueOperand(MCII, MI)) {
// Calculate the new value distance to the associated producer
unsigned SOffset = 0;
unsigned VOffset = 0;
unsigned UseReg = MO.getReg();
unsigned DefReg1, DefReg2;
auto Instrs = HexagonMCInstrInfo::bundleInstructions(*State.Bundle);
const MCOperand *I = Instrs.begin() + State.Index - 1;
for (;; --I) {
assert(I != Instrs.begin() - 1 && "Couldn't find producer");
MCInst const &Inst = *I->getInst();
if (HexagonMCInstrInfo::isImmext(Inst))
continue;
DefReg1 = DefReg2 = 0;
++SOffset;
if (HexagonMCInstrInfo::isVector(MCII, Inst)) {
// Vector instructions don't count scalars.
++VOffset;
}
if (HexagonMCInstrInfo::hasNewValue(MCII, Inst))
DefReg1 = HexagonMCInstrInfo::getNewValueOperand(MCII, Inst).getReg();
if (HexagonMCInstrInfo::hasNewValue2(MCII, Inst))
DefReg2 = HexagonMCInstrInfo::getNewValueOperand2(MCII, Inst).getReg();
if (!RegisterMatches(UseReg, DefReg1, DefReg2)) {
// This isn't the register we're looking for
continue;
}
if (!HexagonMCInstrInfo::isPredicated(MCII, Inst)) {
// Producer is unpredicated
break;
}
assert(HexagonMCInstrInfo::isPredicated(MCII, MI) &&
"Unpredicated consumer depending on predicated producer");
if (HexagonMCInstrInfo::isPredicatedTrue(MCII, Inst) ==
HexagonMCInstrInfo::isPredicatedTrue(MCII, MI))
// Producer predicate sense matched ours.
break;
}
// Hexagon PRM 10.11 Construct Nt from distance
unsigned Offset = HexagonMCInstrInfo::isVector(MCII, MI) ? VOffset
: SOffset;
Offset <<= 1;
Offset |= HexagonMCInstrInfo::SubregisterBit(UseReg, DefReg1, DefReg2);
return Offset;
}
assert(!MO.isImm());
if (MO.isReg()) {
unsigned Reg = MO.getReg();
if (HexagonMCInstrInfo::isSubInstruction(MI) ||
HexagonMCInstrInfo::getType(MCII, MI) == HexagonII::TypeCJ)
return HexagonMCInstrInfo::getDuplexRegisterNumbering(Reg);
return MCT.getRegisterInfo()->getEncodingValue(Reg);
}
return getExprOpValue(MI, MO, MO.getExpr(), Fixups, STI);
}
MCCodeEmitter *llvm::createHexagonMCCodeEmitter(MCInstrInfo const &MII,
MCRegisterInfo const &MRI,
MCContext &MCT) {
return new HexagonMCCodeEmitter(MII, MCT);
}
#define ENABLE_INSTR_PREDICATE_VERIFIER
#include "HexagonGenMCCodeEmitter.inc"