1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 20:12:56 +02:00
llvm-mirror/include/llvm/Analysis/DDG.h
bmahjour d3fb929e1b [DDG] Data Dependence Graph - Pi Block
Summary:
    This patch adds Pi Blocks to the DDG. A pi-block represents a group of DDG
    nodes that are part of a strongly-connected component of the graph.
    Replacing all the SCCs with pi-blocks results in an acyclic representation
    of the DDG. For example if we have:
       {a -> b}, {b -> c, d}, {c -> a}
    the cycle a -> b -> c -> a is abstracted into a pi-block "p" as follows:
       {p -> d} with "p" containing: {a -> b}, {b -> c}, {c -> a}
    In this implementation the edges between nodes that are part of the pi-block
    are preserved. The crossing edges (edges where one end of the edge is in the
    set of nodes belonging to an SCC and the other end is outside that set) are
    replaced with corresponding edges to/from the pi-block node instead.

    Authored By: bmahjour

    Reviewer: Meinersbur, fhahn, myhsu, xtian, dmgreen, kbarton, jdoerfert

    Reviewed By: Meinersbur

    Subscribers: ychen, arphaman, simoll, a.elovikov, mgorny, hiraditya, jfb, wuzish, llvm-commits, jsji, Whitney, etiotto, ppc-slack

    Tag: #llvm

    Differential Revision: https://reviews.llvm.org/D68827
2019-11-08 15:46:08 -05:00

509 lines
17 KiB
C++

//===- llvm/Analysis/DDG.h --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the Data-Dependence Graph (DDG).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DDG_H
#define LLVM_ANALYSIS_DDG_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DirectedGraph.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/DependenceGraphBuilder.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/IR/Instructions.h"
namespace llvm {
class DDGNode;
class DDGEdge;
using DDGNodeBase = DGNode<DDGNode, DDGEdge>;
using DDGEdgeBase = DGEdge<DDGNode, DDGEdge>;
using DDGBase = DirectedGraph<DDGNode, DDGEdge>;
class LPMUpdater;
/// Data Dependence Graph Node
/// The graph can represent the following types of nodes:
/// 1. Single instruction node containing just one instruction.
/// 2. Multiple instruction node where two or more instructions from
/// the same basic block are merged into one node.
/// 3. Pi-block node which is a group of other DDG nodes that are part of a
/// strongly-connected component of the graph.
/// A pi-block node contains more than one single or multiple instruction
/// nodes. The root node cannot be part of a pi-block.
/// 4. Root node is a special node that connects to all components such that
/// there is always a path from it to any node in the graph.
class DDGNode : public DDGNodeBase {
public:
using InstructionListType = SmallVectorImpl<Instruction *>;
enum class NodeKind {
Unknown,
SingleInstruction,
MultiInstruction,
PiBlock,
Root,
};
DDGNode() = delete;
DDGNode(const NodeKind K) : DDGNodeBase(), Kind(K) {}
DDGNode(const DDGNode &N) : DDGNodeBase(N), Kind(N.Kind) {}
DDGNode(DDGNode &&N) : DDGNodeBase(std::move(N)), Kind(N.Kind) {}
virtual ~DDGNode() = 0;
DDGNode &operator=(const DDGNode &N) {
DGNode::operator=(N);
Kind = N.Kind;
return *this;
}
DDGNode &operator=(DDGNode &&N) {
DGNode::operator=(std::move(N));
Kind = N.Kind;
return *this;
}
/// Getter for the kind of this node.
NodeKind getKind() const { return Kind; }
/// Collect a list of instructions, in \p IList, for which predicate \p Pred
/// evaluates to true when iterating over instructions of this node. Return
/// true if at least one instruction was collected, and false otherwise.
bool collectInstructions(llvm::function_ref<bool(Instruction *)> const &Pred,
InstructionListType &IList) const;
protected:
/// Setter for the kind of this node.
void setKind(NodeKind K) { Kind = K; }
private:
NodeKind Kind;
};
/// Subclass of DDGNode representing the root node of the graph.
/// There should only be one such node in a given graph.
class RootDDGNode : public DDGNode {
public:
RootDDGNode() : DDGNode(NodeKind::Root) {}
RootDDGNode(const RootDDGNode &N) = delete;
RootDDGNode(RootDDGNode &&N) : DDGNode(std::move(N)) {}
~RootDDGNode() {}
/// Define classof to be able to use isa<>, cast<>, dyn_cast<>, etc.
static bool classof(const DDGNode *N) {
return N->getKind() == NodeKind::Root;
}
static bool classof(const RootDDGNode *N) { return true; }
};
/// Subclass of DDGNode representing single or multi-instruction nodes.
class SimpleDDGNode : public DDGNode {
public:
SimpleDDGNode() = delete;
SimpleDDGNode(Instruction &I);
SimpleDDGNode(const SimpleDDGNode &N);
SimpleDDGNode(SimpleDDGNode &&N);
~SimpleDDGNode();
SimpleDDGNode &operator=(const SimpleDDGNode &N) {
DDGNode::operator=(N);
InstList = N.InstList;
return *this;
}
SimpleDDGNode &operator=(SimpleDDGNode &&N) {
DDGNode::operator=(std::move(N));
InstList = std::move(N.InstList);
return *this;
}
/// Get the list of instructions in this node.
const InstructionListType &getInstructions() const {
assert(!InstList.empty() && "Instruction List is empty.");
return InstList;
}
InstructionListType &getInstructions() {
return const_cast<InstructionListType &>(
static_cast<const SimpleDDGNode *>(this)->getInstructions());
}
/// Get the first/last instruction in the node.
Instruction *getFirstInstruction() const { return getInstructions().front(); }
Instruction *getLastInstruction() const { return getInstructions().back(); }
/// Define classof to be able to use isa<>, cast<>, dyn_cast<>, etc.
static bool classof(const DDGNode *N) {
return N->getKind() == NodeKind::SingleInstruction ||
N->getKind() == NodeKind::MultiInstruction;
}
static bool classof(const SimpleDDGNode *N) { return true; }
private:
/// Append the list of instructions in \p Input to this node.
void appendInstructions(const InstructionListType &Input) {
setKind((InstList.size() == 0 && Input.size() == 1)
? NodeKind::SingleInstruction
: NodeKind::MultiInstruction);
InstList.insert(InstList.end(), Input.begin(), Input.end());
}
void appendInstructions(const SimpleDDGNode &Input) {
appendInstructions(Input.getInstructions());
}
/// List of instructions associated with a single or multi-instruction node.
SmallVector<Instruction *, 2> InstList;
};
/// Subclass of DDGNode representing a pi-block. A pi-block represents a group
/// of DDG nodes that are part of a strongly-connected component of the graph.
/// Replacing all the SCCs with pi-blocks results in an acyclic representation
/// of the DDG. For example if we have:
/// {a -> b}, {b -> c, d}, {c -> a}
/// the cycle a -> b -> c -> a is abstracted into a pi-block "p" as follows:
/// {p -> d} with "p" containing: {a -> b}, {b -> c}, {c -> a}
class PiBlockDDGNode : public DDGNode {
public:
using PiNodeList = SmallVector<DDGNode *, 4>;
PiBlockDDGNode() = delete;
PiBlockDDGNode(const PiNodeList &List);
PiBlockDDGNode(const PiBlockDDGNode &N);
PiBlockDDGNode(PiBlockDDGNode &&N);
~PiBlockDDGNode();
PiBlockDDGNode &operator=(const PiBlockDDGNode &N) {
DDGNode::operator=(N);
NodeList = N.NodeList;
return *this;
}
PiBlockDDGNode &operator=(PiBlockDDGNode &&N) {
DDGNode::operator=(std::move(N));
NodeList = std::move(N.NodeList);
return *this;
}
/// Get the list of nodes in this pi-block.
const PiNodeList &getNodes() const {
assert(!NodeList.empty() && "Node list is empty.");
return NodeList;
}
PiNodeList &getNodes() {
return const_cast<PiNodeList &>(
static_cast<const PiBlockDDGNode *>(this)->getNodes());
}
/// Define classof to be able to use isa<>, cast<>, dyn_cast<>, etc.
static bool classof(const DDGNode *N) {
return N->getKind() == NodeKind::PiBlock;
}
private:
/// List of nodes in this pi-block.
PiNodeList NodeList;
};
/// Data Dependency Graph Edge.
/// An edge in the DDG can represent a def-use relationship or
/// a memory dependence based on the result of DependenceAnalysis.
/// A rooted edge connects the root node to one of the components
/// of the graph.
class DDGEdge : public DDGEdgeBase {
public:
/// The kind of edge in the DDG
enum class EdgeKind {
Unknown,
RegisterDefUse,
MemoryDependence,
Rooted,
Last = Rooted // Must be equal to the largest enum value.
};
explicit DDGEdge(DDGNode &N) = delete;
DDGEdge(DDGNode &N, EdgeKind K) : DDGEdgeBase(N), Kind(K) {}
DDGEdge(const DDGEdge &E) : DDGEdgeBase(E), Kind(E.getKind()) {}
DDGEdge(DDGEdge &&E) : DDGEdgeBase(std::move(E)), Kind(E.Kind) {}
DDGEdge &operator=(const DDGEdge &E) {
DDGEdgeBase::operator=(E);
Kind = E.Kind;
return *this;
}
DDGEdge &operator=(DDGEdge &&E) {
DDGEdgeBase::operator=(std::move(E));
Kind = E.Kind;
return *this;
}
/// Get the edge kind
EdgeKind getKind() const { return Kind; };
/// Return true if this is a def-use edge, and false otherwise.
bool isDefUse() const { return Kind == EdgeKind::RegisterDefUse; }
/// Return true if this is a memory dependence edge, and false otherwise.
bool isMemoryDependence() const { return Kind == EdgeKind::MemoryDependence; }
/// Return true if this is an edge stemming from the root node, and false
/// otherwise.
bool isRooted() const { return Kind == EdgeKind::Rooted; }
private:
EdgeKind Kind;
};
/// Encapsulate some common data and functionality needed for different
/// variations of data dependence graphs.
template <typename NodeType> class DependenceGraphInfo {
public:
using DependenceList = SmallVector<std::unique_ptr<Dependence>, 1>;
DependenceGraphInfo() = delete;
DependenceGraphInfo(const DependenceGraphInfo &G) = delete;
DependenceGraphInfo(const std::string &N, const DependenceInfo &DepInfo)
: Name(N), DI(DepInfo), Root(nullptr) {}
DependenceGraphInfo(DependenceGraphInfo &&G)
: Name(std::move(G.Name)), DI(std::move(G.DI)), Root(G.Root) {}
virtual ~DependenceGraphInfo() {}
/// Return the label that is used to name this graph.
const StringRef getName() const { return Name; }
/// Return the root node of the graph.
NodeType &getRoot() const {
assert(Root && "Root node is not available yet. Graph construction may "
"still be in progress\n");
return *Root;
}
protected:
// Name of the graph.
std::string Name;
// Store a copy of DependenceInfo in the graph, so that individual memory
// dependencies don't need to be stored. Instead when the dependence is
// queried it is recomputed using @DI.
const DependenceInfo DI;
// A special node in the graph that has an edge to every connected component of
// the graph, to ensure all nodes are reachable in a graph walk.
NodeType *Root = nullptr;
};
using DDGInfo = DependenceGraphInfo<DDGNode>;
/// Data Dependency Graph
class DataDependenceGraph : public DDGBase, public DDGInfo {
friend class DDGBuilder;
public:
using NodeType = DDGNode;
using EdgeType = DDGEdge;
DataDependenceGraph() = delete;
DataDependenceGraph(const DataDependenceGraph &G) = delete;
DataDependenceGraph(DataDependenceGraph &&G)
: DDGBase(std::move(G)), DDGInfo(std::move(G)) {}
DataDependenceGraph(Function &F, DependenceInfo &DI);
DataDependenceGraph(const Loop &L, DependenceInfo &DI);
~DataDependenceGraph();
/// If node \p N belongs to a pi-block return a pointer to the pi-block,
/// otherwise return null.
const PiBlockDDGNode *getPiBlock(const NodeType &N) const;
protected:
/// Add node \p N to the graph, if it's not added yet, and keep track of the
/// root node as well as pi-blocks and their members. Return true if node is
/// successfully added.
bool addNode(NodeType &N);
private:
using PiBlockMapType = DenseMap<const NodeType *, const PiBlockDDGNode *>;
/// Mapping from graph nodes to their containing pi-blocks. If a node is not
/// part of a pi-block, it will not appear in this map.
PiBlockMapType PiBlockMap;
};
/// Concrete implementation of a pure data dependence graph builder. This class
/// provides custom implementation for the pure-virtual functions used in the
/// generic dependence graph build algorithm.
///
/// For information about time complexity of the build algorithm see the
/// comments near the declaration of AbstractDependenceGraphBuilder.
class DDGBuilder : public AbstractDependenceGraphBuilder<DataDependenceGraph> {
public:
DDGBuilder(DataDependenceGraph &G, DependenceInfo &D,
const BasicBlockListType &BBs)
: AbstractDependenceGraphBuilder(G, D, BBs) {}
DDGNode &createRootNode() final override {
auto *RN = new RootDDGNode();
assert(RN && "Failed to allocate memory for DDG root node.");
Graph.addNode(*RN);
return *RN;
}
DDGNode &createFineGrainedNode(Instruction &I) final override {
auto *SN = new SimpleDDGNode(I);
assert(SN && "Failed to allocate memory for simple DDG node.");
Graph.addNode(*SN);
return *SN;
}
DDGNode &createPiBlock(const NodeListType &L) final override {
auto *Pi = new PiBlockDDGNode(L);
assert(Pi && "Failed to allocate memory for pi-block node.");
Graph.addNode(*Pi);
return *Pi;
}
DDGEdge &createDefUseEdge(DDGNode &Src, DDGNode &Tgt) final override {
auto *E = new DDGEdge(Tgt, DDGEdge::EdgeKind::RegisterDefUse);
assert(E && "Failed to allocate memory for edge");
Graph.connect(Src, Tgt, *E);
return *E;
}
DDGEdge &createMemoryEdge(DDGNode &Src, DDGNode &Tgt) final override {
auto *E = new DDGEdge(Tgt, DDGEdge::EdgeKind::MemoryDependence);
assert(E && "Failed to allocate memory for edge");
Graph.connect(Src, Tgt, *E);
return *E;
}
DDGEdge &createRootedEdge(DDGNode &Src, DDGNode &Tgt) final override {
auto *E = new DDGEdge(Tgt, DDGEdge::EdgeKind::Rooted);
assert(E && "Failed to allocate memory for edge");
assert(isa<RootDDGNode>(Src) && "Expected root node");
Graph.connect(Src, Tgt, *E);
return *E;
}
bool shouldCreatePiBlocks() const final override;
};
raw_ostream &operator<<(raw_ostream &OS, const DDGNode &N);
raw_ostream &operator<<(raw_ostream &OS, const DDGNode::NodeKind K);
raw_ostream &operator<<(raw_ostream &OS, const DDGEdge &E);
raw_ostream &operator<<(raw_ostream &OS, const DDGEdge::EdgeKind K);
raw_ostream &operator<<(raw_ostream &OS, const DataDependenceGraph &G);
//===--------------------------------------------------------------------===//
// DDG Analysis Passes
//===--------------------------------------------------------------------===//
/// Analysis pass that builds the DDG for a loop.
class DDGAnalysis : public AnalysisInfoMixin<DDGAnalysis> {
public:
using Result = std::unique_ptr<DataDependenceGraph>;
Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
private:
friend AnalysisInfoMixin<DDGAnalysis>;
static AnalysisKey Key;
};
/// Textual printer pass for the DDG of a loop.
class DDGAnalysisPrinterPass : public PassInfoMixin<DDGAnalysisPrinterPass> {
public:
explicit DDGAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR, LPMUpdater &U);
private:
raw_ostream &OS;
};
//===--------------------------------------------------------------------===//
// GraphTraits specializations for the DDG
//===--------------------------------------------------------------------===//
/// non-const versions of the grapth trait specializations for DDG
template <> struct GraphTraits<DDGNode *> {
using NodeRef = DDGNode *;
static DDGNode *DDGGetTargetNode(DGEdge<DDGNode, DDGEdge> *P) {
return &P->getTargetNode();
}
// Provide a mapped iterator so that the GraphTrait-based implementations can
// find the target nodes without having to explicitly go through the edges.
using ChildIteratorType =
mapped_iterator<DDGNode::iterator, decltype(&DDGGetTargetNode)>;
using ChildEdgeIteratorType = DDGNode::iterator;
static NodeRef getEntryNode(NodeRef N) { return N; }
static ChildIteratorType child_begin(NodeRef N) {
return ChildIteratorType(N->begin(), &DDGGetTargetNode);
}
static ChildIteratorType child_end(NodeRef N) {
return ChildIteratorType(N->end(), &DDGGetTargetNode);
}
static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
return N->begin();
}
static ChildEdgeIteratorType child_edge_end(NodeRef N) { return N->end(); }
};
template <>
struct GraphTraits<DataDependenceGraph *> : public GraphTraits<DDGNode *> {
using nodes_iterator = DataDependenceGraph::iterator;
static NodeRef getEntryNode(DataDependenceGraph *DG) {
return &DG->getRoot();
}
static nodes_iterator nodes_begin(DataDependenceGraph *DG) {
return DG->begin();
}
static nodes_iterator nodes_end(DataDependenceGraph *DG) { return DG->end(); }
};
/// const versions of the grapth trait specializations for DDG
template <> struct GraphTraits<const DDGNode *> {
using NodeRef = const DDGNode *;
static const DDGNode *DDGGetTargetNode(const DGEdge<DDGNode, DDGEdge> *P) {
return &P->getTargetNode();
}
// Provide a mapped iterator so that the GraphTrait-based implementations can
// find the target nodes without having to explicitly go through the edges.
using ChildIteratorType =
mapped_iterator<DDGNode::const_iterator, decltype(&DDGGetTargetNode)>;
using ChildEdgeIteratorType = DDGNode::const_iterator;
static NodeRef getEntryNode(NodeRef N) { return N; }
static ChildIteratorType child_begin(NodeRef N) {
return ChildIteratorType(N->begin(), &DDGGetTargetNode);
}
static ChildIteratorType child_end(NodeRef N) {
return ChildIteratorType(N->end(), &DDGGetTargetNode);
}
static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
return N->begin();
}
static ChildEdgeIteratorType child_edge_end(NodeRef N) { return N->end(); }
};
template <>
struct GraphTraits<const DataDependenceGraph *>
: public GraphTraits<const DDGNode *> {
using nodes_iterator = DataDependenceGraph::const_iterator;
static NodeRef getEntryNode(const DataDependenceGraph *DG) {
return &DG->getRoot();
}
static nodes_iterator nodes_begin(const DataDependenceGraph *DG) {
return DG->begin();
}
static nodes_iterator nodes_end(const DataDependenceGraph *DG) {
return DG->end();
}
};
} // namespace llvm
#endif // LLVM_ANALYSIS_DDG_H