1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Target/SystemZ/SystemZInstrInfo.cpp
Jakob Stoklund Olesen 44949b2e1b Remove the isMoveInstr() hook.
llvm-svn: 108567
2010-07-16 22:35:46 +00:00

586 lines
20 KiB
C++

//===- SystemZInstrInfo.cpp - SystemZ Instruction Information --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SystemZ implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "SystemZ.h"
#include "SystemZInstrBuilder.h"
#include "SystemZInstrInfo.h"
#include "SystemZMachineFunctionInfo.h"
#include "SystemZTargetMachine.h"
#include "SystemZGenInstrInfo.inc"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm)
: TargetInstrInfoImpl(SystemZInsts, array_lengthof(SystemZInsts)),
RI(tm, *this), TM(tm) {
// Fill the spill offsets map
static const unsigned SpillOffsTab[][2] = {
{ SystemZ::R2D, 0x10 },
{ SystemZ::R3D, 0x18 },
{ SystemZ::R4D, 0x20 },
{ SystemZ::R5D, 0x28 },
{ SystemZ::R6D, 0x30 },
{ SystemZ::R7D, 0x38 },
{ SystemZ::R8D, 0x40 },
{ SystemZ::R9D, 0x48 },
{ SystemZ::R10D, 0x50 },
{ SystemZ::R11D, 0x58 },
{ SystemZ::R12D, 0x60 },
{ SystemZ::R13D, 0x68 },
{ SystemZ::R14D, 0x70 },
{ SystemZ::R15D, 0x78 }
};
RegSpillOffsets.grow(SystemZ::NUM_TARGET_REGS);
for (unsigned i = 0, e = array_lengthof(SpillOffsTab); i != e; ++i)
RegSpillOffsets[SpillOffsTab[i][0]] = SpillOffsTab[i][1];
}
/// isGVStub - Return true if the GV requires an extra load to get the
/// real address.
static inline bool isGVStub(GlobalValue *GV, SystemZTargetMachine &TM) {
return TM.getSubtarget<SystemZSubtarget>().GVRequiresExtraLoad(GV, TM, false);
}
void SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
unsigned Opc = 0;
if (RC == &SystemZ::GR32RegClass ||
RC == &SystemZ::ADDR32RegClass)
Opc = SystemZ::MOV32mr;
else if (RC == &SystemZ::GR64RegClass ||
RC == &SystemZ::ADDR64RegClass) {
Opc = SystemZ::MOV64mr;
} else if (RC == &SystemZ::FP32RegClass) {
Opc = SystemZ::FMOV32mr;
} else if (RC == &SystemZ::FP64RegClass) {
Opc = SystemZ::FMOV64mr;
} else if (RC == &SystemZ::GR64PRegClass) {
Opc = SystemZ::MOV64Pmr;
} else if (RC == &SystemZ::GR128RegClass) {
Opc = SystemZ::MOV128mr;
} else
llvm_unreachable("Unsupported regclass to store");
addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
.addReg(SrcReg, getKillRegState(isKill));
}
void SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const{
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
unsigned Opc = 0;
if (RC == &SystemZ::GR32RegClass ||
RC == &SystemZ::ADDR32RegClass)
Opc = SystemZ::MOV32rm;
else if (RC == &SystemZ::GR64RegClass ||
RC == &SystemZ::ADDR64RegClass) {
Opc = SystemZ::MOV64rm;
} else if (RC == &SystemZ::FP32RegClass) {
Opc = SystemZ::FMOV32rm;
} else if (RC == &SystemZ::FP64RegClass) {
Opc = SystemZ::FMOV64rm;
} else if (RC == &SystemZ::GR64PRegClass) {
Opc = SystemZ::MOV64Prm;
} else if (RC == &SystemZ::GR128RegClass) {
Opc = SystemZ::MOV128rm;
} else
llvm_unreachable("Unsupported regclass to load");
addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
}
void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
unsigned Opc;
if (SystemZ::GR64RegClass.contains(DestReg, SrcReg))
Opc = SystemZ::MOV64rr;
else if (SystemZ::GR32RegClass.contains(DestReg, SrcReg))
Opc = SystemZ::MOV32rr;
else if (SystemZ::GR64PRegClass.contains(DestReg, SrcReg))
Opc = SystemZ::MOV64rrP;
else if (SystemZ::GR128RegClass.contains(DestReg, SrcReg))
Opc = SystemZ::MOV128rr;
else if (SystemZ::FP32RegClass.contains(DestReg, SrcReg))
Opc = SystemZ::FMOV32rr;
else if (SystemZ::FP64RegClass.contains(DestReg, SrcReg))
Opc = SystemZ::FMOV64rr;
else
llvm_unreachable("Impossible reg-to-reg copy");
BuildMI(MBB, I, DL, get(Opc), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
}
unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case SystemZ::MOV32rm:
case SystemZ::MOV32rmy:
case SystemZ::MOV64rm:
case SystemZ::MOVSX32rm8:
case SystemZ::MOVSX32rm16y:
case SystemZ::MOVSX64rm8:
case SystemZ::MOVSX64rm16:
case SystemZ::MOVSX64rm32:
case SystemZ::MOVZX32rm8:
case SystemZ::MOVZX32rm16:
case SystemZ::MOVZX64rm8:
case SystemZ::MOVZX64rm16:
case SystemZ::MOVZX64rm32:
case SystemZ::FMOV32rm:
case SystemZ::FMOV32rmy:
case SystemZ::FMOV64rm:
case SystemZ::FMOV64rmy:
case SystemZ::MOV64Prm:
case SystemZ::MOV64Prmy:
case SystemZ::MOV128rm:
if (MI->getOperand(1).isFI() &&
MI->getOperand(2).isImm() && MI->getOperand(3).isReg() &&
MI->getOperand(2).getImm() == 0 && MI->getOperand(3).getReg() == 0) {
FrameIndex = MI->getOperand(1).getIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case SystemZ::MOV32mr:
case SystemZ::MOV32mry:
case SystemZ::MOV64mr:
case SystemZ::MOV32m8r:
case SystemZ::MOV32m8ry:
case SystemZ::MOV32m16r:
case SystemZ::MOV32m16ry:
case SystemZ::MOV64m8r:
case SystemZ::MOV64m8ry:
case SystemZ::MOV64m16r:
case SystemZ::MOV64m16ry:
case SystemZ::MOV64m32r:
case SystemZ::MOV64m32ry:
case SystemZ::FMOV32mr:
case SystemZ::FMOV32mry:
case SystemZ::FMOV64mr:
case SystemZ::FMOV64mry:
case SystemZ::MOV64Pmr:
case SystemZ::MOV64Pmry:
case SystemZ::MOV128mr:
if (MI->getOperand(0).isFI() &&
MI->getOperand(1).isImm() && MI->getOperand(2).isReg() &&
MI->getOperand(1).getImm() == 0 && MI->getOperand(2).getReg() == 0) {
FrameIndex = MI->getOperand(0).getIndex();
return MI->getOperand(3).getReg();
}
break;
}
return 0;
}
bool
SystemZInstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return false;
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
unsigned CalleeFrameSize = 0;
// Scan the callee-saved and find the bounds of register spill area.
unsigned LowReg = 0, HighReg = 0, StartOffset = -1U, EndOffset = 0;
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
if (!SystemZ::FP64RegClass.contains(Reg)) {
unsigned Offset = RegSpillOffsets[Reg];
CalleeFrameSize += 8;
if (StartOffset > Offset) {
LowReg = Reg; StartOffset = Offset;
}
if (EndOffset < Offset) {
HighReg = Reg; EndOffset = RegSpillOffsets[Reg];
}
}
}
// Save information for epilogue inserter.
MFI->setCalleeSavedFrameSize(CalleeFrameSize);
MFI->setLowReg(LowReg); MFI->setHighReg(HighReg);
// Save GPRs
if (StartOffset) {
// Build a store instruction. Use STORE MULTIPLE instruction if there are many
// registers to store, otherwise - just STORE.
MachineInstrBuilder MIB =
BuildMI(MBB, MI, DL, get((LowReg == HighReg ?
SystemZ::MOV64mr : SystemZ::MOV64mrm)));
// Add store operands.
MIB.addReg(SystemZ::R15D).addImm(StartOffset);
if (LowReg == HighReg)
MIB.addReg(0);
MIB.addReg(LowReg, RegState::Kill);
if (LowReg != HighReg)
MIB.addReg(HighReg, RegState::Kill);
// Do a second scan adding regs as being killed by instruction
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
// Add the callee-saved register as live-in. It's killed at the spill.
MBB.addLiveIn(Reg);
if (Reg != LowReg && Reg != HighReg)
MIB.addReg(Reg, RegState::ImplicitKill);
}
}
// Save FPRs
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
if (SystemZ::FP64RegClass.contains(Reg)) {
MBB.addLiveIn(Reg);
storeRegToStackSlot(MBB, MI, Reg, true, CSI[i].getFrameIdx(),
&SystemZ::FP64RegClass, &RI);
}
}
return true;
}
bool
SystemZInstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const std::vector<CalleeSavedInfo> &CSI,
const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return false;
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
MachineFunction &MF = *MBB.getParent();
const TargetRegisterInfo *RegInfo= MF.getTarget().getRegisterInfo();
SystemZMachineFunctionInfo *MFI = MF.getInfo<SystemZMachineFunctionInfo>();
// Restore FP registers
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
if (SystemZ::FP64RegClass.contains(Reg))
loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
&SystemZ::FP64RegClass, &RI);
}
// Restore GP registers
unsigned LowReg = MFI->getLowReg(), HighReg = MFI->getHighReg();
unsigned StartOffset = RegSpillOffsets[LowReg];
if (StartOffset) {
// Build a load instruction. Use LOAD MULTIPLE instruction if there are many
// registers to load, otherwise - just LOAD.
MachineInstrBuilder MIB =
BuildMI(MBB, MI, DL, get((LowReg == HighReg ?
SystemZ::MOV64rm : SystemZ::MOV64rmm)));
// Add store operands.
MIB.addReg(LowReg, RegState::Define);
if (LowReg != HighReg)
MIB.addReg(HighReg, RegState::Define);
MIB.addReg((RegInfo->hasFP(MF) ? SystemZ::R11D : SystemZ::R15D));
MIB.addImm(StartOffset);
if (LowReg == HighReg)
MIB.addReg(0);
// Do a second scan adding regs as being defined by instruction
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
if (Reg != LowReg && Reg != HighReg)
MIB.addReg(Reg, RegState::ImplicitDefine);
}
}
return true;
}
bool SystemZInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
assert(Cond.size() == 1 && "Invalid Xbranch condition!");
SystemZCC::CondCodes CC = static_cast<SystemZCC::CondCodes>(Cond[0].getImm());
Cond[0].setImm(getOppositeCondition(CC));
return false;
}
bool SystemZInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
const TargetInstrDesc &TID = MI->getDesc();
if (!TID.isTerminator()) return false;
// Conditional branch is a special case.
if (TID.isBranch() && !TID.isBarrier())
return true;
if (!TID.isPredicable())
return true;
return !isPredicated(MI);
}
bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// Start from the bottom of the block and work up, examining the
// terminator instructions.
MachineBasicBlock::iterator I = MBB.end();
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
// Working from the bottom, when we see a non-terminator
// instruction, we're done.
if (!isUnpredicatedTerminator(I))
break;
// A terminator that isn't a branch can't easily be handled
// by this analysis.
if (!I->getDesc().isBranch())
return true;
// Handle unconditional branches.
if (I->getOpcode() == SystemZ::JMP) {
if (!AllowModify) {
TBB = I->getOperand(0).getMBB();
continue;
}
// If the block has any instructions after a JMP, delete them.
while (llvm::next(I) != MBB.end())
llvm::next(I)->eraseFromParent();
Cond.clear();
FBB = 0;
// Delete the JMP if it's equivalent to a fall-through.
if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
TBB = 0;
I->eraseFromParent();
I = MBB.end();
continue;
}
// TBB is used to indicate the unconditinal destination.
TBB = I->getOperand(0).getMBB();
continue;
}
// Handle conditional branches.
SystemZCC::CondCodes BranchCode = getCondFromBranchOpc(I->getOpcode());
if (BranchCode == SystemZCC::INVALID)
return true; // Can't handle indirect branch.
// Working from the bottom, handle the first conditional branch.
if (Cond.empty()) {
FBB = TBB;
TBB = I->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(BranchCode));
continue;
}
// Handle subsequent conditional branches. Only handle the case where all
// conditional branches branch to the same destination.
assert(Cond.size() == 1);
assert(TBB);
// Only handle the case where all conditional branches branch to
// the same destination.
if (TBB != I->getOperand(0).getMBB())
return true;
SystemZCC::CondCodes OldBranchCode = (SystemZCC::CondCodes)Cond[0].getImm();
// If the conditions are the same, we can leave them alone.
if (OldBranchCode == BranchCode)
continue;
return true;
}
return false;
}
unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator I = MBB.end();
unsigned Count = 0;
while (I != MBB.begin()) {
--I;
if (I->isDebugValue())
continue;
if (I->getOpcode() != SystemZ::JMP &&
getCondFromBranchOpc(I->getOpcode()) == SystemZCC::INVALID)
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
++Count;
}
return Count;
}
unsigned
SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"SystemZ branch conditions have one component!");
if (Cond.empty()) {
// Unconditional branch?
assert(!FBB && "Unconditional branch with multiple successors!");
BuildMI(&MBB, DL, get(SystemZ::JMP)).addMBB(TBB);
return 1;
}
// Conditional branch.
unsigned Count = 0;
SystemZCC::CondCodes CC = (SystemZCC::CondCodes)Cond[0].getImm();
BuildMI(&MBB, DL, getBrCond(CC)).addMBB(TBB);
++Count;
if (FBB) {
// Two-way Conditional branch. Insert the second branch.
BuildMI(&MBB, DL, get(SystemZ::JMP)).addMBB(FBB);
++Count;
}
return Count;
}
const TargetInstrDesc&
SystemZInstrInfo::getBrCond(SystemZCC::CondCodes CC) const {
switch (CC) {
default:
llvm_unreachable("Unknown condition code!");
case SystemZCC::O: return get(SystemZ::JO);
case SystemZCC::H: return get(SystemZ::JH);
case SystemZCC::NLE: return get(SystemZ::JNLE);
case SystemZCC::L: return get(SystemZ::JL);
case SystemZCC::NHE: return get(SystemZ::JNHE);
case SystemZCC::LH: return get(SystemZ::JLH);
case SystemZCC::NE: return get(SystemZ::JNE);
case SystemZCC::E: return get(SystemZ::JE);
case SystemZCC::NLH: return get(SystemZ::JNLH);
case SystemZCC::HE: return get(SystemZ::JHE);
case SystemZCC::NL: return get(SystemZ::JNL);
case SystemZCC::LE: return get(SystemZ::JLE);
case SystemZCC::NH: return get(SystemZ::JNH);
case SystemZCC::NO: return get(SystemZ::JNO);
}
}
SystemZCC::CondCodes
SystemZInstrInfo::getCondFromBranchOpc(unsigned Opc) const {
switch (Opc) {
default: return SystemZCC::INVALID;
case SystemZ::JO: return SystemZCC::O;
case SystemZ::JH: return SystemZCC::H;
case SystemZ::JNLE: return SystemZCC::NLE;
case SystemZ::JL: return SystemZCC::L;
case SystemZ::JNHE: return SystemZCC::NHE;
case SystemZ::JLH: return SystemZCC::LH;
case SystemZ::JNE: return SystemZCC::NE;
case SystemZ::JE: return SystemZCC::E;
case SystemZ::JNLH: return SystemZCC::NLH;
case SystemZ::JHE: return SystemZCC::HE;
case SystemZ::JNL: return SystemZCC::NL;
case SystemZ::JLE: return SystemZCC::LE;
case SystemZ::JNH: return SystemZCC::NH;
case SystemZ::JNO: return SystemZCC::NO;
}
}
SystemZCC::CondCodes
SystemZInstrInfo::getOppositeCondition(SystemZCC::CondCodes CC) const {
switch (CC) {
default:
llvm_unreachable("Invalid condition!");
case SystemZCC::O: return SystemZCC::NO;
case SystemZCC::H: return SystemZCC::NH;
case SystemZCC::NLE: return SystemZCC::LE;
case SystemZCC::L: return SystemZCC::NL;
case SystemZCC::NHE: return SystemZCC::HE;
case SystemZCC::LH: return SystemZCC::NLH;
case SystemZCC::NE: return SystemZCC::E;
case SystemZCC::E: return SystemZCC::NE;
case SystemZCC::NLH: return SystemZCC::LH;
case SystemZCC::HE: return SystemZCC::NHE;
case SystemZCC::NL: return SystemZCC::L;
case SystemZCC::LE: return SystemZCC::NLE;
case SystemZCC::NH: return SystemZCC::H;
case SystemZCC::NO: return SystemZCC::O;
}
}
const TargetInstrDesc&
SystemZInstrInfo::getLongDispOpc(unsigned Opc) const {
switch (Opc) {
default:
llvm_unreachable("Don't have long disp version of this instruction");
case SystemZ::MOV32mr: return get(SystemZ::MOV32mry);
case SystemZ::MOV32rm: return get(SystemZ::MOV32rmy);
case SystemZ::MOVSX32rm16: return get(SystemZ::MOVSX32rm16y);
case SystemZ::MOV32m8r: return get(SystemZ::MOV32m8ry);
case SystemZ::MOV32m16r: return get(SystemZ::MOV32m16ry);
case SystemZ::MOV64m8r: return get(SystemZ::MOV64m8ry);
case SystemZ::MOV64m16r: return get(SystemZ::MOV64m16ry);
case SystemZ::MOV64m32r: return get(SystemZ::MOV64m32ry);
case SystemZ::MOV8mi: return get(SystemZ::MOV8miy);
case SystemZ::MUL32rm: return get(SystemZ::MUL32rmy);
case SystemZ::CMP32rm: return get(SystemZ::CMP32rmy);
case SystemZ::UCMP32rm: return get(SystemZ::UCMP32rmy);
case SystemZ::FMOV32mr: return get(SystemZ::FMOV32mry);
case SystemZ::FMOV64mr: return get(SystemZ::FMOV64mry);
case SystemZ::FMOV32rm: return get(SystemZ::FMOV32rmy);
case SystemZ::FMOV64rm: return get(SystemZ::FMOV64rmy);
case SystemZ::MOV64Pmr: return get(SystemZ::MOV64Pmry);
case SystemZ::MOV64Prm: return get(SystemZ::MOV64Prmy);
}
}