1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/lib/CodeGen/GlobalISel/LegacyLegalizerInfo.cpp
Sander de Smalen ac11cfc716 [GlobalISel] NFC: Change LLT::vector to take ElementCount.
This also adds new interfaces for the fixed- and scalable case:
* LLT::fixed_vector
* LLT::scalable_vector

The strategy for migrating to the new interfaces was as follows:
* If the new LLT is a (modified) clone of another LLT, taking the
  same number of elements, then use LLT::vector(OtherTy.getElementCount())
  or if the number of elements is halfed/doubled, it uses .divideCoefficientBy(2)
  or operator*. That is because there is no reason to specifically restrict
  the types to 'fixed_vector'.
* If the algorithm works on the number of elements (as unsigned), then
  just use fixed_vector. This will need to be fixed up in the future when
  modifying the algorithm to also work for scalable vectors, and will need
  then need additional tests to confirm the behaviour works the same for
  scalable vectors.
* If the test used the '/*Scalable=*/true` flag of LLT::vector, then
  this is replaced by LLT::scalable_vector.

Reviewed By: aemerson

Differential Revision: https://reviews.llvm.org/D104451
2021-06-24 11:26:12 +01:00

384 lines
15 KiB
C++

//===- lib/CodeGen/GlobalISel/LegacyLegalizerInfo.cpp - Legalizer ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implement an interface to specify and query how an illegal operation on a
// given type should be expanded.
//
// Issues to be resolved:
// + Make it fast.
// + Support weird types like i3, <7 x i3>, ...
// + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/LegacyLegalizerInfo.h"
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
#include <map>
using namespace llvm;
using namespace LegacyLegalizeActions;
#define DEBUG_TYPE "legalizer-info"
raw_ostream &llvm::operator<<(raw_ostream &OS, LegacyLegalizeAction Action) {
switch (Action) {
case Legal:
OS << "Legal";
break;
case NarrowScalar:
OS << "NarrowScalar";
break;
case WidenScalar:
OS << "WidenScalar";
break;
case FewerElements:
OS << "FewerElements";
break;
case MoreElements:
OS << "MoreElements";
break;
case Bitcast:
OS << "Bitcast";
break;
case Lower:
OS << "Lower";
break;
case Libcall:
OS << "Libcall";
break;
case Custom:
OS << "Custom";
break;
case Unsupported:
OS << "Unsupported";
break;
case NotFound:
OS << "NotFound";
break;
}
return OS;
}
LegacyLegalizerInfo::LegacyLegalizerInfo() : TablesInitialized(false) {
// Set defaults.
// FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
// fundamental load/store Jakob proposed. Once loads & stores are supported.
setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
setLegalizeScalarToDifferentSizeStrategy(
TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
}
void LegacyLegalizerInfo::computeTables() {
assert(TablesInitialized == false);
for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
const unsigned Opcode = FirstOp + OpcodeIdx;
for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
++TypeIdx) {
// 0. Collect information specified through the setAction API, i.e.
// for specific bit sizes.
// For scalar types:
SizeAndActionsVec ScalarSpecifiedActions;
// For pointer types:
std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
// For vector types:
std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
const LLT Type = LLT2Action.first;
const LegacyLegalizeAction Action = LLT2Action.second;
auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
if (Type.isPointer())
AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
SizeAction);
else if (Type.isVector())
ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
.push_back(SizeAction);
else
ScalarSpecifiedActions.push_back(SizeAction);
}
// 1. Handle scalar types
{
// Decide how to handle bit sizes for which no explicit specification
// was given.
SizeChangeStrategy S = &unsupportedForDifferentSizes;
if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
llvm::sort(ScalarSpecifiedActions);
checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
}
// 2. Handle pointer types
for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
llvm::sort(PointerSpecifiedActions.second);
checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
// For pointer types, we assume that there isn't a meaningfull way
// to change the number of bits used in the pointer.
setPointerAction(
Opcode, TypeIdx, PointerSpecifiedActions.first,
unsupportedForDifferentSizes(PointerSpecifiedActions.second));
}
// 3. Handle vector types
SizeAndActionsVec ElementSizesSeen;
for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
llvm::sort(VectorSpecifiedActions.second);
const uint16_t ElementSize = VectorSpecifiedActions.first;
ElementSizesSeen.push_back({ElementSize, Legal});
checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
// For vector types, we assume that the best way to adapt the number
// of elements is to the next larger number of elements type for which
// the vector type is legal, unless there is no such type. In that case,
// legalize towards a vector type with a smaller number of elements.
SizeAndActionsVec NumElementsActions;
for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
assert(BitsizeAndAction.first % ElementSize == 0);
const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
}
setVectorNumElementAction(
Opcode, TypeIdx, ElementSize,
moreToWiderTypesAndLessToWidest(NumElementsActions));
}
llvm::sort(ElementSizesSeen);
SizeChangeStrategy VectorElementSizeChangeStrategy =
&unsupportedForDifferentSizes;
if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
VectorElementSizeChangeStrategy =
VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
setScalarInVectorAction(
Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
}
}
TablesInitialized = true;
}
// FIXME: inefficient implementation for now. Without ComputeValueVTs we're
// probably going to need specialized lookup structures for various types before
// we have any hope of doing well with something like <13 x i3>. Even the common
// cases should do better than what we have now.
std::pair<LegacyLegalizeAction, LLT>
LegacyLegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
assert(TablesInitialized && "backend forgot to call computeTables");
// These *have* to be implemented for now, they're the fundamental basis of
// how everything else is transformed.
if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
return findScalarLegalAction(Aspect);
assert(Aspect.Type.isVector());
return findVectorLegalAction(Aspect);
}
LegacyLegalizerInfo::SizeAndActionsVec
LegacyLegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
const SizeAndActionsVec &v, LegacyLegalizeAction IncreaseAction,
LegacyLegalizeAction DecreaseAction) {
SizeAndActionsVec result;
unsigned LargestSizeSoFar = 0;
if (v.size() >= 1 && v[0].first != 1)
result.push_back({1, IncreaseAction});
for (size_t i = 0; i < v.size(); ++i) {
result.push_back(v[i]);
LargestSizeSoFar = v[i].first;
if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
result.push_back({LargestSizeSoFar + 1, IncreaseAction});
LargestSizeSoFar = v[i].first + 1;
}
}
result.push_back({LargestSizeSoFar + 1, DecreaseAction});
return result;
}
LegacyLegalizerInfo::SizeAndActionsVec
LegacyLegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
const SizeAndActionsVec &v, LegacyLegalizeAction DecreaseAction,
LegacyLegalizeAction IncreaseAction) {
SizeAndActionsVec result;
if (v.size() == 0 || v[0].first != 1)
result.push_back({1, IncreaseAction});
for (size_t i = 0; i < v.size(); ++i) {
result.push_back(v[i]);
if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
result.push_back({v[i].first + 1, DecreaseAction});
}
}
return result;
}
LegacyLegalizerInfo::SizeAndAction
LegacyLegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
assert(Size >= 1);
// Find the last element in Vec that has a bitsize equal to or smaller than
// the requested bit size.
// That is the element just before the first element that is bigger than Size.
auto It = partition_point(
Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
assert(It != Vec.begin() && "Does Vec not start with size 1?");
int VecIdx = It - Vec.begin() - 1;
LegacyLegalizeAction Action = Vec[VecIdx].second;
switch (Action) {
case Legal:
case Bitcast:
case Lower:
case Libcall:
case Custom:
return {Size, Action};
case FewerElements:
// FIXME: is this special case still needed and correct?
// Special case for scalarization:
if (Vec == SizeAndActionsVec({{1, FewerElements}}))
return {1, FewerElements};
LLVM_FALLTHROUGH;
case NarrowScalar: {
// The following needs to be a loop, as for now, we do allow needing to
// go over "Unsupported" bit sizes before finding a legalizable bit size.
// e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
// we need to iterate over s9, and then to s32 to return (s32, Legal).
// If we want to get rid of the below loop, we should have stronger asserts
// when building the SizeAndActionsVecs, probably not allowing
// "Unsupported" unless at the ends of the vector.
for (int i = VecIdx - 1; i >= 0; --i)
if (!needsLegalizingToDifferentSize(Vec[i].second) &&
Vec[i].second != Unsupported)
return {Vec[i].first, Action};
llvm_unreachable("");
}
case WidenScalar:
case MoreElements: {
// See above, the following needs to be a loop, at least for now.
for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
if (!needsLegalizingToDifferentSize(Vec[i].second) &&
Vec[i].second != Unsupported)
return {Vec[i].first, Action};
llvm_unreachable("");
}
case Unsupported:
return {Size, Unsupported};
case NotFound:
llvm_unreachable("NotFound");
}
llvm_unreachable("Action has an unknown enum value");
}
std::pair<LegacyLegalizeAction, LLT>
LegacyLegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
return {NotFound, LLT()};
const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
if (Aspect.Type.isPointer() &&
AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
AddrSpace2PointerActions[OpcodeIdx].end()) {
return {NotFound, LLT()};
}
const SmallVector<SizeAndActionsVec, 1> &Actions =
Aspect.Type.isPointer()
? AddrSpace2PointerActions[OpcodeIdx]
.find(Aspect.Type.getAddressSpace())
->second
: ScalarActions[OpcodeIdx];
if (Aspect.Idx >= Actions.size())
return {NotFound, LLT()};
const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
// FIXME: speed up this search, e.g. by using a results cache for repeated
// queries?
auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
return {SizeAndAction.second,
Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
: LLT::pointer(Aspect.Type.getAddressSpace(),
SizeAndAction.first)};
}
std::pair<LegacyLegalizeAction, LLT>
LegacyLegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
assert(Aspect.Type.isVector());
// First legalize the vector element size, then legalize the number of
// lanes in the vector.
if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
return {NotFound, Aspect.Type};
const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
const unsigned TypeIdx = Aspect.Idx;
if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
return {NotFound, Aspect.Type};
const SizeAndActionsVec &ElemSizeVec =
ScalarInVectorActions[OpcodeIdx][TypeIdx];
LLT IntermediateType;
auto ElementSizeAndAction =
findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
IntermediateType = LLT::fixed_vector(Aspect.Type.getNumElements(),
ElementSizeAndAction.first);
if (ElementSizeAndAction.second != Legal)
return {ElementSizeAndAction.second, IntermediateType};
auto i = NumElements2Actions[OpcodeIdx].find(
IntermediateType.getScalarSizeInBits());
if (i == NumElements2Actions[OpcodeIdx].end()) {
return {NotFound, IntermediateType};
}
const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
auto NumElementsAndAction =
findAction(NumElementsVec, IntermediateType.getNumElements());
return {NumElementsAndAction.second,
LLT::fixed_vector(NumElementsAndAction.first,
IntermediateType.getScalarSizeInBits())};
}
unsigned LegacyLegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
return Opcode - FirstOp;
}
LegacyLegalizeActionStep
LegacyLegalizerInfo::getAction(const LegalityQuery &Query) const {
for (unsigned i = 0; i < Query.Types.size(); ++i) {
auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
if (Action.first != Legal) {
LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
<< Action.first << ", " << Action.second << "\n");
return {Action.first, i, Action.second};
} else
LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
}
LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
return {Legal, 0, LLT{}};
}