mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 19:23:23 +01:00
ae65e281f3
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
213 lines
8.0 KiB
C++
213 lines
8.0 KiB
C++
//===- PhiValues.cpp - Phi Value Analysis ---------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/PhiValues.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
using namespace llvm;
|
|
|
|
void PhiValues::PhiValuesCallbackVH::deleted() {
|
|
PV->invalidateValue(getValPtr());
|
|
}
|
|
|
|
void PhiValues::PhiValuesCallbackVH::allUsesReplacedWith(Value *) {
|
|
// We could potentially update the cached values we have with the new value,
|
|
// but it's simpler to just treat the old value as invalidated.
|
|
PV->invalidateValue(getValPtr());
|
|
}
|
|
|
|
bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &) {
|
|
// PhiValues is invalidated if it isn't preserved.
|
|
auto PAC = PA.getChecker<PhiValuesAnalysis>();
|
|
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>());
|
|
}
|
|
|
|
// The goal here is to find all of the non-phi values reachable from this phi,
|
|
// and to do the same for all of the phis reachable from this phi, as doing so
|
|
// is necessary anyway in order to get the values for this phi. We do this using
|
|
// Tarjan's algorithm with Nuutila's improvements to find the strongly connected
|
|
// components of the phi graph rooted in this phi:
|
|
// * All phis in a strongly connected component will have the same reachable
|
|
// non-phi values. The SCC may not be the maximal subgraph for that set of
|
|
// reachable values, but finding out that isn't really necessary (it would
|
|
// only reduce the amount of memory needed to store the values).
|
|
// * Tarjan's algorithm completes components in a bottom-up manner, i.e. it
|
|
// never completes a component before the components reachable from it have
|
|
// been completed. This means that when we complete a component we have
|
|
// everything we need to collect the values reachable from that component.
|
|
// * We collect both the non-phi values reachable from each SCC, as that's what
|
|
// we're ultimately interested in, and all of the reachable values, i.e.
|
|
// including phis, as that makes invalidateValue easier.
|
|
void PhiValues::processPhi(const PHINode *Phi,
|
|
SmallVector<const PHINode *, 8> &Stack) {
|
|
// Initialize the phi with the next depth number.
|
|
assert(DepthMap.lookup(Phi) == 0);
|
|
assert(NextDepthNumber != UINT_MAX);
|
|
unsigned int DepthNumber = ++NextDepthNumber;
|
|
DepthMap[Phi] = DepthNumber;
|
|
|
|
// Recursively process the incoming phis of this phi.
|
|
TrackedValues.insert(PhiValuesCallbackVH(const_cast<PHINode *>(Phi), this));
|
|
for (Value *PhiOp : Phi->incoming_values()) {
|
|
if (PHINode *PhiPhiOp = dyn_cast<PHINode>(PhiOp)) {
|
|
// Recurse if the phi has not yet been visited.
|
|
if (DepthMap.lookup(PhiPhiOp) == 0)
|
|
processPhi(PhiPhiOp, Stack);
|
|
assert(DepthMap.lookup(PhiPhiOp) != 0);
|
|
// If the phi did not become part of a component then this phi and that
|
|
// phi are part of the same component, so adjust the depth number.
|
|
if (!ReachableMap.count(DepthMap[PhiPhiOp]))
|
|
DepthMap[Phi] = std::min(DepthMap[Phi], DepthMap[PhiPhiOp]);
|
|
} else {
|
|
TrackedValues.insert(PhiValuesCallbackVH(PhiOp, this));
|
|
}
|
|
}
|
|
|
|
// Now that incoming phis have been handled, push this phi to the stack.
|
|
Stack.push_back(Phi);
|
|
|
|
// If the depth number has not changed then we've finished collecting the phis
|
|
// of a strongly connected component.
|
|
if (DepthMap[Phi] == DepthNumber) {
|
|
// Collect the reachable values for this component. The phis of this
|
|
// component will be those on top of the depth stach with the same or
|
|
// greater depth number.
|
|
ConstValueSet Reachable;
|
|
while (!Stack.empty() && DepthMap[Stack.back()] >= DepthNumber) {
|
|
const PHINode *ComponentPhi = Stack.pop_back_val();
|
|
Reachable.insert(ComponentPhi);
|
|
DepthMap[ComponentPhi] = DepthNumber;
|
|
for (Value *Op : ComponentPhi->incoming_values()) {
|
|
if (PHINode *PhiOp = dyn_cast<PHINode>(Op)) {
|
|
// If this phi is not part of the same component then that component
|
|
// is guaranteed to have been completed before this one. Therefore we
|
|
// can just add its reachable values to the reachable values of this
|
|
// component.
|
|
auto It = ReachableMap.find(DepthMap[PhiOp]);
|
|
if (It != ReachableMap.end())
|
|
Reachable.insert(It->second.begin(), It->second.end());
|
|
} else {
|
|
Reachable.insert(Op);
|
|
}
|
|
}
|
|
}
|
|
ReachableMap.insert({DepthNumber,Reachable});
|
|
|
|
// Filter out phis to get the non-phi reachable values.
|
|
ValueSet NonPhi;
|
|
for (const Value *V : Reachable)
|
|
if (!isa<PHINode>(V))
|
|
NonPhi.insert(const_cast<Value*>(V));
|
|
NonPhiReachableMap.insert({DepthNumber,NonPhi});
|
|
}
|
|
}
|
|
|
|
const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) {
|
|
if (DepthMap.count(PN) == 0) {
|
|
SmallVector<const PHINode *, 8> Stack;
|
|
processPhi(PN, Stack);
|
|
assert(Stack.empty());
|
|
}
|
|
assert(DepthMap.lookup(PN) != 0);
|
|
return NonPhiReachableMap[DepthMap[PN]];
|
|
}
|
|
|
|
void PhiValues::invalidateValue(const Value *V) {
|
|
// Components that can reach V are invalid.
|
|
SmallVector<unsigned int, 8> InvalidComponents;
|
|
for (auto &Pair : ReachableMap)
|
|
if (Pair.second.count(V))
|
|
InvalidComponents.push_back(Pair.first);
|
|
|
|
for (unsigned int N : InvalidComponents) {
|
|
for (const Value *V : ReachableMap[N])
|
|
if (const PHINode *PN = dyn_cast<PHINode>(V))
|
|
DepthMap.erase(PN);
|
|
NonPhiReachableMap.erase(N);
|
|
ReachableMap.erase(N);
|
|
}
|
|
// This value is no longer tracked
|
|
auto It = TrackedValues.find_as(V);
|
|
if (It != TrackedValues.end())
|
|
TrackedValues.erase(It);
|
|
}
|
|
|
|
void PhiValues::releaseMemory() {
|
|
DepthMap.clear();
|
|
NonPhiReachableMap.clear();
|
|
ReachableMap.clear();
|
|
}
|
|
|
|
void PhiValues::print(raw_ostream &OS) const {
|
|
// Iterate through the phi nodes of the function rather than iterating through
|
|
// DepthMap in order to get predictable ordering.
|
|
for (const BasicBlock &BB : F) {
|
|
for (const PHINode &PN : BB.phis()) {
|
|
OS << "PHI ";
|
|
PN.printAsOperand(OS, false);
|
|
OS << " has values:\n";
|
|
unsigned int N = DepthMap.lookup(&PN);
|
|
auto It = NonPhiReachableMap.find(N);
|
|
if (It == NonPhiReachableMap.end())
|
|
OS << " UNKNOWN\n";
|
|
else if (It->second.empty())
|
|
OS << " NONE\n";
|
|
else
|
|
for (Value *V : It->second)
|
|
// Printing of an instruction prints two spaces at the start, so
|
|
// handle instructions and everything else slightly differently in
|
|
// order to get consistent indenting.
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
OS << *I << "\n";
|
|
else
|
|
OS << " " << *V << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
AnalysisKey PhiValuesAnalysis::Key;
|
|
PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) {
|
|
return PhiValues(F);
|
|
}
|
|
|
|
PreservedAnalyses PhiValuesPrinterPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
OS << "PHI Values for function: " << F.getName() << "\n";
|
|
PhiValues &PI = AM.getResult<PhiValuesAnalysis>(F);
|
|
for (const BasicBlock &BB : F)
|
|
for (const PHINode &PN : BB.phis())
|
|
PI.getValuesForPhi(&PN);
|
|
PI.print(OS);
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) {
|
|
initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool PhiValuesWrapperPass::runOnFunction(Function &F) {
|
|
Result.reset(new PhiValues(F));
|
|
return false;
|
|
}
|
|
|
|
void PhiValuesWrapperPass::releaseMemory() {
|
|
Result->releaseMemory();
|
|
}
|
|
|
|
void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
char PhiValuesWrapperPass::ID = 0;
|
|
|
|
INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values", "Phi Values Analysis", false,
|
|
true)
|