1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/test/TableGen/JSON.td
Stella Stamenova f5a62c8af5 [lit, python] Always add quotes around the python path in lit
Summary:
The issue with the python path is that the path to python on Windows can contain spaces. To make the tests always work, the path to python needs to be surrounded by quotes.

This change updates several configuration files which specify the path to python as a substitution and also remove quotes from existing tests.

Reviewers: asmith, zturner, alexshap, jakehehrlich

Reviewed By: zturner, alexshap, jakehehrlich

Subscribers: mehdi_amini, nemanjai, eraman, kbarton, jakehehrlich, steven_wu, dexonsmith, stella.stamenova, delcypher, llvm-commits

Differential Revision: https://reviews.llvm.org/D50206

llvm-svn: 339073
2018-08-06 22:37:44 +00:00

147 lines
5.6 KiB
TableGen

// RUN: llvm-tblgen -dump-json %s | %python %S/JSON-check.py %s
// CHECK: data['!tablegen_json_version'] == 1
// CHECK: all(data[s]['!name'] == s for s in data if not s.startswith("!"))
class Base {}
class Intermediate : Base {}
class Derived : Intermediate {}
def D : Intermediate {}
// CHECK: 'D' in data['!instanceof']['Base']
// CHECK: 'D' in data['!instanceof']['Intermediate']
// CHECK: 'D' not in data['!instanceof']['Derived']
// CHECK: 'Base' in data['D']['!superclasses']
// CHECK: 'Intermediate' in data['D']['!superclasses']
// CHECK: 'Derived' not in data['D']['!superclasses']
def ExampleDagOp;
def FieldKeywordTest {
int a;
field int b;
// CHECK: 'a' not in data['FieldKeywordTest']['!fields']
// CHECK: 'b' in data['FieldKeywordTest']['!fields']
}
class Variables {
int i;
string s;
bit b;
bits<8> bs;
code c;
list<int> li;
Base base;
dag d;
}
def VarNull : Variables {
// A variable not filled in at all has its value set to JSON
// 'null', which translates to Python None
// CHECK: data['VarNull']['i'] is None
}
def VarPrim : Variables {
// Test initializers that map to primitive JSON types
int i = 3;
// CHECK: data['VarPrim']['i'] == 3
// Integer literals should be emitted in the JSON at full 64-bit
// precision, for the benefit of JSON readers that preserve that
// much information. Python's is one such.
int enormous_pos = 9123456789123456789;
int enormous_neg = -9123456789123456789;
// CHECK: data['VarPrim']['enormous_pos'] == 9123456789123456789
// CHECK: data['VarPrim']['enormous_neg'] == -9123456789123456789
string s = "hello, world";
// CHECK: data['VarPrim']['s'] == 'hello, world'
bit b = 0;
// CHECK: data['VarPrim']['b'] == 0
// bits<> arrays are stored in logical order (array[i] is the same
// bit identified in .td files as bs{i}), which means the _visual_
// order of the list (in default rendering) is reversed.
bits<8> bs = { 0,0,0,1,0,1,1,1 };
// CHECK: data['VarPrim']['bs'] == [ 1,1,1,0,1,0,0,0 ]
code c = [{ \" }];
// CHECK: data['VarPrim']['c'] == r' \" '
list<int> li = [ 1, 2, 3, 4 ];
// CHECK: data['VarPrim']['li'] == [ 1, 2, 3, 4 ]
}
def VarObj : Variables {
// Test initializers that map to JSON objects containing a 'kind'
// discriminator
Base base = D;
// CHECK: data['VarObj']['base']['kind'] == 'def'
// CHECK: data['VarObj']['base']['def'] == 'D'
// CHECK: data['VarObj']['base']['printable'] == 'D'
dag d = (ExampleDagOp 22, "hello":$foo);
// CHECK: data['VarObj']['d']['kind'] == 'dag'
// CHECK: data['VarObj']['d']['operator']['kind'] == 'def'
// CHECK: data['VarObj']['d']['operator']['def'] == 'ExampleDagOp'
// CHECK: data['VarObj']['d']['operator']['printable'] == 'ExampleDagOp'
// CHECK: data['VarObj']['d']['args'] == [[22, None], ["hello", "foo"]]
// CHECK: data['VarObj']['d']['printable'] == '(ExampleDagOp 22, "hello":$foo)'
int undef_int;
field int ref_int = undef_int;
// CHECK: data['VarObj']['ref_int']['kind'] == 'var'
// CHECK: data['VarObj']['ref_int']['var'] == 'undef_int'
// CHECK: data['VarObj']['ref_int']['printable'] == 'undef_int'
bits<2> undef_bits;
bits<4> ref_bits;
let ref_bits{3-2} = 0b10;
let ref_bits{1-0} = undef_bits{1-0};
// CHECK: data['VarObj']['ref_bits'][3] == 1
// CHECK: data['VarObj']['ref_bits'][2] == 0
// CHECK: data['VarObj']['ref_bits'][1]['kind'] == 'varbit'
// CHECK: data['VarObj']['ref_bits'][1]['var'] == 'undef_bits'
// CHECK: data['VarObj']['ref_bits'][1]['index'] == 1
// CHECK: data['VarObj']['ref_bits'][1]['printable'] == 'undef_bits{1}'
// CHECK: data['VarObj']['ref_bits'][0]['kind'] == 'varbit'
// CHECK: data['VarObj']['ref_bits'][0]['var'] == 'undef_bits'
// CHECK: data['VarObj']['ref_bits'][0]['index'] == 0
// CHECK: data['VarObj']['ref_bits'][0]['printable'] == 'undef_bits{0}'
field int complex_ref_int = !add(undef_int, 2);
// CHECK: data['VarObj']['complex_ref_int']['kind'] == 'complex'
// CHECK: data['VarObj']['complex_ref_int']['printable'] == '!add(undef_int, 2)'
}
// Test the !anonymous member. This is tricky because when a def is
// anonymous, almost by definition, the test can't reliably predict
// the name it will be stored under! So we have to search all the defs
// in the JSON output looking for the one that has the test integer
// field set to the right value.
def Named { int AnonTestField = 1; }
// CHECK: data['Named']['AnonTestField'] == 1
// CHECK: data['Named']['!anonymous'] is False
def { int AnonTestField = 2; }
// CHECK: next(rec for rec in data.values() if isinstance(rec, dict) and rec.get('AnonTestField') == 2)['!anonymous'] is True
multiclass AnonTestMulticlass<int base> {
def _plus_one { int AnonTestField = !add(base,1); }
def { int AnonTestField = !add(base,2); }
}
defm NamedDefm : AnonTestMulticlass<10>;
// CHECK: data['NamedDefm_plus_one']['!anonymous'] is False
// CHECK: data['NamedDefm_plus_one']['AnonTestField'] == 11
// CHECK: next(rec for rec in data.values() if isinstance(rec, dict) and rec.get('AnonTestField') == 12)['!anonymous'] is True
// D47431 clarifies that a named def inside a multiclass gives a
// *non*-anonymous output record, even if the defm that instantiates
// that multiclass is anonymous.
defm : AnonTestMulticlass<20>;
// CHECK: next(rec for rec in data.values() if isinstance(rec, dict) and rec.get('AnonTestField') == 21)['!anonymous'] is False
// CHECK: next(rec for rec in data.values() if isinstance(rec, dict) and rec.get('AnonTestField') == 22)['!anonymous'] is True