1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/Transforms/Utils/FlattenCFG.cpp

546 lines
17 KiB
C++

//===- FlatternCFG.cpp - Code to perform CFG flattening -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Reduce conditional branches in CFG.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "flattencfg"
namespace {
class FlattenCFGOpt {
AliasAnalysis *AA;
/// Use parallel-and or parallel-or to generate conditions for
/// conditional branches.
bool FlattenParallelAndOr(BasicBlock *BB, IRBuilder<> &Builder);
/// If \param BB is the merge block of an if-region, attempt to merge
/// the if-region with an adjacent if-region upstream if two if-regions
/// contain identical instructions.
bool MergeIfRegion(BasicBlock *BB, IRBuilder<> &Builder);
/// Compare a pair of blocks: \p Block1 and \p Block2, which
/// are from two if-regions, where \p Head2 is the entry block of the 2nd
/// if-region. \returns true if \p Block1 and \p Block2 contain identical
/// instructions, and have no memory reference alias with \p Head2.
/// This is used as a legality check for merging if-regions.
bool CompareIfRegionBlock(BasicBlock *Block1, BasicBlock *Block2,
BasicBlock *Head2);
public:
FlattenCFGOpt(AliasAnalysis *AA) : AA(AA) {}
bool run(BasicBlock *BB);
};
} // end anonymous namespace
/// If \param [in] BB has more than one predecessor that is a conditional
/// branch, attempt to use parallel and/or for the branch condition. \returns
/// true on success.
///
/// Before:
/// ......
/// %cmp10 = fcmp une float %tmp1, %tmp2
/// br i1 %cmp10, label %if.then, label %lor.rhs
///
/// lor.rhs:
/// ......
/// %cmp11 = fcmp une float %tmp3, %tmp4
/// br i1 %cmp11, label %if.then, label %ifend
///
/// if.end: // the merge block
/// ......
///
/// if.then: // has two predecessors, both of them contains conditional branch.
/// ......
/// br label %if.end;
///
/// After:
/// ......
/// %cmp10 = fcmp une float %tmp1, %tmp2
/// ......
/// %cmp11 = fcmp une float %tmp3, %tmp4
/// %cmp12 = or i1 %cmp10, %cmp11 // parallel-or mode.
/// br i1 %cmp12, label %if.then, label %ifend
///
/// if.end:
/// ......
///
/// if.then:
/// ......
/// br label %if.end;
///
/// Current implementation handles two cases.
/// Case 1: BB is on the else-path.
///
/// BB1
/// / |
/// BB2 |
/// / \ |
/// BB3 \ | where, BB1, BB2 contain conditional branches.
/// \ | / BB3 contains unconditional branch.
/// \ | / BB4 corresponds to BB which is also the merge.
/// BB => BB4
///
///
/// Corresponding source code:
///
/// if (a == b && c == d)
/// statement; // BB3
///
/// Case 2: BB is on the then-path.
///
/// BB1
/// / |
/// | BB2
/// \ / | where BB1, BB2 contain conditional branches.
/// BB => BB3 | BB3 contains unconditiona branch and corresponds
/// \ / to BB. BB4 is the merge.
/// BB4
///
/// Corresponding source code:
///
/// if (a == b || c == d)
/// statement; // BB3
///
/// In both cases, BB is the common successor of conditional branches.
/// In Case 1, BB (BB4) has an unconditional branch (BB3) as
/// its predecessor. In Case 2, BB (BB3) only has conditional branches
/// as its predecessors.
bool FlattenCFGOpt::FlattenParallelAndOr(BasicBlock *BB, IRBuilder<> &Builder) {
PHINode *PHI = dyn_cast<PHINode>(BB->begin());
if (PHI)
return false; // For simplicity, avoid cases containing PHI nodes.
BasicBlock *LastCondBlock = nullptr;
BasicBlock *FirstCondBlock = nullptr;
BasicBlock *UnCondBlock = nullptr;
int Idx = -1;
// Check predecessors of \param BB.
SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
for (SmallPtrSetIterator<BasicBlock *> PI = Preds.begin(), PE = Preds.end();
PI != PE; ++PI) {
BasicBlock *Pred = *PI;
BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator());
// All predecessors should terminate with a branch.
if (!PBI)
return false;
BasicBlock *PP = Pred->getSinglePredecessor();
if (PBI->isUnconditional()) {
// Case 1: Pred (BB3) is an unconditional block, it should
// have a single predecessor (BB2) that is also a predecessor
// of \param BB (BB4) and should not have address-taken.
// There should exist only one such unconditional
// branch among the predecessors.
if (UnCondBlock || !PP || (Preds.count(PP) == 0) ||
Pred->hasAddressTaken())
return false;
UnCondBlock = Pred;
continue;
}
// Only conditional branches are allowed beyond this point.
assert(PBI->isConditional());
// Condition's unique use should be the branch instruction.
Value *PC = PBI->getCondition();
if (!PC || !PC->hasOneUse())
return false;
if (PP && Preds.count(PP)) {
// These are internal condition blocks to be merged from, e.g.,
// BB2 in both cases.
// Should not be address-taken.
if (Pred->hasAddressTaken())
return false;
// Instructions in the internal condition blocks should be safe
// to hoist up.
for (BasicBlock::iterator BI = Pred->begin(), BE = PBI->getIterator();
BI != BE;) {
Instruction *CI = &*BI++;
if (isa<PHINode>(CI) || !isSafeToSpeculativelyExecute(CI))
return false;
}
} else {
// This is the condition block to be merged into, e.g. BB1 in
// both cases.
if (FirstCondBlock)
return false;
FirstCondBlock = Pred;
}
// Find whether BB is uniformly on the true (or false) path
// for all of its predecessors.
BasicBlock *PS1 = PBI->getSuccessor(0);
BasicBlock *PS2 = PBI->getSuccessor(1);
BasicBlock *PS = (PS1 == BB) ? PS2 : PS1;
int CIdx = (PS1 == BB) ? 0 : 1;
if (Idx == -1)
Idx = CIdx;
else if (CIdx != Idx)
return false;
// PS is the successor which is not BB. Check successors to identify
// the last conditional branch.
if (Preds.count(PS) == 0) {
// Case 2.
LastCondBlock = Pred;
} else {
// Case 1
BranchInst *BPS = dyn_cast<BranchInst>(PS->getTerminator());
if (BPS && BPS->isUnconditional()) {
// Case 1: PS(BB3) should be an unconditional branch.
LastCondBlock = Pred;
}
}
}
if (!FirstCondBlock || !LastCondBlock || (FirstCondBlock == LastCondBlock))
return false;
Instruction *TBB = LastCondBlock->getTerminator();
BasicBlock *PS1 = TBB->getSuccessor(0);
BasicBlock *PS2 = TBB->getSuccessor(1);
BranchInst *PBI1 = dyn_cast<BranchInst>(PS1->getTerminator());
BranchInst *PBI2 = dyn_cast<BranchInst>(PS2->getTerminator());
// If PS1 does not jump into PS2, but PS2 jumps into PS1,
// attempt branch inversion.
if (!PBI1 || !PBI1->isUnconditional() ||
(PS1->getTerminator()->getSuccessor(0) != PS2)) {
// Check whether PS2 jumps into PS1.
if (!PBI2 || !PBI2->isUnconditional() ||
(PS2->getTerminator()->getSuccessor(0) != PS1))
return false;
// Do branch inversion.
BasicBlock *CurrBlock = LastCondBlock;
bool EverChanged = false;
for (; CurrBlock != FirstCondBlock;
CurrBlock = CurrBlock->getSinglePredecessor()) {
auto *BI = cast<BranchInst>(CurrBlock->getTerminator());
auto *CI = dyn_cast<CmpInst>(BI->getCondition());
if (!CI)
continue;
CmpInst::Predicate Predicate = CI->getPredicate();
// Canonicalize icmp_ne -> icmp_eq, fcmp_one -> fcmp_oeq
if ((Predicate == CmpInst::ICMP_NE) || (Predicate == CmpInst::FCMP_ONE)) {
CI->setPredicate(ICmpInst::getInversePredicate(Predicate));
BI->swapSuccessors();
EverChanged = true;
}
}
return EverChanged;
}
// PS1 must have a conditional branch.
if (!PBI1 || !PBI1->isUnconditional())
return false;
// PS2 should not contain PHI node.
PHI = dyn_cast<PHINode>(PS2->begin());
if (PHI)
return false;
// Do the transformation.
BasicBlock *CB;
BranchInst *PBI = cast<BranchInst>(FirstCondBlock->getTerminator());
bool Iteration = true;
IRBuilder<>::InsertPointGuard Guard(Builder);
Value *PC = PBI->getCondition();
do {
CB = PBI->getSuccessor(1 - Idx);
// Delete the conditional branch.
FirstCondBlock->getInstList().pop_back();
FirstCondBlock->getInstList()
.splice(FirstCondBlock->end(), CB->getInstList());
PBI = cast<BranchInst>(FirstCondBlock->getTerminator());
Value *CC = PBI->getCondition();
// Merge conditions.
Builder.SetInsertPoint(PBI);
Value *NC;
if (Idx == 0)
// Case 2, use parallel or.
NC = Builder.CreateOr(PC, CC);
else
// Case 1, use parallel and.
NC = Builder.CreateAnd(PC, CC);
PBI->replaceUsesOfWith(CC, NC);
PC = NC;
if (CB == LastCondBlock)
Iteration = false;
// Remove internal conditional branches.
CB->dropAllReferences();
// make CB unreachable and let downstream to delete the block.
new UnreachableInst(CB->getContext(), CB);
} while (Iteration);
LLVM_DEBUG(dbgs() << "Use parallel and/or in:\n" << *FirstCondBlock);
return true;
}
/// Compare blocks from two if-regions, where \param Head2 is the entry of the
/// 2nd if-region. \param Block1 is a block in the 1st if-region to compare.
/// \param Block2 is a block in the 2nd if-region to compare. \returns true if
/// Block1 and Block2 have identical instructions and do not have
/// memory reference alias with Head2.
bool FlattenCFGOpt::CompareIfRegionBlock(BasicBlock *Block1, BasicBlock *Block2,
BasicBlock *Head2) {
Instruction *PTI2 = Head2->getTerminator();
Instruction *PBI2 = &Head2->front();
// Check whether instructions in Block1 and Block2 are identical
// and do not alias with instructions in Head2.
BasicBlock::iterator iter1 = Block1->begin();
BasicBlock::iterator end1 = Block1->getTerminator()->getIterator();
BasicBlock::iterator iter2 = Block2->begin();
BasicBlock::iterator end2 = Block2->getTerminator()->getIterator();
while (true) {
if (iter1 == end1) {
if (iter2 != end2)
return false;
break;
}
if (!iter1->isIdenticalTo(&*iter2))
return false;
// Illegal to remove instructions with side effects except
// non-volatile stores.
if (iter1->mayHaveSideEffects()) {
Instruction *CurI = &*iter1;
StoreInst *SI = dyn_cast<StoreInst>(CurI);
if (!SI || SI->isVolatile())
return false;
}
// For simplicity and speed, data dependency check can be
// avoided if read from memory doesn't exist.
if (iter1->mayReadFromMemory())
return false;
if (iter1->mayWriteToMemory()) {
for (BasicBlock::iterator BI(PBI2), BE(PTI2); BI != BE; ++BI) {
if (BI->mayReadFromMemory() || BI->mayWriteToMemory()) {
// Check alias with Head2.
if (!AA || AA->alias(&*iter1, &*BI))
return false;
}
}
}
++iter1;
++iter2;
}
return true;
}
/// Check whether \param BB is the merge block of a if-region. If yes, check
/// whether there exists an adjacent if-region upstream, the two if-regions
/// contain identical instructions and can be legally merged. \returns true if
/// the two if-regions are merged.
///
/// From:
/// if (a)
/// statement;
/// if (b)
/// statement;
///
/// To:
/// if (a || b)
/// statement;
///
///
/// And from:
/// if (a)
/// ;
/// else
/// statement;
/// if (b)
/// ;
/// else
/// statement;
///
/// To:
/// if (a && b)
/// ;
/// else
/// statement;
///
/// We always take the form of the first if-region. This means that if the
/// statement in the first if-region, is in the "then-path", while in the second
/// if-region it is in the "else-path", then we convert the second to the first
/// form, by inverting the condition and the branch successors. The same
/// approach goes for the opposite case.
bool FlattenCFGOpt::MergeIfRegion(BasicBlock *BB, IRBuilder<> &Builder) {
BasicBlock *IfTrue2, *IfFalse2;
Value *IfCond2 = GetIfCondition(BB, IfTrue2, IfFalse2);
Instruction *CInst2 = dyn_cast_or_null<Instruction>(IfCond2);
if (!CInst2)
return false;
BasicBlock *SecondEntryBlock = CInst2->getParent();
if (SecondEntryBlock->hasAddressTaken())
return false;
BasicBlock *IfTrue1, *IfFalse1;
Value *IfCond1 = GetIfCondition(SecondEntryBlock, IfTrue1, IfFalse1);
Instruction *CInst1 = dyn_cast_or_null<Instruction>(IfCond1);
if (!CInst1)
return false;
BasicBlock *FirstEntryBlock = CInst1->getParent();
// Either then-path or else-path should be empty.
bool InvertCond2 = false;
BinaryOperator::BinaryOps CombineOp;
if (IfFalse1 == FirstEntryBlock) {
// The else-path is empty, so we must use "or" operation to combine the
// conditions.
CombineOp = BinaryOperator::Or;
if (IfFalse2 != SecondEntryBlock) {
if (IfTrue2 != SecondEntryBlock)
return false;
InvertCond2 = true;
std::swap(IfTrue2, IfFalse2);
}
if (!CompareIfRegionBlock(IfTrue1, IfTrue2, SecondEntryBlock))
return false;
} else if (IfTrue1 == FirstEntryBlock) {
// The then-path is empty, so we must use "and" operation to combine the
// conditions.
CombineOp = BinaryOperator::And;
if (IfTrue2 != SecondEntryBlock) {
if (IfFalse2 != SecondEntryBlock)
return false;
InvertCond2 = true;
std::swap(IfTrue2, IfFalse2);
}
if (!CompareIfRegionBlock(IfFalse1, IfFalse2, SecondEntryBlock))
return false;
} else
return false;
Instruction *PTI2 = SecondEntryBlock->getTerminator();
Instruction *PBI2 = &SecondEntryBlock->front();
// Check whether \param SecondEntryBlock has side-effect and is safe to
// speculate.
for (BasicBlock::iterator BI(PBI2), BE(PTI2); BI != BE; ++BI) {
Instruction *CI = &*BI;
if (isa<PHINode>(CI) || CI->mayHaveSideEffects() ||
!isSafeToSpeculativelyExecute(CI))
return false;
}
// Merge \param SecondEntryBlock into \param FirstEntryBlock.
FirstEntryBlock->getInstList().pop_back();
FirstEntryBlock->getInstList()
.splice(FirstEntryBlock->end(), SecondEntryBlock->getInstList());
BranchInst *PBI = cast<BranchInst>(FirstEntryBlock->getTerminator());
assert(PBI->getCondition() == IfCond2);
BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
Builder.SetInsertPoint(PBI);
if (InvertCond2) {
// If this is a "cmp" instruction, only used for branching (and nowhere
// else), then we can simply invert the predicate.
auto Cmp2 = dyn_cast<CmpInst>(CInst2);
if (Cmp2 && Cmp2->hasOneUse())
Cmp2->setPredicate(Cmp2->getInversePredicate());
else
CInst2 = cast<Instruction>(Builder.CreateNot(CInst2));
PBI->swapSuccessors();
}
Value *NC = Builder.CreateBinOp(CombineOp, CInst1, CInst2);
PBI->replaceUsesOfWith(IfCond2, NC);
Builder.SetInsertPoint(SaveInsertBB, SaveInsertPt);
// Handle PHI node to replace its predecessors to FirstEntryBlock.
for (BasicBlock *Succ : successors(PBI)) {
for (PHINode &Phi : Succ->phis()) {
for (unsigned i = 0, e = Phi.getNumIncomingValues(); i != e; ++i) {
if (Phi.getIncomingBlock(i) == SecondEntryBlock)
Phi.setIncomingBlock(i, FirstEntryBlock);
}
}
}
// Remove IfTrue1
if (IfTrue1 != FirstEntryBlock) {
IfTrue1->dropAllReferences();
IfTrue1->eraseFromParent();
}
// Remove IfFalse1
if (IfFalse1 != FirstEntryBlock) {
IfFalse1->dropAllReferences();
IfFalse1->eraseFromParent();
}
// Remove \param SecondEntryBlock
SecondEntryBlock->dropAllReferences();
SecondEntryBlock->eraseFromParent();
LLVM_DEBUG(dbgs() << "If conditions merged into:\n" << *FirstEntryBlock);
return true;
}
bool FlattenCFGOpt::run(BasicBlock *BB) {
assert(BB && BB->getParent() && "Block not embedded in function!");
assert(BB->getTerminator() && "Degenerate basic block encountered!");
IRBuilder<> Builder(BB);
if (FlattenParallelAndOr(BB, Builder) || MergeIfRegion(BB, Builder))
return true;
return false;
}
/// FlattenCFG - This function is used to flatten a CFG. For
/// example, it uses parallel-and and parallel-or mode to collapse
/// if-conditions and merge if-regions with identical statements.
bool llvm::FlattenCFG(BasicBlock *BB, AAResults *AA) {
return FlattenCFGOpt(AA).run(BB);
}