1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 04:22:57 +02:00
llvm-mirror/include/llvm/Analysis/AliasAnalysis.h
Peter Smith b8d8637f8d [AliasAnalysis] Initialize a member variable that may be used by unit test.
The unit tests in BasicAliasAnalysisTest use the alias analysis API
directly and do not call setAAResults to initalize AAR. This gives a
valgrind error "Conditional Jump depends on unitialized variable".

On most buildbots the variable is nullptr, but in some cases it can be
non nullptr leading to seemingly random failures.

These tests were disabled in r366986. With the initialization they can be
enabled again.

Fixes PR42719

Differential Revision: https://reviews.llvm.org/D65568

llvm-svn: 367662
2019-08-02 08:05:14 +00:00

1224 lines
50 KiB
C++

//===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the generic AliasAnalysis interface, which is used as the
// common interface used by all clients of alias analysis information, and
// implemented by all alias analysis implementations. Mod/Ref information is
// also captured by this interface.
//
// Implementations of this interface must implement the various virtual methods,
// which automatically provides functionality for the entire suite of client
// APIs.
//
// This API identifies memory regions with the MemoryLocation class. The pointer
// component specifies the base memory address of the region. The Size specifies
// the maximum size (in address units) of the memory region, or
// MemoryLocation::UnknownSize if the size is not known. The TBAA tag
// identifies the "type" of the memory reference; see the
// TypeBasedAliasAnalysis class for details.
//
// Some non-obvious details include:
// - Pointers that point to two completely different objects in memory never
// alias, regardless of the value of the Size component.
// - NoAlias doesn't imply inequal pointers. The most obvious example of this
// is two pointers to constant memory. Even if they are equal, constant
// memory is never stored to, so there will never be any dependencies.
// In this and other situations, the pointers may be both NoAlias and
// MustAlias at the same time. The current API can only return one result,
// though this is rarely a problem in practice.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
#define LLVM_ANALYSIS_ALIASANALYSIS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include <cstdint>
#include <functional>
#include <memory>
#include <vector>
namespace llvm {
class AnalysisUsage;
class BasicAAResult;
class BasicBlock;
class DominatorTree;
class OrderedBasicBlock;
class Value;
/// The possible results of an alias query.
///
/// These results are always computed between two MemoryLocation objects as
/// a query to some alias analysis.
///
/// Note that these are unscoped enumerations because we would like to support
/// implicitly testing a result for the existence of any possible aliasing with
/// a conversion to bool, but an "enum class" doesn't support this. The
/// canonical names from the literature are suffixed and unique anyways, and so
/// they serve as global constants in LLVM for these results.
///
/// See docs/AliasAnalysis.html for more information on the specific meanings
/// of these values.
enum AliasResult : uint8_t {
/// The two locations do not alias at all.
///
/// This value is arranged to convert to false, while all other values
/// convert to true. This allows a boolean context to convert the result to
/// a binary flag indicating whether there is the possibility of aliasing.
NoAlias = 0,
/// The two locations may or may not alias. This is the least precise result.
MayAlias,
/// The two locations alias, but only due to a partial overlap.
PartialAlias,
/// The two locations precisely alias each other.
MustAlias,
};
/// << operator for AliasResult.
raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
/// Flags indicating whether a memory access modifies or references memory.
///
/// This is no access at all, a modification, a reference, or both
/// a modification and a reference. These are specifically structured such that
/// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
/// work with any of the possible values.
enum class ModRefInfo : uint8_t {
/// Must is provided for completeness, but no routines will return only
/// Must today. See definition of Must below.
Must = 0,
/// The access may reference the value stored in memory,
/// a mustAlias relation was found, and no mayAlias or partialAlias found.
MustRef = 1,
/// The access may modify the value stored in memory,
/// a mustAlias relation was found, and no mayAlias or partialAlias found.
MustMod = 2,
/// The access may reference, modify or both the value stored in memory,
/// a mustAlias relation was found, and no mayAlias or partialAlias found.
MustModRef = MustRef | MustMod,
/// The access neither references nor modifies the value stored in memory.
NoModRef = 4,
/// The access may reference the value stored in memory.
Ref = NoModRef | MustRef,
/// The access may modify the value stored in memory.
Mod = NoModRef | MustMod,
/// The access may reference and may modify the value stored in memory.
ModRef = Ref | Mod,
/// About Must:
/// Must is set in a best effort manner.
/// We usually do not try our best to infer Must, instead it is merely
/// another piece of "free" information that is presented when available.
/// Must set means there was certainly a MustAlias found. For calls,
/// where multiple arguments are checked (argmemonly), this translates to
/// only MustAlias or NoAlias was found.
/// Must is not set for RAR accesses, even if the two locations must
/// alias. The reason is that two read accesses translate to an early return
/// of NoModRef. An additional alias check to set Must may be
/// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
/// We refer to Must being *set* when the most significant bit is *cleared*.
/// Conversely we *clear* Must information by *setting* the Must bit to 1.
};
LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
static_cast<int>(ModRefInfo::Must);
}
LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
}
LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
static_cast<int>(ModRefInfo::MustModRef);
}
LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
}
LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
}
LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
}
LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
return ModRefInfo(static_cast<int>(MRI) |
static_cast<int>(ModRefInfo::MustMod));
}
LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
return ModRefInfo(static_cast<int>(MRI) |
static_cast<int>(ModRefInfo::MustRef));
}
LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
return ModRefInfo(static_cast<int>(MRI) &
static_cast<int>(ModRefInfo::MustModRef));
}
LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
return ModRefInfo(static_cast<int>(MRI) |
static_cast<int>(ModRefInfo::MustModRef));
}
LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
}
LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
}
LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
return ModRefInfo(static_cast<int>(MRI) |
static_cast<int>(ModRefInfo::NoModRef));
}
LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
const ModRefInfo MRI2) {
return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
}
LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
const ModRefInfo MRI2) {
return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
}
/// The locations at which a function might access memory.
///
/// These are primarily used in conjunction with the \c AccessKind bits to
/// describe both the nature of access and the locations of access for a
/// function call.
enum FunctionModRefLocation {
/// Base case is no access to memory.
FMRL_Nowhere = 0,
/// Access to memory via argument pointers.
FMRL_ArgumentPointees = 8,
/// Memory that is inaccessible via LLVM IR.
FMRL_InaccessibleMem = 16,
/// Access to any memory.
FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
};
/// Summary of how a function affects memory in the program.
///
/// Loads from constant globals are not considered memory accesses for this
/// interface. Also, functions may freely modify stack space local to their
/// invocation without having to report it through these interfaces.
enum FunctionModRefBehavior {
/// This function does not perform any non-local loads or stores to memory.
///
/// This property corresponds to the GCC 'const' attribute.
/// This property corresponds to the LLVM IR 'readnone' attribute.
/// This property corresponds to the IntrNoMem LLVM intrinsic flag.
FMRB_DoesNotAccessMemory =
FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
/// The only memory references in this function (if it has any) are
/// non-volatile loads from objects pointed to by its pointer-typed
/// arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
FMRB_OnlyReadsArgumentPointees =
FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
/// The only memory references in this function (if it has any) are
/// non-volatile loads and stores from objects pointed to by its
/// pointer-typed arguments, with arbitrary offsets.
///
/// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
FMRB_OnlyAccessesArgumentPointees =
FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
/// The only memory references in this function (if it has any) are
/// references of memory that is otherwise inaccessible via LLVM IR.
///
/// This property corresponds to the LLVM IR inaccessiblememonly attribute.
FMRB_OnlyAccessesInaccessibleMem =
FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
/// The function may perform non-volatile loads and stores of objects
/// pointed to by its pointer-typed arguments, with arbitrary offsets, and
/// it may also perform loads and stores of memory that is otherwise
/// inaccessible via LLVM IR.
///
/// This property corresponds to the LLVM IR
/// inaccessiblemem_or_argmemonly attribute.
FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
FMRL_ArgumentPointees |
static_cast<int>(ModRefInfo::ModRef),
/// This function does not perform any non-local stores or volatile loads,
/// but may read from any memory location.
///
/// This property corresponds to the GCC 'pure' attribute.
/// This property corresponds to the LLVM IR 'readonly' attribute.
/// This property corresponds to the IntrReadMem LLVM intrinsic flag.
FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
// This function does not read from memory anywhere, but may write to any
// memory location.
//
// This property corresponds to the LLVM IR 'writeonly' attribute.
// This property corresponds to the IntrWriteMem LLVM intrinsic flag.
FMRB_DoesNotReadMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
/// This indicates that the function could not be classified into one of the
/// behaviors above.
FMRB_UnknownModRefBehavior =
FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
};
// Wrapper method strips bits significant only in FunctionModRefBehavior,
// to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
// ModRefInfo enum changes, the wrapper can be updated to & with the new enum
// entry with all bits set to 1.
LLVM_NODISCARD inline ModRefInfo
createModRefInfo(const FunctionModRefBehavior FMRB) {
return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
}
/// This class stores info we want to provide to or retain within an alias
/// query. By default, the root query is stateless and starts with a freshly
/// constructed info object. Specific alias analyses can use this query info to
/// store per-query state that is important for recursive or nested queries to
/// avoid recomputing. To enable preserving this state across multiple queries
/// where safe (due to the IR not changing), use a `BatchAAResults` wrapper.
/// The information stored in an `AAQueryInfo` is currently limitted to the
/// caches used by BasicAA, but can further be extended to fit other AA needs.
class AAQueryInfo {
public:
using LocPair = std::pair<MemoryLocation, MemoryLocation>;
using AliasCacheT = SmallDenseMap<LocPair, AliasResult, 8>;
AliasCacheT AliasCache;
using IsCapturedCacheT = SmallDenseMap<const Value *, bool, 8>;
IsCapturedCacheT IsCapturedCache;
AAQueryInfo() : AliasCache(), IsCapturedCache() {}
};
class BatchAAResults;
class AAResults {
public:
// Make these results default constructable and movable. We have to spell
// these out because MSVC won't synthesize them.
AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
AAResults(AAResults &&Arg);
~AAResults();
/// Register a specific AA result.
template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
// FIXME: We should use a much lighter weight system than the usual
// polymorphic pattern because we don't own AAResult. It should
// ideally involve two pointers and no separate allocation.
AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
}
/// Register a function analysis ID that the results aggregation depends on.
///
/// This is used in the new pass manager to implement the invalidation logic
/// where we must invalidate the results aggregation if any of our component
/// analyses become invalid.
void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
/// Handle invalidation events in the new pass manager.
///
/// The aggregation is invalidated if any of the underlying analyses is
/// invalidated.
bool invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv);
//===--------------------------------------------------------------------===//
/// \name Alias Queries
/// @{
/// The main low level interface to the alias analysis implementation.
/// Returns an AliasResult indicating whether the two pointers are aliased to
/// each other. This is the interface that must be implemented by specific
/// alias analysis implementations.
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
/// A convenience wrapper around the primary \c alias interface.
AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
LocationSize V2Size) {
return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
}
/// A convenience wrapper around the primary \c alias interface.
AliasResult alias(const Value *V1, const Value *V2) {
return alias(V1, LocationSize::unknown(), V2, LocationSize::unknown());
}
/// A trivial helper function to check to see if the specified pointers are
/// no-alias.
bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
return alias(LocA, LocB) == NoAlias;
}
/// A convenience wrapper around the \c isNoAlias helper interface.
bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
LocationSize V2Size) {
return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
}
/// A convenience wrapper around the \c isNoAlias helper interface.
bool isNoAlias(const Value *V1, const Value *V2) {
return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
}
/// A trivial helper function to check to see if the specified pointers are
/// must-alias.
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
return alias(LocA, LocB) == MustAlias;
}
/// A convenience wrapper around the \c isMustAlias helper interface.
bool isMustAlias(const Value *V1, const Value *V2) {
return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
MustAlias;
}
/// Checks whether the given location points to constant memory, or if
/// \p OrLocal is true whether it points to a local alloca.
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
/// A convenience wrapper around the primary \c pointsToConstantMemory
/// interface.
bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
return pointsToConstantMemory(MemoryLocation(P), OrLocal);
}
/// @}
//===--------------------------------------------------------------------===//
/// \name Simple mod/ref information
/// @{
/// Get the ModRef info associated with a pointer argument of a call. The
/// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
/// that these bits do not necessarily account for the overall behavior of
/// the function, but rather only provide additional per-argument
/// information. This never sets ModRefInfo::Must.
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
/// Return the behavior of the given call site.
FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
/// Return the behavior when calling the given function.
FunctionModRefBehavior getModRefBehavior(const Function *F);
/// Checks if the specified call is known to never read or write memory.
///
/// Note that if the call only reads from known-constant memory, it is also
/// legal to return true. Also, calls that unwind the stack are legal for
/// this predicate.
///
/// Many optimizations (such as CSE and LICM) can be performed on such calls
/// without worrying about aliasing properties, and many calls have this
/// property (e.g. calls to 'sin' and 'cos').
///
/// This property corresponds to the GCC 'const' attribute.
bool doesNotAccessMemory(const CallBase *Call) {
return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
}
/// Checks if the specified function is known to never read or write memory.
///
/// Note that if the function only reads from known-constant memory, it is
/// also legal to return true. Also, function that unwind the stack are legal
/// for this predicate.
///
/// Many optimizations (such as CSE and LICM) can be performed on such calls
/// to such functions without worrying about aliasing properties, and many
/// functions have this property (e.g. 'sin' and 'cos').
///
/// This property corresponds to the GCC 'const' attribute.
bool doesNotAccessMemory(const Function *F) {
return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
}
/// Checks if the specified call is known to only read from non-volatile
/// memory (or not access memory at all).
///
/// Calls that unwind the stack are legal for this predicate.
///
/// This property allows many common optimizations to be performed in the
/// absence of interfering store instructions, such as CSE of strlen calls.
///
/// This property corresponds to the GCC 'pure' attribute.
bool onlyReadsMemory(const CallBase *Call) {
return onlyReadsMemory(getModRefBehavior(Call));
}
/// Checks if the specified function is known to only read from non-volatile
/// memory (or not access memory at all).
///
/// Functions that unwind the stack are legal for this predicate.
///
/// This property allows many common optimizations to be performed in the
/// absence of interfering store instructions, such as CSE of strlen calls.
///
/// This property corresponds to the GCC 'pure' attribute.
bool onlyReadsMemory(const Function *F) {
return onlyReadsMemory(getModRefBehavior(F));
}
/// Checks if functions with the specified behavior are known to only read
/// from non-volatile memory (or not access memory at all).
static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
return !isModSet(createModRefInfo(MRB));
}
/// Checks if functions with the specified behavior are known to only write
/// memory (or not access memory at all).
static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
return !isRefSet(createModRefInfo(MRB));
}
/// Checks if functions with the specified behavior are known to read and
/// write at most from objects pointed to by their pointer-typed arguments
/// (with arbitrary offsets).
static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
}
/// Checks if functions with the specified behavior are known to potentially
/// read or write from objects pointed to be their pointer-typed arguments
/// (with arbitrary offsets).
static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
return isModOrRefSet(createModRefInfo(MRB)) &&
(MRB & FMRL_ArgumentPointees);
}
/// Checks if functions with the specified behavior are known to read and
/// write at most from memory that is inaccessible from LLVM IR.
static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
}
/// Checks if functions with the specified behavior are known to potentially
/// read or write from memory that is inaccessible from LLVM IR.
static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_InaccessibleMem);
}
/// Checks if functions with the specified behavior are known to read and
/// write at most from memory that is inaccessible from LLVM IR or objects
/// pointed to by their pointer-typed arguments (with arbitrary offsets).
static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
return !(MRB & FMRL_Anywhere &
~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
}
/// getModRefInfo (for call sites) - Return information about whether
/// a particular call site modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
/// getModRefInfo (for call sites) - A convenience wrapper.
ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
LocationSize Size) {
return getModRefInfo(Call, MemoryLocation(P, Size));
}
/// getModRefInfo (for loads) - Return information about whether
/// a particular load modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
/// getModRefInfo (for loads) - A convenience wrapper.
ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
LocationSize Size) {
return getModRefInfo(L, MemoryLocation(P, Size));
}
/// getModRefInfo (for stores) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
/// getModRefInfo (for stores) - A convenience wrapper.
ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
LocationSize Size) {
return getModRefInfo(S, MemoryLocation(P, Size));
}
/// getModRefInfo (for fences) - Return information about whether
/// a particular store modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
/// getModRefInfo (for fences) - A convenience wrapper.
ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
LocationSize Size) {
return getModRefInfo(S, MemoryLocation(P, Size));
}
/// getModRefInfo (for cmpxchges) - Return information about whether
/// a particular cmpxchg modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
const MemoryLocation &Loc);
/// getModRefInfo (for cmpxchges) - A convenience wrapper.
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
LocationSize Size) {
return getModRefInfo(CX, MemoryLocation(P, Size));
}
/// getModRefInfo (for atomicrmws) - Return information about whether
/// a particular atomicrmw modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
/// getModRefInfo (for atomicrmws) - A convenience wrapper.
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
LocationSize Size) {
return getModRefInfo(RMW, MemoryLocation(P, Size));
}
/// getModRefInfo (for va_args) - Return information about whether
/// a particular va_arg modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
/// getModRefInfo (for va_args) - A convenience wrapper.
ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
LocationSize Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// getModRefInfo (for catchpads) - Return information about whether
/// a particular catchpad modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
/// getModRefInfo (for catchpads) - A convenience wrapper.
ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
LocationSize Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// getModRefInfo (for catchrets) - Return information about whether
/// a particular catchret modifies or reads the specified memory location.
ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
/// getModRefInfo (for catchrets) - A convenience wrapper.
ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
LocationSize Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// Check whether or not an instruction may read or write the optionally
/// specified memory location.
///
///
/// An instruction that doesn't read or write memory may be trivially LICM'd
/// for example.
///
/// For function calls, this delegates to the alias-analysis specific
/// call-site mod-ref behavior queries. Otherwise it delegates to the specific
/// helpers above.
ModRefInfo getModRefInfo(const Instruction *I,
const Optional<MemoryLocation> &OptLoc) {
AAQueryInfo AAQIP;
return getModRefInfo(I, OptLoc, AAQIP);
}
/// A convenience wrapper for constructing the memory location.
ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
LocationSize Size) {
return getModRefInfo(I, MemoryLocation(P, Size));
}
/// Return information about whether a call and an instruction may refer to
/// the same memory locations.
ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
/// Return information about whether two call sites may refer to the same set
/// of memory locations. See the AA documentation for details:
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
/// Return information about whether a particular call site modifies
/// or reads the specified memory location \p MemLoc before instruction \p I
/// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
/// instruction ordering queries inside the BasicBlock containing \p I.
/// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
/// set.
ModRefInfo callCapturesBefore(const Instruction *I,
const MemoryLocation &MemLoc, DominatorTree *DT,
OrderedBasicBlock *OBB = nullptr);
/// A convenience wrapper to synthesize a memory location.
ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
LocationSize Size, DominatorTree *DT,
OrderedBasicBlock *OBB = nullptr) {
return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
}
/// @}
//===--------------------------------------------------------------------===//
/// \name Higher level methods for querying mod/ref information.
/// @{
/// Check if it is possible for execution of the specified basic block to
/// modify the location Loc.
bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
/// A convenience wrapper synthesizing a memory location.
bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
LocationSize Size) {
return canBasicBlockModify(BB, MemoryLocation(P, Size));
}
/// Check if it is possible for the execution of the specified instructions
/// to mod\ref (according to the mode) the location Loc.
///
/// The instructions to consider are all of the instructions in the range of
/// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
const MemoryLocation &Loc,
const ModRefInfo Mode);
/// A convenience wrapper synthesizing a memory location.
bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
const Value *Ptr, LocationSize Size,
const ModRefInfo Mode) {
return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
}
private:
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
AAQueryInfo &AAQI);
bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
bool OrLocal = false);
ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2,
AAQueryInfo &AAQIP);
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
AAQueryInfo &AAQI);
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
AAQueryInfo &AAQI);
ModRefInfo getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc,
AAQueryInfo &AAQI);
ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc,
AAQueryInfo &AAQI);
ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc,
AAQueryInfo &AAQI);
ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc,
AAQueryInfo &AAQI);
ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
const MemoryLocation &Loc, AAQueryInfo &AAQI);
ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc,
AAQueryInfo &AAQI);
ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc,
AAQueryInfo &AAQI);
ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc,
AAQueryInfo &AAQI);
ModRefInfo getModRefInfo(const Instruction *I,
const Optional<MemoryLocation> &OptLoc,
AAQueryInfo &AAQIP) {
if (OptLoc == None) {
if (const auto *Call = dyn_cast<CallBase>(I)) {
return createModRefInfo(getModRefBehavior(Call));
}
}
const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
switch (I->getOpcode()) {
case Instruction::VAArg:
return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
case Instruction::Load:
return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
case Instruction::Store:
return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
case Instruction::Fence:
return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
case Instruction::AtomicCmpXchg:
return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
case Instruction::AtomicRMW:
return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
case Instruction::Call:
return getModRefInfo((const CallInst *)I, Loc, AAQIP);
case Instruction::Invoke:
return getModRefInfo((const InvokeInst *)I, Loc, AAQIP);
case Instruction::CatchPad:
return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
case Instruction::CatchRet:
return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
default:
return ModRefInfo::NoModRef;
}
}
class Concept;
template <typename T> class Model;
template <typename T> friend class AAResultBase;
const TargetLibraryInfo &TLI;
std::vector<std::unique_ptr<Concept>> AAs;
std::vector<AnalysisKey *> AADeps;
friend class BatchAAResults;
};
/// This class is a wrapper over an AAResults, and it is intended to be used
/// only when there are no IR changes inbetween queries. BatchAAResults is
/// reusing the same `AAQueryInfo` to preserve the state across queries,
/// esentially making AA work in "batch mode". The internal state cannot be
/// cleared, so to go "out-of-batch-mode", the user must either use AAResults,
/// or create a new BatchAAResults.
class BatchAAResults {
AAResults &AA;
AAQueryInfo AAQI;
public:
BatchAAResults(AAResults &AAR) : AA(AAR), AAQI() {}
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
return AA.alias(LocA, LocB, AAQI);
}
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false) {
return AA.pointsToConstantMemory(Loc, AAQI, OrLocal);
}
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
return AA.getModRefInfo(Call, Loc, AAQI);
}
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
return AA.getModRefInfo(Call1, Call2, AAQI);
}
ModRefInfo getModRefInfo(const Instruction *I,
const Optional<MemoryLocation> &OptLoc) {
return AA.getModRefInfo(I, OptLoc, AAQI);
}
ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call2) {
return AA.getModRefInfo(I, Call2, AAQI);
}
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
return AA.getArgModRefInfo(Call, ArgIdx);
}
FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
return AA.getModRefBehavior(Call);
}
};
/// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
/// pointer or reference.
using AliasAnalysis = AAResults;
/// A private abstract base class describing the concept of an individual alias
/// analysis implementation.
///
/// This interface is implemented by any \c Model instantiation. It is also the
/// interface which a type used to instantiate the model must provide.
///
/// All of these methods model methods by the same name in the \c
/// AAResults class. Only differences and specifics to how the
/// implementations are called are documented here.
class AAResults::Concept {
public:
virtual ~Concept() = 0;
/// An update API used internally by the AAResults to provide
/// a handle back to the top level aggregation.
virtual void setAAResults(AAResults *NewAAR) = 0;
//===--------------------------------------------------------------------===//
/// \name Alias Queries
/// @{
/// The main low level interface to the alias analysis implementation.
/// Returns an AliasResult indicating whether the two pointers are aliased to
/// each other. This is the interface that must be implemented by specific
/// alias analysis implementations.
virtual AliasResult alias(const MemoryLocation &LocA,
const MemoryLocation &LocB, AAQueryInfo &AAQI) = 0;
/// Checks whether the given location points to constant memory, or if
/// \p OrLocal is true whether it points to a local alloca.
virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
AAQueryInfo &AAQI, bool OrLocal) = 0;
/// @}
//===--------------------------------------------------------------------===//
/// \name Simple mod/ref information
/// @{
/// Get the ModRef info associated with a pointer argument of a callsite. The
/// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
/// that these bits do not necessarily account for the overall behavior of
/// the function, but rather only provide additional per-argument
/// information.
virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
unsigned ArgIdx) = 0;
/// Return the behavior of the given call site.
virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
/// Return the behavior when calling the given function.
virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
/// getModRefInfo (for call sites) - Return information about whether
/// a particular call site modifies or reads the specified memory location.
virtual ModRefInfo getModRefInfo(const CallBase *Call,
const MemoryLocation &Loc,
AAQueryInfo &AAQI) = 0;
/// Return information about whether two call sites may refer to the same set
/// of memory locations. See the AA documentation for details:
/// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
virtual ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
AAQueryInfo &AAQI) = 0;
/// @}
};
/// A private class template which derives from \c Concept and wraps some other
/// type.
///
/// This models the concept by directly forwarding each interface point to the
/// wrapped type which must implement a compatible interface. This provides
/// a type erased binding.
template <typename AAResultT> class AAResults::Model final : public Concept {
AAResultT &Result;
public:
explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
Result.setAAResults(&AAR);
}
~Model() override = default;
void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
AAQueryInfo &AAQI) override {
return Result.alias(LocA, LocB, AAQI);
}
bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
bool OrLocal) override {
return Result.pointsToConstantMemory(Loc, AAQI, OrLocal);
}
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
return Result.getArgModRefInfo(Call, ArgIdx);
}
FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
return Result.getModRefBehavior(Call);
}
FunctionModRefBehavior getModRefBehavior(const Function *F) override {
return Result.getModRefBehavior(F);
}
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
AAQueryInfo &AAQI) override {
return Result.getModRefInfo(Call, Loc, AAQI);
}
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
AAQueryInfo &AAQI) override {
return Result.getModRefInfo(Call1, Call2, AAQI);
}
};
/// A CRTP-driven "mixin" base class to help implement the function alias
/// analysis results concept.
///
/// Because of the nature of many alias analysis implementations, they often
/// only implement a subset of the interface. This base class will attempt to
/// implement the remaining portions of the interface in terms of simpler forms
/// of the interface where possible, and otherwise provide conservatively
/// correct fallback implementations.
///
/// Implementors of an alias analysis should derive from this CRTP, and then
/// override specific methods that they wish to customize. There is no need to
/// use virtual anywhere, the CRTP base class does static dispatch to the
/// derived type passed into it.
template <typename DerivedT> class AAResultBase {
// Expose some parts of the interface only to the AAResults::Model
// for wrapping. Specifically, this allows the model to call our
// setAAResults method without exposing it as a fully public API.
friend class AAResults::Model<DerivedT>;
/// A pointer to the AAResults object that this AAResult is
/// aggregated within. May be null if not aggregated.
AAResults *AAR = nullptr;
/// Helper to dispatch calls back through the derived type.
DerivedT &derived() { return static_cast<DerivedT &>(*this); }
/// A setter for the AAResults pointer, which is used to satisfy the
/// AAResults::Model contract.
void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
protected:
/// This proxy class models a common pattern where we delegate to either the
/// top-level \c AAResults aggregation if one is registered, or to the
/// current result if none are registered.
class AAResultsProxy {
AAResults *AAR;
DerivedT &CurrentResult;
public:
AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
: AAR(AAR), CurrentResult(CurrentResult) {}
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
AAQueryInfo &AAQI) {
return AAR ? AAR->alias(LocA, LocB, AAQI)
: CurrentResult.alias(LocA, LocB, AAQI);
}
bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
bool OrLocal) {
return AAR ? AAR->pointsToConstantMemory(Loc, AAQI, OrLocal)
: CurrentResult.pointsToConstantMemory(Loc, AAQI, OrLocal);
}
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
: CurrentResult.getArgModRefInfo(Call, ArgIdx);
}
FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
return AAR ? AAR->getModRefBehavior(Call)
: CurrentResult.getModRefBehavior(Call);
}
FunctionModRefBehavior getModRefBehavior(const Function *F) {
return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
}
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
AAQueryInfo &AAQI) {
return AAR ? AAR->getModRefInfo(Call, Loc, AAQI)
: CurrentResult.getModRefInfo(Call, Loc, AAQI);
}
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
AAQueryInfo &AAQI) {
return AAR ? AAR->getModRefInfo(Call1, Call2, AAQI)
: CurrentResult.getModRefInfo(Call1, Call2, AAQI);
}
};
explicit AAResultBase() = default;
// Provide all the copy and move constructors so that derived types aren't
// constrained.
AAResultBase(const AAResultBase &Arg) {}
AAResultBase(AAResultBase &&Arg) {}
/// Get a proxy for the best AA result set to query at this time.
///
/// When this result is part of a larger aggregation, this will proxy to that
/// aggregation. When this result is used in isolation, it will just delegate
/// back to the derived class's implementation.
///
/// Note that callers of this need to take considerable care to not cause
/// performance problems when they use this routine, in the case of a large
/// number of alias analyses being aggregated, it can be expensive to walk
/// back across the chain.
AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
public:
AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB,
AAQueryInfo &AAQI) {
return MayAlias;
}
bool pointsToConstantMemory(const MemoryLocation &Loc, AAQueryInfo &AAQI,
bool OrLocal) {
return false;
}
ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
return ModRefInfo::ModRef;
}
FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
return FMRB_UnknownModRefBehavior;
}
FunctionModRefBehavior getModRefBehavior(const Function *F) {
return FMRB_UnknownModRefBehavior;
}
ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc,
AAQueryInfo &AAQI) {
return ModRefInfo::ModRef;
}
ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2,
AAQueryInfo &AAQI) {
return ModRefInfo::ModRef;
}
};
/// Return true if this pointer is returned by a noalias function.
bool isNoAliasCall(const Value *V);
/// Return true if this is an argument with the noalias attribute.
bool isNoAliasArgument(const Value *V);
/// Return true if this pointer refers to a distinct and identifiable object.
/// This returns true for:
/// Global Variables and Functions (but not Global Aliases)
/// Allocas
/// ByVal and NoAlias Arguments
/// NoAlias returns (e.g. calls to malloc)
///
bool isIdentifiedObject(const Value *V);
/// Return true if V is umabigously identified at the function-level.
/// Different IdentifiedFunctionLocals can't alias.
/// Further, an IdentifiedFunctionLocal can not alias with any function
/// arguments other than itself, which is not necessarily true for
/// IdentifiedObjects.
bool isIdentifiedFunctionLocal(const Value *V);
/// A manager for alias analyses.
///
/// This class can have analyses registered with it and when run, it will run
/// all of them and aggregate their results into single AA results interface
/// that dispatches across all of the alias analysis results available.
///
/// Note that the order in which analyses are registered is very significant.
/// That is the order in which the results will be aggregated and queried.
///
/// This manager effectively wraps the AnalysisManager for registering alias
/// analyses. When you register your alias analysis with this manager, it will
/// ensure the analysis itself is registered with its AnalysisManager.
///
/// The result of this analysis is only invalidated if one of the particular
/// aggregated AA results end up being invalidated. This removes the need to
/// explicitly preserve the results of `AAManager`. Note that analyses should no
/// longer be registered once the `AAManager` is run.
class AAManager : public AnalysisInfoMixin<AAManager> {
public:
using Result = AAResults;
/// Register a specific AA result.
template <typename AnalysisT> void registerFunctionAnalysis() {
ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
}
/// Register a specific AA result.
template <typename AnalysisT> void registerModuleAnalysis() {
ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
}
Result run(Function &F, FunctionAnalysisManager &AM) {
Result R(AM.getResult<TargetLibraryAnalysis>(F));
for (auto &Getter : ResultGetters)
(*Getter)(F, AM, R);
return R;
}
private:
friend AnalysisInfoMixin<AAManager>;
static AnalysisKey Key;
SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
AAResults &AAResults),
4> ResultGetters;
template <typename AnalysisT>
static void getFunctionAAResultImpl(Function &F,
FunctionAnalysisManager &AM,
AAResults &AAResults) {
AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
AAResults.addAADependencyID(AnalysisT::ID());
}
template <typename AnalysisT>
static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
AAResults &AAResults) {
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
auto &MAM = MAMProxy.getManager();
if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
AAResults.addAAResult(*R);
MAMProxy
.template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
}
}
};
/// A wrapper pass to provide the legacy pass manager access to a suitably
/// prepared AAResults object.
class AAResultsWrapperPass : public FunctionPass {
std::unique_ptr<AAResults> AAR;
public:
static char ID;
AAResultsWrapperPass();
AAResults &getAAResults() { return *AAR; }
const AAResults &getAAResults() const { return *AAR; }
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
/// A wrapper pass for external alias analyses. This just squirrels away the
/// callback used to run any analyses and register their results.
struct ExternalAAWrapperPass : ImmutablePass {
using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
CallbackT CB;
static char ID;
ExternalAAWrapperPass() : ImmutablePass(ID) {
initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
explicit ExternalAAWrapperPass(CallbackT CB)
: ImmutablePass(ID), CB(std::move(CB)) {
initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
FunctionPass *createAAResultsWrapperPass();
/// A wrapper pass around a callback which can be used to populate the
/// AAResults in the AAResultsWrapperPass from an external AA.
///
/// The callback provided here will be used each time we prepare an AAResults
/// object, and will receive a reference to the function wrapper pass, the
/// function, and the AAResults object to populate. This should be used when
/// setting up a custom pass pipeline to inject a hook into the AA results.
ImmutablePass *createExternalAAWrapperPass(
std::function<void(Pass &, Function &, AAResults &)> Callback);
/// A helper for the legacy pass manager to create a \c AAResults
/// object populated to the best of our ability for a particular function when
/// inside of a \c ModulePass or a \c CallGraphSCCPass.
///
/// If a \c ModulePass or a \c CallGraphSCCPass calls \p
/// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
/// getAnalysisUsage.
AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
/// A helper for the legacy pass manager to populate \p AU to add uses to make
/// sure the analyses required by \p createLegacyPMAAResults are available.
void getAAResultsAnalysisUsage(AnalysisUsage &AU);
} // end namespace llvm
#endif // LLVM_ANALYSIS_ALIASANALYSIS_H