mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
0e0b8cf9fd
llvm-svn: 101334
831 lines
37 KiB
C++
831 lines
37 KiB
C++
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that X86 uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef X86ISELLOWERING_H
|
|
#define X86ISELLOWERING_H
|
|
|
|
#include "X86Subtarget.h"
|
|
#include "X86RegisterInfo.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/CodeGen/FastISel.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
|
|
namespace llvm {
|
|
namespace X86ISD {
|
|
// X86 Specific DAG Nodes
|
|
enum NodeType {
|
|
// Start the numbering where the builtin ops leave off.
|
|
FIRST_NUMBER = ISD::BUILTIN_OP_END,
|
|
|
|
/// BSF - Bit scan forward.
|
|
/// BSR - Bit scan reverse.
|
|
BSF,
|
|
BSR,
|
|
|
|
/// SHLD, SHRD - Double shift instructions. These correspond to
|
|
/// X86::SHLDxx and X86::SHRDxx instructions.
|
|
SHLD,
|
|
SHRD,
|
|
|
|
/// FAND - Bitwise logical AND of floating point values. This corresponds
|
|
/// to X86::ANDPS or X86::ANDPD.
|
|
FAND,
|
|
|
|
/// FOR - Bitwise logical OR of floating point values. This corresponds
|
|
/// to X86::ORPS or X86::ORPD.
|
|
FOR,
|
|
|
|
/// FXOR - Bitwise logical XOR of floating point values. This corresponds
|
|
/// to X86::XORPS or X86::XORPD.
|
|
FXOR,
|
|
|
|
/// FSRL - Bitwise logical right shift of floating point values. These
|
|
/// corresponds to X86::PSRLDQ.
|
|
FSRL,
|
|
|
|
/// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
|
|
/// integer source in memory and FP reg result. This corresponds to the
|
|
/// X86::FILD*m instructions. It has three inputs (token chain, address,
|
|
/// and source type) and two outputs (FP value and token chain). FILD_FLAG
|
|
/// also produces a flag).
|
|
FILD,
|
|
FILD_FLAG,
|
|
|
|
/// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
|
|
/// integer destination in memory and a FP reg source. This corresponds
|
|
/// to the X86::FIST*m instructions and the rounding mode change stuff. It
|
|
/// has two inputs (token chain and address) and two outputs (int value
|
|
/// and token chain).
|
|
FP_TO_INT16_IN_MEM,
|
|
FP_TO_INT32_IN_MEM,
|
|
FP_TO_INT64_IN_MEM,
|
|
|
|
/// FLD - This instruction implements an extending load to FP stack slots.
|
|
/// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
|
|
/// operand, ptr to load from, and a ValueType node indicating the type
|
|
/// to load to.
|
|
FLD,
|
|
|
|
/// FST - This instruction implements a truncating store to FP stack
|
|
/// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
|
|
/// chain operand, value to store, address, and a ValueType to store it
|
|
/// as.
|
|
FST,
|
|
|
|
/// CALL - These operations represent an abstract X86 call
|
|
/// instruction, which includes a bunch of information. In particular the
|
|
/// operands of these node are:
|
|
///
|
|
/// #0 - The incoming token chain
|
|
/// #1 - The callee
|
|
/// #2 - The number of arg bytes the caller pushes on the stack.
|
|
/// #3 - The number of arg bytes the callee pops off the stack.
|
|
/// #4 - The value to pass in AL/AX/EAX (optional)
|
|
/// #5 - The value to pass in DL/DX/EDX (optional)
|
|
///
|
|
/// The result values of these nodes are:
|
|
///
|
|
/// #0 - The outgoing token chain
|
|
/// #1 - The first register result value (optional)
|
|
/// #2 - The second register result value (optional)
|
|
///
|
|
CALL,
|
|
|
|
/// RDTSC_DAG - This operation implements the lowering for
|
|
/// readcyclecounter
|
|
RDTSC_DAG,
|
|
|
|
/// X86 compare and logical compare instructions.
|
|
CMP, COMI, UCOMI,
|
|
|
|
/// X86 bit-test instructions.
|
|
BT,
|
|
|
|
/// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag
|
|
/// operand produced by a CMP instruction.
|
|
SETCC,
|
|
|
|
// Same as SETCC except it's materialized with a sbb and the value is all
|
|
// one's or all zero's.
|
|
SETCC_CARRY,
|
|
|
|
/// X86 conditional moves. Operand 0 and operand 1 are the two values
|
|
/// to select from. Operand 2 is the condition code, and operand 3 is the
|
|
/// flag operand produced by a CMP or TEST instruction. It also writes a
|
|
/// flag result.
|
|
CMOV,
|
|
|
|
/// X86 conditional branches. Operand 0 is the chain operand, operand 1
|
|
/// is the block to branch if condition is true, operand 2 is the
|
|
/// condition code, and operand 3 is the flag operand produced by a CMP
|
|
/// or TEST instruction.
|
|
BRCOND,
|
|
|
|
/// Return with a flag operand. Operand 0 is the chain operand, operand
|
|
/// 1 is the number of bytes of stack to pop.
|
|
RET_FLAG,
|
|
|
|
/// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
|
|
REP_STOS,
|
|
|
|
/// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
|
|
REP_MOVS,
|
|
|
|
/// GlobalBaseReg - On Darwin, this node represents the result of the popl
|
|
/// at function entry, used for PIC code.
|
|
GlobalBaseReg,
|
|
|
|
/// Wrapper - A wrapper node for TargetConstantPool,
|
|
/// TargetExternalSymbol, and TargetGlobalAddress.
|
|
Wrapper,
|
|
|
|
/// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
|
|
/// relative displacements.
|
|
WrapperRIP,
|
|
|
|
/// MOVQ2DQ - Copies a 64-bit value from a vector to another vector.
|
|
/// Can be used to move a vector value from a MMX register to a XMM
|
|
/// register.
|
|
MOVQ2DQ,
|
|
|
|
/// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
|
|
/// i32, corresponds to X86::PEXTRB.
|
|
PEXTRB,
|
|
|
|
/// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
|
|
/// i32, corresponds to X86::PEXTRW.
|
|
PEXTRW,
|
|
|
|
/// INSERTPS - Insert any element of a 4 x float vector into any element
|
|
/// of a destination 4 x floatvector.
|
|
INSERTPS,
|
|
|
|
/// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
|
|
/// corresponds to X86::PINSRB.
|
|
PINSRB,
|
|
|
|
/// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
|
|
/// corresponds to X86::PINSRW.
|
|
PINSRW, MMX_PINSRW,
|
|
|
|
/// PSHUFB - Shuffle 16 8-bit values within a vector.
|
|
PSHUFB,
|
|
|
|
/// FMAX, FMIN - Floating point max and min.
|
|
///
|
|
FMAX, FMIN,
|
|
|
|
/// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
|
|
/// approximation. Note that these typically require refinement
|
|
/// in order to obtain suitable precision.
|
|
FRSQRT, FRCP,
|
|
|
|
// TLSADDR - Thread Local Storage.
|
|
TLSADDR,
|
|
|
|
// SegmentBaseAddress - The address segment:0
|
|
SegmentBaseAddress,
|
|
|
|
// EH_RETURN - Exception Handling helpers.
|
|
EH_RETURN,
|
|
|
|
/// TC_RETURN - Tail call return.
|
|
/// operand #0 chain
|
|
/// operand #1 callee (register or absolute)
|
|
/// operand #2 stack adjustment
|
|
/// operand #3 optional in flag
|
|
TC_RETURN,
|
|
|
|
// LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
|
|
LCMPXCHG_DAG,
|
|
LCMPXCHG8_DAG,
|
|
|
|
// FNSTCW16m - Store FP control world into i16 memory.
|
|
FNSTCW16m,
|
|
|
|
// VZEXT_MOVL - Vector move low and zero extend.
|
|
VZEXT_MOVL,
|
|
|
|
// VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
|
|
VZEXT_LOAD,
|
|
|
|
// VSHL, VSRL - Vector logical left / right shift.
|
|
VSHL, VSRL,
|
|
|
|
// CMPPD, CMPPS - Vector double/float comparison.
|
|
// CMPPD, CMPPS - Vector double/float comparison.
|
|
CMPPD, CMPPS,
|
|
|
|
// PCMP* - Vector integer comparisons.
|
|
PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
|
|
PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
|
|
|
|
// ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
|
|
ADD, SUB, SMUL, UMUL,
|
|
INC, DEC, OR, XOR, AND,
|
|
|
|
// MUL_IMM - X86 specific multiply by immediate.
|
|
MUL_IMM,
|
|
|
|
// PTEST - Vector bitwise comparisons
|
|
PTEST,
|
|
|
|
// VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
|
|
// according to %al. An operator is needed so that this can be expanded
|
|
// with control flow.
|
|
VASTART_SAVE_XMM_REGS,
|
|
|
|
// MINGW_ALLOCA - MingW's __alloca call to do stack probing.
|
|
MINGW_ALLOCA,
|
|
|
|
// ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
|
|
// ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
|
|
// Atomic 64-bit binary operations.
|
|
ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
|
|
ATOMSUB64_DAG,
|
|
ATOMOR64_DAG,
|
|
ATOMXOR64_DAG,
|
|
ATOMAND64_DAG,
|
|
ATOMNAND64_DAG,
|
|
ATOMSWAP64_DAG
|
|
|
|
// WARNING: Do not add anything in the end unless you want the node to
|
|
// have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
|
|
// thought as target memory ops!
|
|
};
|
|
}
|
|
|
|
/// Define some predicates that are used for node matching.
|
|
namespace X86 {
|
|
/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
|
|
bool isPSHUFDMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
|
|
bool isPSHUFHWMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to PSHUFD.
|
|
bool isPSHUFLWMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to SHUFP*.
|
|
bool isSHUFPMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
|
|
bool isMOVHLPSMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
|
|
/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
|
|
/// <2, 3, 2, 3>
|
|
bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
|
|
|
|
/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
|
|
bool isMOVLPMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
|
|
/// as well as MOVLHPS.
|
|
bool isMOVLHPSMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to UNPCKL.
|
|
bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
|
|
|
|
/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to UNPCKH.
|
|
bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
|
|
|
|
/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
|
|
/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
|
|
/// <0, 0, 1, 1>
|
|
bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
|
|
|
|
/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
|
|
/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
|
|
/// <2, 2, 3, 3>
|
|
bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
|
|
|
|
/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVSS,
|
|
/// MOVSD, and MOVD, i.e. setting the lowest element.
|
|
bool isMOVLMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
|
|
bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
|
|
bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
|
|
bool isMOVDDUPMask(ShuffleVectorSDNode *N);
|
|
|
|
/// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
|
|
/// specifies a shuffle of elements that is suitable for input to PALIGNR.
|
|
bool isPALIGNRMask(ShuffleVectorSDNode *N);
|
|
|
|
/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
|
|
/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
|
|
/// instructions.
|
|
unsigned getShuffleSHUFImmediate(SDNode *N);
|
|
|
|
/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
|
|
/// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
|
|
unsigned getShufflePSHUFHWImmediate(SDNode *N);
|
|
|
|
/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
|
|
/// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
|
|
unsigned getShufflePSHUFLWImmediate(SDNode *N);
|
|
|
|
/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
|
|
/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
|
|
unsigned getShufflePALIGNRImmediate(SDNode *N);
|
|
|
|
/// isZeroNode - Returns true if Elt is a constant zero or a floating point
|
|
/// constant +0.0.
|
|
bool isZeroNode(SDValue Elt);
|
|
|
|
/// isOffsetSuitableForCodeModel - Returns true of the given offset can be
|
|
/// fit into displacement field of the instruction.
|
|
bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
|
|
bool hasSymbolicDisplacement = true);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// X86TargetLowering - X86 Implementation of the TargetLowering interface
|
|
class X86TargetLowering : public TargetLowering {
|
|
int VarArgsFrameIndex; // FrameIndex for start of varargs area.
|
|
int RegSaveFrameIndex; // X86-64 vararg func register save area.
|
|
unsigned VarArgsGPOffset; // X86-64 vararg func int reg offset.
|
|
unsigned VarArgsFPOffset; // X86-64 vararg func fp reg offset.
|
|
int BytesToPopOnReturn; // Number of arg bytes ret should pop.
|
|
|
|
public:
|
|
explicit X86TargetLowering(X86TargetMachine &TM);
|
|
|
|
/// getPICBaseSymbol - Return the X86-32 PIC base.
|
|
MCSymbol *getPICBaseSymbol(const MachineFunction *MF, MCContext &Ctx) const;
|
|
|
|
virtual unsigned getJumpTableEncoding() const;
|
|
|
|
virtual const MCExpr *
|
|
LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
|
|
const MachineBasicBlock *MBB, unsigned uid,
|
|
MCContext &Ctx) const;
|
|
|
|
/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
|
|
/// jumptable.
|
|
virtual SDValue getPICJumpTableRelocBase(SDValue Table,
|
|
SelectionDAG &DAG) const;
|
|
virtual const MCExpr *
|
|
getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
|
|
unsigned JTI, MCContext &Ctx) const;
|
|
|
|
// Return the number of bytes that a function should pop when it returns (in
|
|
// addition to the space used by the return address).
|
|
//
|
|
unsigned getBytesToPopOnReturn() const { return BytesToPopOnReturn; }
|
|
|
|
/// getStackPtrReg - Return the stack pointer register we are using: either
|
|
/// ESP or RSP.
|
|
unsigned getStackPtrReg() const { return X86StackPtr; }
|
|
|
|
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
|
|
/// function arguments in the caller parameter area. For X86, aggregates
|
|
/// that contains are placed at 16-byte boundaries while the rest are at
|
|
/// 4-byte boundaries.
|
|
virtual unsigned getByValTypeAlignment(const Type *Ty) const;
|
|
|
|
/// getOptimalMemOpType - Returns the target specific optimal type for load
|
|
/// and store operations as a result of memset, memcpy, and memmove
|
|
/// lowering. If DstAlign is zero that means it's safe to destination
|
|
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
|
|
/// means there isn't a need to check it against alignment requirement,
|
|
/// probably because the source does not need to be loaded. If
|
|
/// 'NonScalarIntSafe' is true, that means it's safe to return a
|
|
/// non-scalar-integer type, e.g. empty string source, constant, or loaded
|
|
/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
|
|
/// constant so it does not need to be loaded.
|
|
/// It returns EVT::Other if SelectionDAG should be responsible for
|
|
/// determining the type.
|
|
virtual EVT
|
|
getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
|
|
bool NonScalarIntSafe, bool MemcpyStrSrc,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// allowsUnalignedMemoryAccesses - Returns true if the target allows
|
|
/// unaligned memory accesses. of the specified type.
|
|
virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
|
|
return true;
|
|
}
|
|
|
|
/// LowerOperation - Provide custom lowering hooks for some operations.
|
|
///
|
|
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG);
|
|
|
|
/// ReplaceNodeResults - Replace the results of node with an illegal result
|
|
/// type with new values built out of custom code.
|
|
///
|
|
virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG);
|
|
|
|
|
|
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
|
|
|
|
virtual MachineBasicBlock *EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
|
|
|
|
|
|
/// getTargetNodeName - This method returns the name of a target specific
|
|
/// DAG node.
|
|
virtual const char *getTargetNodeName(unsigned Opcode) const;
|
|
|
|
/// getSetCCResultType - Return the ISD::SETCC ValueType
|
|
virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
|
|
|
|
/// computeMaskedBitsForTargetNode - Determine which of the bits specified
|
|
/// in Mask are known to be either zero or one and return them in the
|
|
/// KnownZero/KnownOne bitsets.
|
|
virtual void computeMaskedBitsForTargetNode(const SDValue Op,
|
|
const APInt &Mask,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth = 0) const;
|
|
|
|
virtual bool
|
|
isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
|
|
|
|
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG);
|
|
|
|
virtual bool ExpandInlineAsm(CallInst *CI) const;
|
|
|
|
ConstraintType getConstraintType(const std::string &Constraint) const;
|
|
|
|
std::vector<unsigned>
|
|
getRegClassForInlineAsmConstraint(const std::string &Constraint,
|
|
EVT VT) const;
|
|
|
|
virtual const char *LowerXConstraint(EVT ConstraintVT) const;
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops. If hasMemory is
|
|
/// true it means one of the asm constraint of the inline asm instruction
|
|
/// being processed is 'm'.
|
|
virtual void LowerAsmOperandForConstraint(SDValue Op,
|
|
char ConstraintLetter,
|
|
bool hasMemory,
|
|
std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const;
|
|
|
|
/// getRegForInlineAsmConstraint - Given a physical register constraint
|
|
/// (e.g. {edx}), return the register number and the register class for the
|
|
/// register. This should only be used for C_Register constraints. On
|
|
/// error, this returns a register number of 0.
|
|
std::pair<unsigned, const TargetRegisterClass*>
|
|
getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
EVT VT) const;
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
|
|
|
|
/// isTruncateFree - Return true if it's free to truncate a value of
|
|
/// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
|
|
/// register EAX to i16 by referencing its sub-register AX.
|
|
virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
|
|
virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
|
|
|
|
/// isZExtFree - Return true if any actual instruction that defines a
|
|
/// value of type Ty1 implicit zero-extends the value to Ty2 in the result
|
|
/// register. This does not necessarily include registers defined in
|
|
/// unknown ways, such as incoming arguments, or copies from unknown
|
|
/// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
|
|
/// does not necessarily apply to truncate instructions. e.g. on x86-64,
|
|
/// all instructions that define 32-bit values implicit zero-extend the
|
|
/// result out to 64 bits.
|
|
virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
|
|
virtual bool isZExtFree(EVT VT1, EVT VT2) const;
|
|
|
|
/// isNarrowingProfitable - Return true if it's profitable to narrow
|
|
/// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
|
|
/// from i32 to i8 but not from i32 to i16.
|
|
virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
|
|
|
|
/// isFPImmLegal - Returns true if the target can instruction select the
|
|
/// specified FP immediate natively. If false, the legalizer will
|
|
/// materialize the FP immediate as a load from a constant pool.
|
|
virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
|
|
|
|
/// isShuffleMaskLegal - Targets can use this to indicate that they only
|
|
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
|
|
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask
|
|
/// values are assumed to be legal.
|
|
virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
|
|
EVT VT) const;
|
|
|
|
/// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
|
|
/// used by Targets can use this to indicate if there is a suitable
|
|
/// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
|
|
/// pool entry.
|
|
virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
|
|
EVT VT) const;
|
|
|
|
/// ShouldShrinkFPConstant - If true, then instruction selection should
|
|
/// seek to shrink the FP constant of the specified type to a smaller type
|
|
/// in order to save space and / or reduce runtime.
|
|
virtual bool ShouldShrinkFPConstant(EVT VT) const {
|
|
// Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
|
|
// expensive than a straight movsd. On the other hand, it's important to
|
|
// shrink long double fp constant since fldt is very slow.
|
|
return !X86ScalarSSEf64 || VT == MVT::f80;
|
|
}
|
|
|
|
virtual const X86Subtarget* getSubtarget() {
|
|
return Subtarget;
|
|
}
|
|
|
|
/// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
|
|
/// computed in an SSE register, not on the X87 floating point stack.
|
|
bool isScalarFPTypeInSSEReg(EVT VT) const {
|
|
return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
|
|
(VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
|
|
}
|
|
|
|
/// createFastISel - This method returns a target specific FastISel object,
|
|
/// or null if the target does not support "fast" ISel.
|
|
virtual FastISel *
|
|
createFastISel(MachineFunction &mf,
|
|
DenseMap<const Value *, unsigned> &,
|
|
DenseMap<const BasicBlock *, MachineBasicBlock *> &,
|
|
DenseMap<const AllocaInst *, int> &
|
|
#ifndef NDEBUG
|
|
, SmallSet<const Instruction *, 8> &
|
|
#endif
|
|
);
|
|
|
|
/// getFunctionAlignment - Return the Log2 alignment of this function.
|
|
virtual unsigned getFunctionAlignment(const Function *F) const;
|
|
|
|
private:
|
|
/// Subtarget - Keep a pointer to the X86Subtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const X86Subtarget *Subtarget;
|
|
const X86RegisterInfo *RegInfo;
|
|
const TargetData *TD;
|
|
|
|
/// X86StackPtr - X86 physical register used as stack ptr.
|
|
unsigned X86StackPtr;
|
|
|
|
/// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
|
|
/// floating point ops.
|
|
/// When SSE is available, use it for f32 operations.
|
|
/// When SSE2 is available, use it for f64 operations.
|
|
bool X86ScalarSSEf32;
|
|
bool X86ScalarSSEf64;
|
|
|
|
/// LegalFPImmediates - A list of legal fp immediates.
|
|
std::vector<APFloat> LegalFPImmediates;
|
|
|
|
/// addLegalFPImmediate - Indicate that this x86 target can instruction
|
|
/// select the specified FP immediate natively.
|
|
void addLegalFPImmediate(const APFloat& Imm) {
|
|
LegalFPImmediates.push_back(Imm);
|
|
}
|
|
|
|
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals);
|
|
SDValue LowerMemArgument(SDValue Chain,
|
|
CallingConv::ID CallConv,
|
|
const SmallVectorImpl<ISD::InputArg> &ArgInfo,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA, MachineFrameInfo *MFI,
|
|
unsigned i);
|
|
SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA,
|
|
ISD::ArgFlagsTy Flags);
|
|
|
|
// Call lowering helpers.
|
|
|
|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
|
|
/// for tail call optimization. Targets which want to do tail call
|
|
/// optimization should implement this function.
|
|
bool IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
bool isCalleeStructRet,
|
|
bool isCallerStructRet,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const;
|
|
bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv);
|
|
SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
|
|
SDValue Chain, bool IsTailCall, bool Is64Bit,
|
|
int FPDiff, DebugLoc dl);
|
|
|
|
CCAssignFn *CCAssignFnForNode(CallingConv::ID CallConv) const;
|
|
unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG &DAG);
|
|
|
|
std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
|
|
bool isSigned);
|
|
|
|
SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
|
|
SelectionDAG &DAG);
|
|
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
|
|
int64_t Offset, SelectionDAG &DAG) const;
|
|
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerShift(SDValue Op, SelectionDAG &DAG);
|
|
SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
|
|
SelectionDAG &DAG);
|
|
SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerFABS(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG);
|
|
|
|
SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG);
|
|
SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG);
|
|
|
|
virtual SDValue
|
|
LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals);
|
|
virtual SDValue
|
|
LowerCall(SDValue Chain, SDValue Callee,
|
|
CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
DebugLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals);
|
|
|
|
virtual SDValue
|
|
LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
DebugLoc dl, SelectionDAG &DAG);
|
|
|
|
virtual bool
|
|
CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<EVT> &OutTys,
|
|
const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
|
|
SelectionDAG &DAG);
|
|
|
|
void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG, unsigned NewOp);
|
|
|
|
SDValue EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
|
|
SDValue Chain,
|
|
SDValue Dst, SDValue Src,
|
|
SDValue Size, unsigned Align,
|
|
bool isVolatile,
|
|
const Value *DstSV, uint64_t DstSVOff);
|
|
SDValue EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
|
|
SDValue Chain,
|
|
SDValue Dst, SDValue Src,
|
|
SDValue Size, unsigned Align,
|
|
bool isVolatile, bool AlwaysInline,
|
|
const Value *DstSV, uint64_t DstSVOff,
|
|
const Value *SrcSV, uint64_t SrcSVOff);
|
|
|
|
/// Utility function to emit string processing sse4.2 instructions
|
|
/// that return in xmm0.
|
|
/// This takes the instruction to expand, the associated machine basic
|
|
/// block, the number of args, and whether or not the second arg is
|
|
/// in memory or not.
|
|
MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
|
|
unsigned argNum, bool inMem) const;
|
|
|
|
/// Utility function to emit atomic bitwise operations (and, or, xor).
|
|
/// It takes the bitwise instruction to expand, the associated machine basic
|
|
/// block, and the associated X86 opcodes for reg/reg and reg/imm.
|
|
MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
|
|
MachineInstr *BInstr,
|
|
MachineBasicBlock *BB,
|
|
unsigned regOpc,
|
|
unsigned immOpc,
|
|
unsigned loadOpc,
|
|
unsigned cxchgOpc,
|
|
unsigned copyOpc,
|
|
unsigned notOpc,
|
|
unsigned EAXreg,
|
|
TargetRegisterClass *RC,
|
|
bool invSrc = false) const;
|
|
|
|
MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
|
|
MachineInstr *BInstr,
|
|
MachineBasicBlock *BB,
|
|
unsigned regOpcL,
|
|
unsigned regOpcH,
|
|
unsigned immOpcL,
|
|
unsigned immOpcH,
|
|
bool invSrc = false) const;
|
|
|
|
/// Utility function to emit atomic min and max. It takes the min/max
|
|
/// instruction to expand, the associated basic block, and the associated
|
|
/// cmov opcode for moving the min or max value.
|
|
MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
|
|
MachineBasicBlock *BB,
|
|
unsigned cmovOpc) const;
|
|
|
|
/// Utility function to emit the xmm reg save portion of va_start.
|
|
MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
|
|
MachineInstr *BInstr,
|
|
MachineBasicBlock *BB) const;
|
|
|
|
MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
|
|
MachineBasicBlock *BB,
|
|
DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
|
|
|
|
MachineBasicBlock *EmitLoweredMingwAlloca(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const;
|
|
|
|
/// Emit nodes that will be selected as "test Op0,Op0", or something
|
|
/// equivalent, for use with the given x86 condition code.
|
|
SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG);
|
|
|
|
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
|
|
/// equivalent, for use with the given x86 condition code.
|
|
SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
|
|
SelectionDAG &DAG);
|
|
};
|
|
|
|
namespace X86 {
|
|
FastISel *createFastISel(MachineFunction &mf,
|
|
DenseMap<const Value *, unsigned> &,
|
|
DenseMap<const BasicBlock *, MachineBasicBlock *> &,
|
|
DenseMap<const AllocaInst *, int> &
|
|
#ifndef NDEBUG
|
|
, SmallSet<const Instruction*, 8> &
|
|
#endif
|
|
);
|
|
}
|
|
}
|
|
|
|
#endif // X86ISELLOWERING_H
|