1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/MC/MCExpr.cpp
Saleem Abdulrasool f56e4f6d3d RISCV: adjust handling of relocation emission for RISCV
This re-architects the RISCV relocation handling to bring the
implementation closer in line with the implementation in binutils.  We
would previously aggressively resolve the relocation.  With this
restructuring, we always will emit a paired relocation for any symbolic
difference of the type of S±T[±C] where S and T are labels and C is a
constant.

GAS has a special target hook controlled by `RELOC_EXPANSION_POSSIBLE`
which indicates that a fixup may be expanded into multiple relocations.
This is used by the RISCV backend to always emit a paired relocation -
either ADD[WIDTH] + SUB[WIDTH] for text relocations or SET[WIDTH] +
SUB[WIDTH] for a debug info relocation.  Irrespective of whether linker
relaxation support is enabled, symbolic difference is always emitted as
a paired relocation.

This change also sinks the target specific behaviour down into the
target specific area rather than exposing it to the shared relocation
handling.  In the process, we also sink the "special" handling for debug
information down into the RISCV target.  Although this improves the path
for the other targets, this is not necessarily entirely ideal either.
The changes in the debug info emission could be done through another
type of hook as this functionality would be required by any other target
which wishes to do linker relaxation.  However, as there are no other
targets in LLVM which currently do this, this is a reasonable thing to
do until such time as the code needs to be shared.

Improve the handling of the relocation (and add a reduced test case from
the Linux kernel) to ensure that we handle complex expressions for
symbolic difference.  This ensures that we correct relocate symbols with
the adddends normalized and associated with the addition portion of the
paired relocation.

This change also addresses some review comments from Alex Bradbury about
the relocations meant for use in the DWARF CFA being named incorrectly
(using ADD6 instead of SET6) in the original change which introduced the
relocation type.

This resolves the issues with the symbolic difference emission
sufficiently to enable building the Linux kernel with clang+IAS+lld
(without linker relaxation).

Resolves PR50153, PR50156!
Fixes: ClangBuiltLinux/linux#1023, ClangBuiltLinux/linux#1143

Reviewed By: nickdesaulniers, maskray

Differential Revision: https://reviews.llvm.org/D103539
2021-06-17 08:20:02 -07:00

1023 lines
36 KiB
C++

//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCExpr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
using namespace llvm;
#define DEBUG_TYPE "mcexpr"
namespace {
namespace stats {
STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
} // end namespace stats
} // end anonymous namespace
void MCExpr::print(raw_ostream &OS, const MCAsmInfo *MAI, bool InParens) const {
switch (getKind()) {
case MCExpr::Target:
return cast<MCTargetExpr>(this)->printImpl(OS, MAI);
case MCExpr::Constant: {
auto Value = cast<MCConstantExpr>(*this).getValue();
auto PrintInHex = cast<MCConstantExpr>(*this).useHexFormat();
auto SizeInBytes = cast<MCConstantExpr>(*this).getSizeInBytes();
if (Value < 0 && MAI && !MAI->supportsSignedData())
PrintInHex = true;
if (PrintInHex)
switch (SizeInBytes) {
default:
OS << "0x" << Twine::utohexstr(Value);
break;
case 1:
OS << format("0x%02" PRIx64, Value);
break;
case 2:
OS << format("0x%04" PRIx64, Value);
break;
case 4:
OS << format("0x%08" PRIx64, Value);
break;
case 8:
OS << format("0x%016" PRIx64, Value);
break;
}
else
OS << Value;
return;
}
case MCExpr::SymbolRef: {
const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
const MCSymbol &Sym = SRE.getSymbol();
// Parenthesize names that start with $ so that they don't look like
// absolute names.
bool UseParens =
!InParens && !Sym.getName().empty() && Sym.getName()[0] == '$';
if (UseParens) {
OS << '(';
Sym.print(OS, MAI);
OS << ')';
} else
Sym.print(OS, MAI);
const MCSymbolRefExpr::VariantKind Kind = SRE.getKind();
if (Kind != MCSymbolRefExpr::VK_None) {
if (MAI && MAI->useParensForSymbolVariant()) // ARM
OS << '(' << MCSymbolRefExpr::getVariantKindName(Kind) << ')';
else
OS << '@' << MCSymbolRefExpr::getVariantKindName(Kind);
}
return;
}
case MCExpr::Unary: {
const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
switch (UE.getOpcode()) {
case MCUnaryExpr::LNot: OS << '!'; break;
case MCUnaryExpr::Minus: OS << '-'; break;
case MCUnaryExpr::Not: OS << '~'; break;
case MCUnaryExpr::Plus: OS << '+'; break;
}
bool Binary = UE.getSubExpr()->getKind() == MCExpr::Binary;
if (Binary) OS << "(";
UE.getSubExpr()->print(OS, MAI);
if (Binary) OS << ")";
return;
}
case MCExpr::Binary: {
const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
// Only print parens around the LHS if it is non-trivial.
if (isa<MCConstantExpr>(BE.getLHS()) || isa<MCSymbolRefExpr>(BE.getLHS())) {
BE.getLHS()->print(OS, MAI);
} else {
OS << '(';
BE.getLHS()->print(OS, MAI);
OS << ')';
}
switch (BE.getOpcode()) {
case MCBinaryExpr::Add:
// Print "X-42" instead of "X+-42".
if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
if (RHSC->getValue() < 0) {
OS << RHSC->getValue();
return;
}
}
OS << '+';
break;
case MCBinaryExpr::AShr: OS << ">>"; break;
case MCBinaryExpr::And: OS << '&'; break;
case MCBinaryExpr::Div: OS << '/'; break;
case MCBinaryExpr::EQ: OS << "=="; break;
case MCBinaryExpr::GT: OS << '>'; break;
case MCBinaryExpr::GTE: OS << ">="; break;
case MCBinaryExpr::LAnd: OS << "&&"; break;
case MCBinaryExpr::LOr: OS << "||"; break;
case MCBinaryExpr::LShr: OS << ">>"; break;
case MCBinaryExpr::LT: OS << '<'; break;
case MCBinaryExpr::LTE: OS << "<="; break;
case MCBinaryExpr::Mod: OS << '%'; break;
case MCBinaryExpr::Mul: OS << '*'; break;
case MCBinaryExpr::NE: OS << "!="; break;
case MCBinaryExpr::Or: OS << '|'; break;
case MCBinaryExpr::OrNot: OS << '!'; break;
case MCBinaryExpr::Shl: OS << "<<"; break;
case MCBinaryExpr::Sub: OS << '-'; break;
case MCBinaryExpr::Xor: OS << '^'; break;
}
// Only print parens around the LHS if it is non-trivial.
if (isa<MCConstantExpr>(BE.getRHS()) || isa<MCSymbolRefExpr>(BE.getRHS())) {
BE.getRHS()->print(OS, MAI);
} else {
OS << '(';
BE.getRHS()->print(OS, MAI);
OS << ')';
}
return;
}
}
llvm_unreachable("Invalid expression kind!");
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MCExpr::dump() const {
dbgs() << *this;
dbgs() << '\n';
}
#endif
/* *** */
const MCBinaryExpr *MCBinaryExpr::create(Opcode Opc, const MCExpr *LHS,
const MCExpr *RHS, MCContext &Ctx,
SMLoc Loc) {
return new (Ctx) MCBinaryExpr(Opc, LHS, RHS, Loc);
}
const MCUnaryExpr *MCUnaryExpr::create(Opcode Opc, const MCExpr *Expr,
MCContext &Ctx, SMLoc Loc) {
return new (Ctx) MCUnaryExpr(Opc, Expr, Loc);
}
const MCConstantExpr *MCConstantExpr::create(int64_t Value, MCContext &Ctx,
bool PrintInHex,
unsigned SizeInBytes) {
return new (Ctx) MCConstantExpr(Value, PrintInHex, SizeInBytes);
}
/* *** */
MCSymbolRefExpr::MCSymbolRefExpr(const MCSymbol *Symbol, VariantKind Kind,
const MCAsmInfo *MAI, SMLoc Loc)
: MCExpr(MCExpr::SymbolRef, Loc,
encodeSubclassData(Kind, MAI->hasSubsectionsViaSymbols())),
Symbol(Symbol) {
assert(Symbol);
}
const MCSymbolRefExpr *MCSymbolRefExpr::create(const MCSymbol *Sym,
VariantKind Kind,
MCContext &Ctx, SMLoc Loc) {
return new (Ctx) MCSymbolRefExpr(Sym, Kind, Ctx.getAsmInfo(), Loc);
}
const MCSymbolRefExpr *MCSymbolRefExpr::create(StringRef Name, VariantKind Kind,
MCContext &Ctx) {
return create(Ctx.getOrCreateSymbol(Name), Kind, Ctx);
}
StringRef MCSymbolRefExpr::getVariantKindName(VariantKind Kind) {
switch (Kind) {
case VK_Invalid: return "<<invalid>>";
case VK_None: return "<<none>>";
case VK_DTPOFF: return "DTPOFF";
case VK_DTPREL: return "DTPREL";
case VK_GOT: return "GOT";
case VK_GOTOFF: return "GOTOFF";
case VK_GOTREL: return "GOTREL";
case VK_PCREL: return "PCREL";
case VK_GOTPCREL: return "GOTPCREL";
case VK_GOTTPOFF: return "GOTTPOFF";
case VK_INDNTPOFF: return "INDNTPOFF";
case VK_NTPOFF: return "NTPOFF";
case VK_GOTNTPOFF: return "GOTNTPOFF";
case VK_PLT: return "PLT";
case VK_TLSGD: return "TLSGD";
case VK_TLSLD: return "TLSLD";
case VK_TLSLDM: return "TLSLDM";
case VK_TPOFF: return "TPOFF";
case VK_TPREL: return "TPREL";
case VK_TLSCALL: return "tlscall";
case VK_TLSDESC: return "tlsdesc";
case VK_TLVP: return "TLVP";
case VK_TLVPPAGE: return "TLVPPAGE";
case VK_TLVPPAGEOFF: return "TLVPPAGEOFF";
case VK_PAGE: return "PAGE";
case VK_PAGEOFF: return "PAGEOFF";
case VK_GOTPAGE: return "GOTPAGE";
case VK_GOTPAGEOFF: return "GOTPAGEOFF";
case VK_SECREL: return "SECREL32";
case VK_SIZE: return "SIZE";
case VK_WEAKREF: return "WEAKREF";
case VK_X86_ABS8: return "ABS8";
case VK_X86_PLTOFF: return "PLTOFF";
case VK_ARM_NONE: return "none";
case VK_ARM_GOT_PREL: return "GOT_PREL";
case VK_ARM_TARGET1: return "target1";
case VK_ARM_TARGET2: return "target2";
case VK_ARM_PREL31: return "prel31";
case VK_ARM_SBREL: return "sbrel";
case VK_ARM_TLSLDO: return "tlsldo";
case VK_ARM_TLSDESCSEQ: return "tlsdescseq";
case VK_AVR_NONE: return "none";
case VK_AVR_LO8: return "lo8";
case VK_AVR_HI8: return "hi8";
case VK_AVR_HLO8: return "hlo8";
case VK_AVR_DIFF8: return "diff8";
case VK_AVR_DIFF16: return "diff16";
case VK_AVR_DIFF32: return "diff32";
case VK_AVR_PM: return "pm";
case VK_PPC_LO: return "l";
case VK_PPC_HI: return "h";
case VK_PPC_HA: return "ha";
case VK_PPC_HIGH: return "high";
case VK_PPC_HIGHA: return "higha";
case VK_PPC_HIGHER: return "higher";
case VK_PPC_HIGHERA: return "highera";
case VK_PPC_HIGHEST: return "highest";
case VK_PPC_HIGHESTA: return "highesta";
case VK_PPC_GOT_LO: return "got@l";
case VK_PPC_GOT_HI: return "got@h";
case VK_PPC_GOT_HA: return "got@ha";
case VK_PPC_TOCBASE: return "tocbase";
case VK_PPC_TOC: return "toc";
case VK_PPC_TOC_LO: return "toc@l";
case VK_PPC_TOC_HI: return "toc@h";
case VK_PPC_TOC_HA: return "toc@ha";
case VK_PPC_U: return "u";
case VK_PPC_L: return "l";
case VK_PPC_DTPMOD: return "dtpmod";
case VK_PPC_TPREL_LO: return "tprel@l";
case VK_PPC_TPREL_HI: return "tprel@h";
case VK_PPC_TPREL_HA: return "tprel@ha";
case VK_PPC_TPREL_HIGH: return "tprel@high";
case VK_PPC_TPREL_HIGHA: return "tprel@higha";
case VK_PPC_TPREL_HIGHER: return "tprel@higher";
case VK_PPC_TPREL_HIGHERA: return "tprel@highera";
case VK_PPC_TPREL_HIGHEST: return "tprel@highest";
case VK_PPC_TPREL_HIGHESTA: return "tprel@highesta";
case VK_PPC_DTPREL_LO: return "dtprel@l";
case VK_PPC_DTPREL_HI: return "dtprel@h";
case VK_PPC_DTPREL_HA: return "dtprel@ha";
case VK_PPC_DTPREL_HIGH: return "dtprel@high";
case VK_PPC_DTPREL_HIGHA: return "dtprel@higha";
case VK_PPC_DTPREL_HIGHER: return "dtprel@higher";
case VK_PPC_DTPREL_HIGHERA: return "dtprel@highera";
case VK_PPC_DTPREL_HIGHEST: return "dtprel@highest";
case VK_PPC_DTPREL_HIGHESTA: return "dtprel@highesta";
case VK_PPC_GOT_TPREL: return "got@tprel";
case VK_PPC_GOT_TPREL_LO: return "got@tprel@l";
case VK_PPC_GOT_TPREL_HI: return "got@tprel@h";
case VK_PPC_GOT_TPREL_HA: return "got@tprel@ha";
case VK_PPC_GOT_DTPREL: return "got@dtprel";
case VK_PPC_GOT_DTPREL_LO: return "got@dtprel@l";
case VK_PPC_GOT_DTPREL_HI: return "got@dtprel@h";
case VK_PPC_GOT_DTPREL_HA: return "got@dtprel@ha";
case VK_PPC_TLS: return "tls";
case VK_PPC_GOT_TLSGD: return "got@tlsgd";
case VK_PPC_GOT_TLSGD_LO: return "got@tlsgd@l";
case VK_PPC_GOT_TLSGD_HI: return "got@tlsgd@h";
case VK_PPC_GOT_TLSGD_HA: return "got@tlsgd@ha";
case VK_PPC_TLSGD: return "tlsgd";
case VK_PPC_AIX_TLSGD:
return "gd";
case VK_PPC_AIX_TLSGDM:
return "m";
case VK_PPC_GOT_TLSLD: return "got@tlsld";
case VK_PPC_GOT_TLSLD_LO: return "got@tlsld@l";
case VK_PPC_GOT_TLSLD_HI: return "got@tlsld@h";
case VK_PPC_GOT_TLSLD_HA: return "got@tlsld@ha";
case VK_PPC_GOT_PCREL:
return "got@pcrel";
case VK_PPC_GOT_TLSGD_PCREL:
return "got@tlsgd@pcrel";
case VK_PPC_GOT_TLSLD_PCREL:
return "got@tlsld@pcrel";
case VK_PPC_GOT_TPREL_PCREL:
return "got@tprel@pcrel";
case VK_PPC_TLS_PCREL:
return "tls@pcrel";
case VK_PPC_TLSLD: return "tlsld";
case VK_PPC_LOCAL: return "local";
case VK_PPC_NOTOC: return "notoc";
case VK_PPC_PCREL_OPT: return "<<invalid>>";
case VK_COFF_IMGREL32: return "IMGREL";
case VK_Hexagon_LO16: return "LO16";
case VK_Hexagon_HI16: return "HI16";
case VK_Hexagon_GPREL: return "GPREL";
case VK_Hexagon_GD_GOT: return "GDGOT";
case VK_Hexagon_LD_GOT: return "LDGOT";
case VK_Hexagon_GD_PLT: return "GDPLT";
case VK_Hexagon_LD_PLT: return "LDPLT";
case VK_Hexagon_IE: return "IE";
case VK_Hexagon_IE_GOT: return "IEGOT";
case VK_WASM_TYPEINDEX: return "TYPEINDEX";
case VK_WASM_MBREL: return "MBREL";
case VK_WASM_TLSREL: return "TLSREL";
case VK_WASM_TBREL: return "TBREL";
case VK_AMDGPU_GOTPCREL32_LO: return "gotpcrel32@lo";
case VK_AMDGPU_GOTPCREL32_HI: return "gotpcrel32@hi";
case VK_AMDGPU_REL32_LO: return "rel32@lo";
case VK_AMDGPU_REL32_HI: return "rel32@hi";
case VK_AMDGPU_REL64: return "rel64";
case VK_AMDGPU_ABS32_LO: return "abs32@lo";
case VK_AMDGPU_ABS32_HI: return "abs32@hi";
case VK_VE_HI32: return "hi";
case VK_VE_LO32: return "lo";
case VK_VE_PC_HI32: return "pc_hi";
case VK_VE_PC_LO32: return "pc_lo";
case VK_VE_GOT_HI32: return "got_hi";
case VK_VE_GOT_LO32: return "got_lo";
case VK_VE_GOTOFF_HI32: return "gotoff_hi";
case VK_VE_GOTOFF_LO32: return "gotoff_lo";
case VK_VE_PLT_HI32: return "plt_hi";
case VK_VE_PLT_LO32: return "plt_lo";
case VK_VE_TLS_GD_HI32: return "tls_gd_hi";
case VK_VE_TLS_GD_LO32: return "tls_gd_lo";
case VK_VE_TPOFF_HI32: return "tpoff_hi";
case VK_VE_TPOFF_LO32: return "tpoff_lo";
}
llvm_unreachable("Invalid variant kind");
}
MCSymbolRefExpr::VariantKind
MCSymbolRefExpr::getVariantKindForName(StringRef Name) {
return StringSwitch<VariantKind>(Name.lower())
.Case("dtprel", VK_DTPREL)
.Case("dtpoff", VK_DTPOFF)
.Case("got", VK_GOT)
.Case("gotoff", VK_GOTOFF)
.Case("gotrel", VK_GOTREL)
.Case("pcrel", VK_PCREL)
.Case("gotpcrel", VK_GOTPCREL)
.Case("gottpoff", VK_GOTTPOFF)
.Case("indntpoff", VK_INDNTPOFF)
.Case("ntpoff", VK_NTPOFF)
.Case("gotntpoff", VK_GOTNTPOFF)
.Case("plt", VK_PLT)
.Case("tlscall", VK_TLSCALL)
.Case("tlsdesc", VK_TLSDESC)
.Case("tlsgd", VK_TLSGD)
.Case("tlsld", VK_TLSLD)
.Case("tlsldm", VK_TLSLDM)
.Case("tpoff", VK_TPOFF)
.Case("tprel", VK_TPREL)
.Case("tlvp", VK_TLVP)
.Case("tlvppage", VK_TLVPPAGE)
.Case("tlvppageoff", VK_TLVPPAGEOFF)
.Case("page", VK_PAGE)
.Case("pageoff", VK_PAGEOFF)
.Case("gotpage", VK_GOTPAGE)
.Case("gotpageoff", VK_GOTPAGEOFF)
.Case("imgrel", VK_COFF_IMGREL32)
.Case("secrel32", VK_SECREL)
.Case("size", VK_SIZE)
.Case("abs8", VK_X86_ABS8)
.Case("pltoff", VK_X86_PLTOFF)
.Case("l", VK_PPC_LO)
.Case("h", VK_PPC_HI)
.Case("ha", VK_PPC_HA)
.Case("high", VK_PPC_HIGH)
.Case("higha", VK_PPC_HIGHA)
.Case("higher", VK_PPC_HIGHER)
.Case("highera", VK_PPC_HIGHERA)
.Case("highest", VK_PPC_HIGHEST)
.Case("highesta", VK_PPC_HIGHESTA)
.Case("got@l", VK_PPC_GOT_LO)
.Case("got@h", VK_PPC_GOT_HI)
.Case("got@ha", VK_PPC_GOT_HA)
.Case("local", VK_PPC_LOCAL)
.Case("tocbase", VK_PPC_TOCBASE)
.Case("toc", VK_PPC_TOC)
.Case("toc@l", VK_PPC_TOC_LO)
.Case("toc@h", VK_PPC_TOC_HI)
.Case("toc@ha", VK_PPC_TOC_HA)
.Case("u", VK_PPC_U)
.Case("l", VK_PPC_L)
.Case("tls", VK_PPC_TLS)
.Case("dtpmod", VK_PPC_DTPMOD)
.Case("tprel@l", VK_PPC_TPREL_LO)
.Case("tprel@h", VK_PPC_TPREL_HI)
.Case("tprel@ha", VK_PPC_TPREL_HA)
.Case("tprel@high", VK_PPC_TPREL_HIGH)
.Case("tprel@higha", VK_PPC_TPREL_HIGHA)
.Case("tprel@higher", VK_PPC_TPREL_HIGHER)
.Case("tprel@highera", VK_PPC_TPREL_HIGHERA)
.Case("tprel@highest", VK_PPC_TPREL_HIGHEST)
.Case("tprel@highesta", VK_PPC_TPREL_HIGHESTA)
.Case("dtprel@l", VK_PPC_DTPREL_LO)
.Case("dtprel@h", VK_PPC_DTPREL_HI)
.Case("dtprel@ha", VK_PPC_DTPREL_HA)
.Case("dtprel@high", VK_PPC_DTPREL_HIGH)
.Case("dtprel@higha", VK_PPC_DTPREL_HIGHA)
.Case("dtprel@higher", VK_PPC_DTPREL_HIGHER)
.Case("dtprel@highera", VK_PPC_DTPREL_HIGHERA)
.Case("dtprel@highest", VK_PPC_DTPREL_HIGHEST)
.Case("dtprel@highesta", VK_PPC_DTPREL_HIGHESTA)
.Case("got@tprel", VK_PPC_GOT_TPREL)
.Case("got@tprel@l", VK_PPC_GOT_TPREL_LO)
.Case("got@tprel@h", VK_PPC_GOT_TPREL_HI)
.Case("got@tprel@ha", VK_PPC_GOT_TPREL_HA)
.Case("got@dtprel", VK_PPC_GOT_DTPREL)
.Case("got@dtprel@l", VK_PPC_GOT_DTPREL_LO)
.Case("got@dtprel@h", VK_PPC_GOT_DTPREL_HI)
.Case("got@dtprel@ha", VK_PPC_GOT_DTPREL_HA)
.Case("got@tlsgd", VK_PPC_GOT_TLSGD)
.Case("got@tlsgd@l", VK_PPC_GOT_TLSGD_LO)
.Case("got@tlsgd@h", VK_PPC_GOT_TLSGD_HI)
.Case("got@tlsgd@ha", VK_PPC_GOT_TLSGD_HA)
.Case("got@tlsld", VK_PPC_GOT_TLSLD)
.Case("got@tlsld@l", VK_PPC_GOT_TLSLD_LO)
.Case("got@tlsld@h", VK_PPC_GOT_TLSLD_HI)
.Case("got@tlsld@ha", VK_PPC_GOT_TLSLD_HA)
.Case("got@pcrel", VK_PPC_GOT_PCREL)
.Case("got@tlsgd@pcrel", VK_PPC_GOT_TLSGD_PCREL)
.Case("got@tlsld@pcrel", VK_PPC_GOT_TLSLD_PCREL)
.Case("got@tprel@pcrel", VK_PPC_GOT_TPREL_PCREL)
.Case("tls@pcrel", VK_PPC_TLS_PCREL)
.Case("notoc", VK_PPC_NOTOC)
.Case("gdgot", VK_Hexagon_GD_GOT)
.Case("gdplt", VK_Hexagon_GD_PLT)
.Case("iegot", VK_Hexagon_IE_GOT)
.Case("ie", VK_Hexagon_IE)
.Case("ldgot", VK_Hexagon_LD_GOT)
.Case("ldplt", VK_Hexagon_LD_PLT)
.Case("none", VK_ARM_NONE)
.Case("got_prel", VK_ARM_GOT_PREL)
.Case("target1", VK_ARM_TARGET1)
.Case("target2", VK_ARM_TARGET2)
.Case("prel31", VK_ARM_PREL31)
.Case("sbrel", VK_ARM_SBREL)
.Case("tlsldo", VK_ARM_TLSLDO)
.Case("lo8", VK_AVR_LO8)
.Case("hi8", VK_AVR_HI8)
.Case("hlo8", VK_AVR_HLO8)
.Case("typeindex", VK_WASM_TYPEINDEX)
.Case("tbrel", VK_WASM_TBREL)
.Case("mbrel", VK_WASM_MBREL)
.Case("tlsrel", VK_WASM_TLSREL)
.Case("gotpcrel32@lo", VK_AMDGPU_GOTPCREL32_LO)
.Case("gotpcrel32@hi", VK_AMDGPU_GOTPCREL32_HI)
.Case("rel32@lo", VK_AMDGPU_REL32_LO)
.Case("rel32@hi", VK_AMDGPU_REL32_HI)
.Case("rel64", VK_AMDGPU_REL64)
.Case("abs32@lo", VK_AMDGPU_ABS32_LO)
.Case("abs32@hi", VK_AMDGPU_ABS32_HI)
.Case("hi", VK_VE_HI32)
.Case("lo", VK_VE_LO32)
.Case("pc_hi", VK_VE_PC_HI32)
.Case("pc_lo", VK_VE_PC_LO32)
.Case("got_hi", VK_VE_GOT_HI32)
.Case("got_lo", VK_VE_GOT_LO32)
.Case("gotoff_hi", VK_VE_GOTOFF_HI32)
.Case("gotoff_lo", VK_VE_GOTOFF_LO32)
.Case("plt_hi", VK_VE_PLT_HI32)
.Case("plt_lo", VK_VE_PLT_LO32)
.Case("tls_gd_hi", VK_VE_TLS_GD_HI32)
.Case("tls_gd_lo", VK_VE_TLS_GD_LO32)
.Case("tpoff_hi", VK_VE_TPOFF_HI32)
.Case("tpoff_lo", VK_VE_TPOFF_LO32)
.Default(VK_Invalid);
}
/* *** */
void MCTargetExpr::anchor() {}
/* *** */
bool MCExpr::evaluateAsAbsolute(int64_t &Res) const {
return evaluateAsAbsolute(Res, nullptr, nullptr, nullptr, false);
}
bool MCExpr::evaluateAsAbsolute(int64_t &Res,
const MCAsmLayout &Layout) const {
return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr, false);
}
bool MCExpr::evaluateAsAbsolute(int64_t &Res,
const MCAsmLayout &Layout,
const SectionAddrMap &Addrs) const {
// Setting InSet causes us to absolutize differences across sections and that
// is what the MachO writer uses Addrs for.
return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, &Addrs, true);
}
bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
return evaluateAsAbsolute(Res, &Asm, nullptr, nullptr, false);
}
bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm) const {
return evaluateAsAbsolute(Res, Asm, nullptr, nullptr, false);
}
bool MCExpr::evaluateKnownAbsolute(int64_t &Res,
const MCAsmLayout &Layout) const {
return evaluateAsAbsolute(Res, &Layout.getAssembler(), &Layout, nullptr,
true);
}
bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
const MCAsmLayout *Layout,
const SectionAddrMap *Addrs, bool InSet) const {
MCValue Value;
// Fast path constants.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
Res = CE->getValue();
return true;
}
bool IsRelocatable =
evaluateAsRelocatableImpl(Value, Asm, Layout, nullptr, Addrs, InSet);
// Record the current value.
Res = Value.getConstant();
return IsRelocatable && Value.isAbsolute();
}
/// Helper method for \see EvaluateSymbolAdd().
static void AttemptToFoldSymbolOffsetDifference(
const MCAssembler *Asm, const MCAsmLayout *Layout,
const SectionAddrMap *Addrs, bool InSet, const MCSymbolRefExpr *&A,
const MCSymbolRefExpr *&B, int64_t &Addend) {
if (!A || !B)
return;
const MCSymbol &SA = A->getSymbol();
const MCSymbol &SB = B->getSymbol();
if (SA.isUndefined() || SB.isUndefined())
return;
if (!Asm->getWriter().isSymbolRefDifferenceFullyResolved(*Asm, A, B, InSet))
return;
auto FinalizeFolding = [&]() {
// Pointers to Thumb symbols need to have their low-bit set to allow
// for interworking.
if (Asm->isThumbFunc(&SA))
Addend |= 1;
// If symbol is labeled as micromips, we set low-bit to ensure
// correct offset in .gcc_except_table
if (Asm->getBackend().isMicroMips(&SA))
Addend |= 1;
// Clear the symbol expr pointers to indicate we have folded these
// operands.
A = B = nullptr;
};
const MCFragment *FA = SA.getFragment();
const MCFragment *FB = SB.getFragment();
// If both symbols are in the same fragment, return the difference of their
// offsets
if (FA == FB && !SA.isVariable() && !SA.isUnset() && !SB.isVariable() &&
!SB.isUnset()) {
Addend += SA.getOffset() - SB.getOffset();
return FinalizeFolding();
}
const MCSection &SecA = *FA->getParent();
const MCSection &SecB = *FB->getParent();
if ((&SecA != &SecB) && !Addrs)
return;
if (Layout) {
// One of the symbol involved is part of a fragment being laid out. Quit now
// to avoid a self loop.
if (!Layout->canGetFragmentOffset(FA) || !Layout->canGetFragmentOffset(FB))
return;
// Eagerly evaluate when layout is finalized.
Addend += Layout->getSymbolOffset(A->getSymbol()) -
Layout->getSymbolOffset(B->getSymbol());
if (Addrs && (&SecA != &SecB))
Addend += (Addrs->lookup(&SecA) - Addrs->lookup(&SecB));
FinalizeFolding();
} else {
// When layout is not finalized, our ability to resolve differences between
// symbols is limited to specific cases where the fragments between two
// symbols (including the fragments the symbols are defined in) are
// fixed-size fragments so the difference can be calculated. For example,
// this is important when the Subtarget is changed and a new MCDataFragment
// is created in the case of foo: instr; .arch_extension ext; instr .if . -
// foo.
if (SA.isVariable() || SA.isUnset() || SB.isVariable() || SB.isUnset() ||
FA->getKind() != MCFragment::FT_Data ||
FB->getKind() != MCFragment::FT_Data ||
FA->getSubsectionNumber() != FB->getSubsectionNumber())
return;
// Try to find a constant displacement from FA to FB, add the displacement
// between the offset in FA of SA and the offset in FB of SB.
int64_t Displacement = SA.getOffset() - SB.getOffset();
for (auto FI = FB->getIterator(), FE = SecA.end(); FI != FE; ++FI) {
if (&*FI == FA) {
Addend += Displacement;
return FinalizeFolding();
}
if (FI->getKind() != MCFragment::FT_Data)
return;
Displacement += cast<MCDataFragment>(FI)->getContents().size();
}
}
}
/// Evaluate the result of an add between (conceptually) two MCValues.
///
/// This routine conceptually attempts to construct an MCValue:
/// Result = (Result_A - Result_B + Result_Cst)
/// from two MCValue's LHS and RHS where
/// Result = LHS + RHS
/// and
/// Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
///
/// This routine attempts to aggressively fold the operands such that the result
/// is representable in an MCValue, but may not always succeed.
///
/// \returns True on success, false if the result is not representable in an
/// MCValue.
/// NOTE: It is really important to have both the Asm and Layout arguments.
/// They might look redundant, but this function can be used before layout
/// is done (see the object streamer for example) and having the Asm argument
/// lets us avoid relaxations early.
static bool
EvaluateSymbolicAdd(const MCAssembler *Asm, const MCAsmLayout *Layout,
const SectionAddrMap *Addrs, bool InSet, const MCValue &LHS,
const MCSymbolRefExpr *RHS_A, const MCSymbolRefExpr *RHS_B,
int64_t RHS_Cst, MCValue &Res) {
// FIXME: This routine (and other evaluation parts) are *incredibly* sloppy
// about dealing with modifiers. This will ultimately bite us, one day.
const MCSymbolRefExpr *LHS_A = LHS.getSymA();
const MCSymbolRefExpr *LHS_B = LHS.getSymB();
int64_t LHS_Cst = LHS.getConstant();
// Fold the result constant immediately.
int64_t Result_Cst = LHS_Cst + RHS_Cst;
assert((!Layout || Asm) &&
"Must have an assembler object if layout is given!");
// If we have a layout, we can fold resolved differences.
if (Asm) {
// First, fold out any differences which are fully resolved. By
// reassociating terms in
// Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
// we have the four possible differences:
// (LHS_A - LHS_B),
// (LHS_A - RHS_B),
// (RHS_A - LHS_B),
// (RHS_A - RHS_B).
// Since we are attempting to be as aggressive as possible about folding, we
// attempt to evaluate each possible alternative.
AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, LHS_B,
Result_Cst);
AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, LHS_A, RHS_B,
Result_Cst);
AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, LHS_B,
Result_Cst);
AttemptToFoldSymbolOffsetDifference(Asm, Layout, Addrs, InSet, RHS_A, RHS_B,
Result_Cst);
}
// We can't represent the addition or subtraction of two symbols.
if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
return false;
// At this point, we have at most one additive symbol and one subtractive
// symbol -- find them.
const MCSymbolRefExpr *A = LHS_A ? LHS_A : RHS_A;
const MCSymbolRefExpr *B = LHS_B ? LHS_B : RHS_B;
Res = MCValue::get(A, B, Result_Cst);
return true;
}
bool MCExpr::evaluateAsRelocatable(MCValue &Res,
const MCAsmLayout *Layout,
const MCFixup *Fixup) const {
MCAssembler *Assembler = Layout ? &Layout->getAssembler() : nullptr;
return evaluateAsRelocatableImpl(Res, Assembler, Layout, Fixup, nullptr,
false);
}
bool MCExpr::evaluateAsValue(MCValue &Res, const MCAsmLayout &Layout) const {
MCAssembler *Assembler = &Layout.getAssembler();
return evaluateAsRelocatableImpl(Res, Assembler, &Layout, nullptr, nullptr,
true);
}
static bool canExpand(const MCSymbol &Sym, bool InSet) {
const MCExpr *Expr = Sym.getVariableValue();
const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr);
if (Inner) {
if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
return false;
}
if (InSet)
return true;
return !Sym.isInSection();
}
bool MCExpr::evaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
const MCAsmLayout *Layout,
const MCFixup *Fixup,
const SectionAddrMap *Addrs,
bool InSet) const {
++stats::MCExprEvaluate;
switch (getKind()) {
case Target:
return cast<MCTargetExpr>(this)->evaluateAsRelocatableImpl(Res, Layout,
Fixup);
case Constant:
Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
return true;
case SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
const MCSymbol &Sym = SRE->getSymbol();
const auto Kind = SRE->getKind();
// Evaluate recursively if this is a variable.
if (Sym.isVariable() && (Kind == MCSymbolRefExpr::VK_None || Layout) &&
canExpand(Sym, InSet)) {
bool IsMachO = SRE->hasSubsectionsViaSymbols();
if (Sym.getVariableValue()->evaluateAsRelocatableImpl(
Res, Asm, Layout, Fixup, Addrs, InSet || IsMachO)) {
if (Kind != MCSymbolRefExpr::VK_None) {
if (Res.isAbsolute()) {
Res = MCValue::get(SRE, nullptr, 0);
return true;
}
// If the reference has a variant kind, we can only handle expressions
// which evaluate exactly to a single unadorned symbol. Attach the
// original VariantKind to SymA of the result.
if (Res.getRefKind() != MCSymbolRefExpr::VK_None || !Res.getSymA() ||
Res.getSymB() || Res.getConstant())
return false;
Res =
MCValue::get(MCSymbolRefExpr::create(&Res.getSymA()->getSymbol(),
Kind, Asm->getContext()),
Res.getSymB(), Res.getConstant(), Res.getRefKind());
}
if (!IsMachO)
return true;
const MCSymbolRefExpr *A = Res.getSymA();
const MCSymbolRefExpr *B = Res.getSymB();
// FIXME: This is small hack. Given
// a = b + 4
// .long a
// the OS X assembler will completely drop the 4. We should probably
// include it in the relocation or produce an error if that is not
// possible.
// Allow constant expressions.
if (!A && !B)
return true;
// Allows aliases with zero offset.
if (Res.getConstant() == 0 && (!A || !B))
return true;
}
}
Res = MCValue::get(SRE, nullptr, 0);
return true;
}
case Unary: {
const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
MCValue Value;
if (!AUE->getSubExpr()->evaluateAsRelocatableImpl(Value, Asm, Layout, Fixup,
Addrs, InSet))
return false;
switch (AUE->getOpcode()) {
case MCUnaryExpr::LNot:
if (!Value.isAbsolute())
return false;
Res = MCValue::get(!Value.getConstant());
break;
case MCUnaryExpr::Minus:
/// -(a - b + const) ==> (b - a - const)
if (Value.getSymA() && !Value.getSymB())
return false;
// The cast avoids undefined behavior if the constant is INT64_MIN.
Res = MCValue::get(Value.getSymB(), Value.getSymA(),
-(uint64_t)Value.getConstant());
break;
case MCUnaryExpr::Not:
if (!Value.isAbsolute())
return false;
Res = MCValue::get(~Value.getConstant());
break;
case MCUnaryExpr::Plus:
Res = Value;
break;
}
return true;
}
case Binary: {
const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
MCValue LHSValue, RHSValue;
if (!ABE->getLHS()->evaluateAsRelocatableImpl(LHSValue, Asm, Layout, Fixup,
Addrs, InSet) ||
!ABE->getRHS()->evaluateAsRelocatableImpl(RHSValue, Asm, Layout, Fixup,
Addrs, InSet)) {
// Check if both are Target Expressions, see if we can compare them.
if (const MCTargetExpr *L = dyn_cast<MCTargetExpr>(ABE->getLHS()))
if (const MCTargetExpr *R = cast<MCTargetExpr>(ABE->getRHS())) {
switch (ABE->getOpcode()) {
case MCBinaryExpr::EQ:
Res = MCValue::get((L->isEqualTo(R)) ? -1 : 0);
return true;
case MCBinaryExpr::NE:
Res = MCValue::get((R->isEqualTo(R)) ? 0 : -1);
return true;
default: break;
}
}
return false;
}
// We only support a few operations on non-constant expressions, handle
// those first.
if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
switch (ABE->getOpcode()) {
default:
return false;
case MCBinaryExpr::Sub:
// Negate RHS and add.
// The cast avoids undefined behavior if the constant is INT64_MIN.
return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
RHSValue.getSymB(), RHSValue.getSymA(),
-(uint64_t)RHSValue.getConstant(), Res);
case MCBinaryExpr::Add:
return EvaluateSymbolicAdd(Asm, Layout, Addrs, InSet, LHSValue,
RHSValue.getSymA(), RHSValue.getSymB(),
RHSValue.getConstant(), Res);
}
}
// FIXME: We need target hooks for the evaluation. It may be limited in
// width, and gas defines the result of comparisons differently from
// Apple as.
int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
int64_t Result = 0;
auto Op = ABE->getOpcode();
switch (Op) {
case MCBinaryExpr::AShr: Result = LHS >> RHS; break;
case MCBinaryExpr::Add: Result = LHS + RHS; break;
case MCBinaryExpr::And: Result = LHS & RHS; break;
case MCBinaryExpr::Div:
case MCBinaryExpr::Mod:
// Handle division by zero. gas just emits a warning and keeps going,
// we try to be stricter.
// FIXME: Currently the caller of this function has no way to understand
// we're bailing out because of 'division by zero'. Therefore, it will
// emit a 'expected relocatable expression' error. It would be nice to
// change this code to emit a better diagnostic.
if (RHS == 0)
return false;
if (ABE->getOpcode() == MCBinaryExpr::Div)
Result = LHS / RHS;
else
Result = LHS % RHS;
break;
case MCBinaryExpr::EQ: Result = LHS == RHS; break;
case MCBinaryExpr::GT: Result = LHS > RHS; break;
case MCBinaryExpr::GTE: Result = LHS >= RHS; break;
case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
case MCBinaryExpr::LOr: Result = LHS || RHS; break;
case MCBinaryExpr::LShr: Result = uint64_t(LHS) >> uint64_t(RHS); break;
case MCBinaryExpr::LT: Result = LHS < RHS; break;
case MCBinaryExpr::LTE: Result = LHS <= RHS; break;
case MCBinaryExpr::Mul: Result = LHS * RHS; break;
case MCBinaryExpr::NE: Result = LHS != RHS; break;
case MCBinaryExpr::Or: Result = LHS | RHS; break;
case MCBinaryExpr::OrNot: Result = LHS | ~RHS; break;
case MCBinaryExpr::Shl: Result = uint64_t(LHS) << uint64_t(RHS); break;
case MCBinaryExpr::Sub: Result = LHS - RHS; break;
case MCBinaryExpr::Xor: Result = LHS ^ RHS; break;
}
switch (Op) {
default:
Res = MCValue::get(Result);
break;
case MCBinaryExpr::EQ:
case MCBinaryExpr::GT:
case MCBinaryExpr::GTE:
case MCBinaryExpr::LT:
case MCBinaryExpr::LTE:
case MCBinaryExpr::NE:
// A comparison operator returns a -1 if true and 0 if false.
Res = MCValue::get(Result ? -1 : 0);
break;
}
return true;
}
}
llvm_unreachable("Invalid assembly expression kind!");
}
MCFragment *MCExpr::findAssociatedFragment() const {
switch (getKind()) {
case Target:
// We never look through target specific expressions.
return cast<MCTargetExpr>(this)->findAssociatedFragment();
case Constant:
return MCSymbol::AbsolutePseudoFragment;
case SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
const MCSymbol &Sym = SRE->getSymbol();
return Sym.getFragment();
}
case Unary:
return cast<MCUnaryExpr>(this)->getSubExpr()->findAssociatedFragment();
case Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
MCFragment *LHS_F = BE->getLHS()->findAssociatedFragment();
MCFragment *RHS_F = BE->getRHS()->findAssociatedFragment();
// If either is absolute, return the other.
if (LHS_F == MCSymbol::AbsolutePseudoFragment)
return RHS_F;
if (RHS_F == MCSymbol::AbsolutePseudoFragment)
return LHS_F;
// Not always correct, but probably the best we can do without more context.
if (BE->getOpcode() == MCBinaryExpr::Sub)
return MCSymbol::AbsolutePseudoFragment;
// Otherwise, return the first non-null fragment.
return LHS_F ? LHS_F : RHS_F;
}
}
llvm_unreachable("Invalid assembly expression kind!");
}