1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/Target/X86/X86Subtarget.cpp
Oren Ben Simhon 78031089be Control-Flow Enforcement Technology - Shadow Stack support (LLVM side)
Shadow stack solution introduces a new stack for return addresses only.
The HW has a Shadow Stack Pointer (SSP) that points to the next return address.
If we return to a different address, an exception is triggered.
The shadow stack is managed using a series of intrinsics that are introduced in this patch as well as the new register (SSP).
The intrinsics are mapped to new instruction set that implements CET mechanism.

The patch also includes initial infrastructure support for IBT.

For more information, please see the following:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

Differential Revision: https://reviews.llvm.org/D40223

Change-Id: I4daa1f27e88176be79a4ac3b4cd26a459e88fed4
llvm-svn: 318996
2017-11-26 13:02:45 +00:00

433 lines
13 KiB
C++

//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86CallLowering.h"
#include "X86LegalizerInfo.h"
#include "X86RegisterBankInfo.h"
#include "X86Subtarget.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <string>
#if defined(_MSC_VER)
#include <intrin.h>
#endif
using namespace llvm;
#define DEBUG_TYPE "subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "X86GenSubtargetInfo.inc"
// Temporary option to control early if-conversion for x86 while adding machine
// models.
static cl::opt<bool>
X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
cl::desc("Enable early if-conversion on X86"));
/// Classify a blockaddress reference for the current subtarget according to how
/// we should reference it in a non-pcrel context.
unsigned char X86Subtarget::classifyBlockAddressReference() const {
return classifyLocalReference(nullptr);
}
/// Classify a global variable reference for the current subtarget according to
/// how we should reference it in a non-pcrel context.
unsigned char
X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
return classifyGlobalReference(GV, *GV->getParent());
}
unsigned char
X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
// 64 bits can use %rip addressing for anything local.
if (is64Bit())
return X86II::MO_NO_FLAG;
// If this is for a position dependent executable, the static linker can
// figure it out.
if (!isPositionIndependent())
return X86II::MO_NO_FLAG;
// The COFF dynamic linker just patches the executable sections.
if (isTargetCOFF())
return X86II::MO_NO_FLAG;
if (isTargetDarwin()) {
// 32 bit macho has no relocation for a-b if a is undefined, even if
// b is in the section that is being relocated.
// This means we have to use o load even for GVs that are known to be
// local to the dso.
if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
return X86II::MO_PIC_BASE_OFFSET;
}
return X86II::MO_GOTOFF;
}
unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
const Module &M) const {
// Large model never uses stubs.
if (TM.getCodeModel() == CodeModel::Large)
return X86II::MO_NO_FLAG;
// Absolute symbols can be referenced directly.
if (GV) {
if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
// See if we can use the 8-bit immediate form. Note that some instructions
// will sign extend the immediate operand, so to be conservative we only
// accept the range [0,128).
if (CR->getUnsignedMax().ult(128))
return X86II::MO_ABS8;
else
return X86II::MO_NO_FLAG;
}
}
if (TM.shouldAssumeDSOLocal(M, GV))
return classifyLocalReference(GV);
if (isTargetCOFF())
return X86II::MO_DLLIMPORT;
if (is64Bit())
return X86II::MO_GOTPCREL;
if (isTargetDarwin()) {
if (!isPositionIndependent())
return X86II::MO_DARWIN_NONLAZY;
return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
}
return X86II::MO_GOT;
}
unsigned char
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
return classifyGlobalFunctionReference(GV, *GV->getParent());
}
unsigned char
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
const Module &M) const {
if (TM.shouldAssumeDSOLocal(M, GV))
return X86II::MO_NO_FLAG;
if (isTargetCOFF()) {
assert(GV->hasDLLImportStorageClass() &&
"shouldAssumeDSOLocal gave inconsistent answer");
return X86II::MO_DLLIMPORT;
}
const Function *F = dyn_cast_or_null<Function>(GV);
if (isTargetELF()) {
if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
// According to psABI, PLT stub clobbers XMM8-XMM15.
// In Regcall calling convention those registers are used for passing
// parameters. Thus we need to prevent lazy binding in Regcall.
return X86II::MO_GOTPCREL;
if (F && F->hasFnAttribute(Attribute::NonLazyBind) && is64Bit())
return X86II::MO_GOTPCREL;
return X86II::MO_PLT;
}
if (is64Bit()) {
if (F && F->hasFnAttribute(Attribute::NonLazyBind))
// If the function is marked as non-lazy, generate an indirect call
// which loads from the GOT directly. This avoids runtime overhead
// at the cost of eager binding (and one extra byte of encoding).
return X86II::MO_GOTPCREL;
return X86II::MO_NO_FLAG;
}
return X86II::MO_NO_FLAG;
}
/// This function returns the name of a function which has an interface like
/// the non-standard bzero function, if such a function exists on the
/// current subtarget and it is considered preferable over memset with zero
/// passed as the second argument. Otherwise it returns null.
const char *X86Subtarget::getBZeroEntry() const {
// Darwin 10 has a __bzero entry point for this purpose.
if (getTargetTriple().isMacOSX() &&
!getTargetTriple().isMacOSXVersionLT(10, 6))
return "__bzero";
return nullptr;
}
bool X86Subtarget::hasSinCos() const {
if (getTargetTriple().isMacOSX()) {
return !getTargetTriple().isMacOSXVersionLT(10, 9) && is64Bit();
} else if (getTargetTriple().isOSFuchsia()) {
return true;
}
return false;
}
/// Return true if the subtarget allows calls to immediate address.
bool X86Subtarget::isLegalToCallImmediateAddr() const {
// FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
// but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
// the following check for Win32 should be removed.
if (In64BitMode || isTargetWin32())
return false;
return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}
void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
std::string CPUName = CPU;
if (CPUName.empty())
CPUName = "generic";
// Make sure 64-bit features are available in 64-bit mode. (But make sure
// SSE2 can be turned off explicitly.)
std::string FullFS = FS;
if (In64BitMode) {
if (!FullFS.empty())
FullFS = "+64bit,+sse2," + FullFS;
else
FullFS = "+64bit,+sse2";
}
// LAHF/SAHF are always supported in non-64-bit mode.
if (!In64BitMode) {
if (!FullFS.empty())
FullFS = "+sahf," + FullFS;
else
FullFS = "+sahf";
}
// Parse features string and set the CPU.
ParseSubtargetFeatures(CPUName, FullFS);
// All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
// 16-bytes and under that are reasonably fast. These features were
// introduced with Intel's Nehalem/Silvermont and AMD's Family10h
// micro-architectures respectively.
if (hasSSE42() || hasSSE4A())
IsUAMem16Slow = false;
InstrItins = getInstrItineraryForCPU(CPUName);
// It's important to keep the MCSubtargetInfo feature bits in sync with
// target data structure which is shared with MC code emitter, etc.
if (In64BitMode)
ToggleFeature(X86::Mode64Bit);
else if (In32BitMode)
ToggleFeature(X86::Mode32Bit);
else if (In16BitMode)
ToggleFeature(X86::Mode16Bit);
else
llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");
DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
<< ", 3DNowLevel " << X863DNowLevel
<< ", 64bit " << HasX86_64 << "\n");
assert((!In64BitMode || HasX86_64) &&
"64-bit code requested on a subtarget that doesn't support it!");
// Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
// 32 and 64 bit) and for all 64-bit targets.
if (StackAlignOverride)
stackAlignment = StackAlignOverride;
else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
isTargetKFreeBSD() || In64BitMode)
stackAlignment = 16;
// Some CPUs have more overhead for gather. The specified overhead is relative
// to the Load operation. "2" is the number provided by Intel architects. This
// parameter is used for cost estimation of Gather Op and comparison with
// other alternatives.
// TODO: Remove the explicit hasAVX512()?, That would mean we would only
// enable gather with a -march.
if (hasAVX512() || (hasAVX2() && hasFastGather()))
GatherOverhead = 2;
if (hasAVX512())
ScatterOverhead = 2;
}
void X86Subtarget::initializeEnvironment() {
X86SSELevel = NoSSE;
X863DNowLevel = NoThreeDNow;
HasX87 = false;
HasCMov = false;
HasX86_64 = false;
HasPOPCNT = false;
HasSSE4A = false;
HasAES = false;
HasVAES = false;
HasFXSR = false;
HasXSAVE = false;
HasXSAVEOPT = false;
HasXSAVEC = false;
HasXSAVES = false;
HasPCLMUL = false;
HasVPCLMULQDQ = false;
HasGFNI = false;
HasFMA = false;
HasFMA4 = false;
HasXOP = false;
HasTBM = false;
HasLWP = false;
HasMOVBE = false;
HasRDRAND = false;
HasF16C = false;
HasFSGSBase = false;
HasLZCNT = false;
HasBMI = false;
HasBMI2 = false;
HasVBMI = false;
HasVBMI2 = false;
HasIFMA = false;
HasRTM = false;
HasERI = false;
HasCDI = false;
HasPFI = false;
HasDQI = false;
HasVPOPCNTDQ = false;
HasBWI = false;
HasVLX = false;
HasADX = false;
HasPKU = false;
HasVNNI = false;
HasBITALG = false;
HasSHA = false;
HasPRFCHW = false;
HasRDSEED = false;
HasLAHFSAHF = false;
HasMWAITX = false;
HasCLZERO = false;
HasMPX = false;
HasSHSTK = false;
HasIBT = false;
HasSGX = false;
HasCLFLUSHOPT = false;
HasCLWB = false;
IsPMULLDSlow = false;
IsSHLDSlow = false;
IsUAMem16Slow = false;
IsUAMem32Slow = false;
HasSSEUnalignedMem = false;
HasCmpxchg16b = false;
UseLeaForSP = false;
HasFastPartialYMMorZMMWrite = false;
HasFastGather = false;
HasFastScalarFSQRT = false;
HasFastVectorFSQRT = false;
HasFastLZCNT = false;
HasFastSHLDRotate = false;
HasMacroFusion = false;
HasERMSB = false;
HasSlowDivide32 = false;
HasSlowDivide64 = false;
PadShortFunctions = false;
SlowTwoMemOps = false;
LEAUsesAG = false;
SlowLEA = false;
Slow3OpsLEA = false;
SlowIncDec = false;
stackAlignment = 4;
// FIXME: this is a known good value for Yonah. How about others?
MaxInlineSizeThreshold = 128;
UseSoftFloat = false;
X86ProcFamily = Others;
GatherOverhead = 1024;
ScatterOverhead = 1024;
}
X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
StringRef FS) {
initializeEnvironment();
initSubtargetFeatures(CPU, FS);
return *this;
}
X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
const X86TargetMachine &TM,
unsigned StackAlignOverride)
: X86GenSubtargetInfo(TT, CPU, FS), X86ProcFamily(Others),
PICStyle(PICStyles::None), TM(TM), TargetTriple(TT),
StackAlignOverride(StackAlignOverride),
In64BitMode(TargetTriple.getArch() == Triple::x86_64),
In32BitMode(TargetTriple.getArch() == Triple::x86 &&
TargetTriple.getEnvironment() != Triple::CODE16),
In16BitMode(TargetTriple.getArch() == Triple::x86 &&
TargetTriple.getEnvironment() == Triple::CODE16),
InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
FrameLowering(*this, getStackAlignment()) {
// Determine the PICStyle based on the target selected.
if (!isPositionIndependent())
setPICStyle(PICStyles::None);
else if (is64Bit())
setPICStyle(PICStyles::RIPRel);
else if (isTargetCOFF())
setPICStyle(PICStyles::None);
else if (isTargetDarwin())
setPICStyle(PICStyles::StubPIC);
else if (isTargetELF())
setPICStyle(PICStyles::GOT);
CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
Legalizer.reset(new X86LegalizerInfo(*this, TM));
auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
RegBankInfo.reset(RBI);
InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
}
const CallLowering *X86Subtarget::getCallLowering() const {
return CallLoweringInfo.get();
}
const InstructionSelector *X86Subtarget::getInstructionSelector() const {
return InstSelector.get();
}
const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
return Legalizer.get();
}
const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
return RegBankInfo.get();
}
bool X86Subtarget::enableEarlyIfConversion() const {
return hasCMov() && X86EarlyIfConv;
}