1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00
llvm-mirror/unittests/FuzzMutate/OperationsTest.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

405 lines
14 KiB
C++

//===- OperationsTest.cpp - Tests for fuzzer operations -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/FuzzMutate/Operations.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/FuzzMutate/OpDescriptor.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <iostream>
// Define some pretty printers to help with debugging failures.
namespace llvm {
void PrintTo(Type *T, ::std::ostream *OS) {
raw_os_ostream ROS(*OS);
T->print(ROS);
}
void PrintTo(BasicBlock *BB, ::std::ostream *OS) {
raw_os_ostream ROS(*OS);
ROS << BB << " (" << BB->getName() << ")";
}
void PrintTo(Value *V, ::std::ostream *OS) {
raw_os_ostream ROS(*OS);
ROS << V << " (";
V->print(ROS);
ROS << ")";
}
void PrintTo(Constant *C, ::std::ostream *OS) { PrintTo(cast<Value>(C), OS); }
} // namespace llvm
using namespace llvm;
using testing::AllOf;
using testing::AnyOf;
using testing::ElementsAre;
using testing::Eq;
using testing::Ge;
using testing::Each;
using testing::Truly;
using testing::NotNull;
using testing::PrintToString;
using testing::SizeIs;
namespace {
std::unique_ptr<Module> parseAssembly(
const char *Assembly, LLVMContext &Context) {
SMDiagnostic Error;
std::unique_ptr<Module> M = parseAssemblyString(Assembly, Error, Context);
std::string ErrMsg;
raw_string_ostream OS(ErrMsg);
Error.print("", OS);
assert(M && !verifyModule(*M, &errs()));
return M;
}
MATCHER_P(TypesMatch, V, "has type " + PrintToString(V->getType())) {
return arg->getType() == V->getType();
}
MATCHER_P(HasType, T, "") { return arg->getType() == T; }
TEST(OperationsTest, SourcePreds) {
using namespace llvm::fuzzerop;
LLVMContext Ctx;
Constant *i1 = ConstantInt::getFalse(Ctx);
Constant *i8 = ConstantInt::get(Type::getInt8Ty(Ctx), 3);
Constant *i16 = ConstantInt::get(Type::getInt16Ty(Ctx), 1 << 15);
Constant *i32 = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
Constant *i64 = ConstantInt::get(Type::getInt64Ty(Ctx),
std::numeric_limits<uint64_t>::max());
Constant *f16 = ConstantFP::getInfinity(Type::getHalfTy(Ctx));
Constant *f32 = ConstantFP::get(Type::getFloatTy(Ctx), 0.0);
Constant *f64 = ConstantFP::get(Type::getDoubleTy(Ctx), 123.45);
Constant *s =
ConstantStruct::get(StructType::create(Ctx, "OpaqueStruct"));
Constant *a =
ConstantArray::get(ArrayType::get(i32->getType(), 2), {i32, i32});
Constant *v8i8 = ConstantVector::getSplat(8, i8);
Constant *v4f16 = ConstantVector::getSplat(4, f16);
Constant *p0i32 =
ConstantPointerNull::get(PointerType::get(i32->getType(), 0));
auto OnlyI32 = onlyType(i32->getType());
EXPECT_TRUE(OnlyI32.matches({}, i32));
EXPECT_FALSE(OnlyI32.matches({}, i64));
EXPECT_FALSE(OnlyI32.matches({}, p0i32));
EXPECT_FALSE(OnlyI32.matches({}, a));
EXPECT_THAT(OnlyI32.generate({}, {}),
AllOf(SizeIs(Ge(1u)), Each(TypesMatch(i32))));
auto AnyType = anyType();
EXPECT_TRUE(AnyType.matches({}, i1));
EXPECT_TRUE(AnyType.matches({}, f64));
EXPECT_TRUE(AnyType.matches({}, s));
EXPECT_TRUE(AnyType.matches({}, v8i8));
EXPECT_TRUE(AnyType.matches({}, p0i32));
EXPECT_THAT(
AnyType.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
Each(AnyOf(TypesMatch(i32), TypesMatch(f16), TypesMatch(v8i8))));
auto AnyInt = anyIntType();
EXPECT_TRUE(AnyInt.matches({}, i1));
EXPECT_TRUE(AnyInt.matches({}, i64));
EXPECT_FALSE(AnyInt.matches({}, f32));
EXPECT_FALSE(AnyInt.matches({}, v4f16));
EXPECT_THAT(
AnyInt.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
AllOf(SizeIs(Ge(1u)), Each(TypesMatch(i32))));
auto AnyFP = anyFloatType();
EXPECT_TRUE(AnyFP.matches({}, f16));
EXPECT_TRUE(AnyFP.matches({}, f32));
EXPECT_FALSE(AnyFP.matches({}, i16));
EXPECT_FALSE(AnyFP.matches({}, p0i32));
EXPECT_FALSE(AnyFP.matches({}, v4f16));
EXPECT_THAT(
AnyFP.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
AllOf(SizeIs(Ge(1u)), Each(TypesMatch(f16))));
auto AnyPtr = anyPtrType();
EXPECT_TRUE(AnyPtr.matches({}, p0i32));
EXPECT_FALSE(AnyPtr.matches({}, i8));
EXPECT_FALSE(AnyPtr.matches({}, a));
EXPECT_FALSE(AnyPtr.matches({}, v8i8));
auto isPointer = [](Value *V) { return V->getType()->isPointerTy(); };
EXPECT_THAT(
AnyPtr.generate({}, {i32->getType(), f16->getType(), v8i8->getType()}),
AllOf(SizeIs(Ge(3u)), Each(Truly(isPointer))));
auto AnyVec = anyVectorType();
EXPECT_TRUE(AnyVec.matches({}, v8i8));
EXPECT_TRUE(AnyVec.matches({}, v4f16));
EXPECT_FALSE(AnyVec.matches({}, i8));
EXPECT_FALSE(AnyVec.matches({}, a));
EXPECT_FALSE(AnyVec.matches({}, s));
EXPECT_THAT(AnyVec.generate({}, {v8i8->getType()}),
ElementsAre(TypesMatch(v8i8)));
auto First = matchFirstType();
EXPECT_TRUE(First.matches({i8}, i8));
EXPECT_TRUE(First.matches({s, a}, s));
EXPECT_FALSE(First.matches({f16}, f32));
EXPECT_FALSE(First.matches({v4f16, f64}, f64));
EXPECT_THAT(First.generate({i8}, {}), Each(TypesMatch(i8)));
EXPECT_THAT(First.generate({f16}, {i8->getType()}),
Each(TypesMatch(f16)));
EXPECT_THAT(First.generate({v8i8, i32}, {}), Each(TypesMatch(v8i8)));
}
TEST(OperationsTest, SplitBlock) {
LLVMContext Ctx;
Module M("M", Ctx);
Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
/*isVarArg=*/false),
GlobalValue::ExternalLinkage, "f", &M);
auto SBOp = fuzzerop::splitBlockDescriptor(1);
// Create a block with only a return and split it on the return.
auto *BB = BasicBlock::Create(Ctx, "BB", F);
auto *RI = ReturnInst::Create(Ctx, BB);
SBOp.BuilderFunc({UndefValue::get(Type::getInt1Ty(Ctx))}, RI);
// We should end up with an unconditional branch from BB to BB1, and the
// return ends up in BB1.
auto *UncondBr = cast<BranchInst>(BB->getTerminator());
ASSERT_TRUE(UncondBr->isUnconditional());
auto *BB1 = UncondBr->getSuccessor(0);
ASSERT_THAT(RI->getParent(), Eq(BB1));
// Now add an instruction to BB1 and split on that.
auto *AI = new AllocaInst(Type::getInt8Ty(Ctx), 0, "a", RI);
Value *Cond = ConstantInt::getFalse(Ctx);
SBOp.BuilderFunc({Cond}, AI);
// We should end up with a loop back on BB1 and the instruction we split on
// moves to BB2.
auto *CondBr = cast<BranchInst>(BB1->getTerminator());
EXPECT_THAT(CondBr->getCondition(), Eq(Cond));
ASSERT_THAT(CondBr->getNumSuccessors(), Eq(2u));
ASSERT_THAT(CondBr->getSuccessor(0), Eq(BB1));
auto *BB2 = CondBr->getSuccessor(1);
EXPECT_THAT(AI->getParent(), Eq(BB2));
EXPECT_THAT(RI->getParent(), Eq(BB2));
EXPECT_FALSE(verifyModule(M, &errs()));
}
TEST(OperationsTest, SplitEHBlock) {
// Check that we will not try to branch back to the landingpad block using
// regular branch instruction
LLVMContext Ctx;
const char *SourceCode =
"declare i32* @f()"
"declare i32 @personality_function()"
"define i32* @test() personality i32 ()* @personality_function {\n"
"entry:\n"
" %val = invoke i32* @f()\n"
" to label %normal unwind label %exceptional\n"
"normal:\n"
" ret i32* %val\n"
"exceptional:\n"
" %landing_pad4 = landingpad token cleanup\n"
" ret i32* undef\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
// Get the landingpad block
BasicBlock &BB = *std::next(M->getFunction("test")->begin(), 2);
fuzzerop::OpDescriptor Descr = fuzzerop::splitBlockDescriptor(1);
Descr.BuilderFunc({ConstantInt::getTrue(Ctx)},&*BB.getFirstInsertionPt());
ASSERT_TRUE(!verifyModule(*M, &errs()));
}
TEST(OperationsTest, SplitBlockWithPhis) {
LLVMContext Ctx;
Type *Int8Ty = Type::getInt8Ty(Ctx);
Module M("M", Ctx);
Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
/*isVarArg=*/false),
GlobalValue::ExternalLinkage, "f", &M);
auto SBOp = fuzzerop::splitBlockDescriptor(1);
// Create 3 blocks with an if-then branch.
auto *BB1 = BasicBlock::Create(Ctx, "BB1", F);
auto *BB2 = BasicBlock::Create(Ctx, "BB2", F);
auto *BB3 = BasicBlock::Create(Ctx, "BB3", F);
BranchInst::Create(BB2, BB3, ConstantInt::getFalse(Ctx), BB1);
BranchInst::Create(BB3, BB2);
// Set up phi nodes selecting values for the incoming edges.
auto *PHI1 = PHINode::Create(Int8Ty, /*NumReservedValues=*/2, "p1", BB3);
PHI1->addIncoming(ConstantInt::get(Int8Ty, 0), BB1);
PHI1->addIncoming(ConstantInt::get(Int8Ty, 1), BB2);
auto *PHI2 = PHINode::Create(Int8Ty, /*NumReservedValues=*/2, "p2", BB3);
PHI2->addIncoming(ConstantInt::get(Int8Ty, 1), BB1);
PHI2->addIncoming(ConstantInt::get(Int8Ty, 0), BB2);
auto *RI = ReturnInst::Create(Ctx, BB3);
// Now we split the block with PHI nodes, making sure they're all updated.
Value *Cond = ConstantInt::getFalse(Ctx);
SBOp.BuilderFunc({Cond}, RI);
// Make sure the PHIs are updated with a value for the third incoming edge.
EXPECT_THAT(PHI1->getNumIncomingValues(), Eq(3u));
EXPECT_THAT(PHI2->getNumIncomingValues(), Eq(3u));
EXPECT_FALSE(verifyModule(M, &errs()));
}
TEST(OperationsTest, GEP) {
LLVMContext Ctx;
Type *Int8PtrTy = Type::getInt8PtrTy(Ctx);
Type *Int32Ty = Type::getInt32Ty(Ctx);
Module M("M", Ctx);
Function *F = Function::Create(FunctionType::get(Type::getVoidTy(Ctx), {},
/*isVarArg=*/false),
GlobalValue::ExternalLinkage, "f", &M);
auto *BB = BasicBlock::Create(Ctx, "BB", F);
auto *RI = ReturnInst::Create(Ctx, BB);
auto GEPOp = fuzzerop::gepDescriptor(1);
EXPECT_TRUE(GEPOp.SourcePreds[0].matches({}, UndefValue::get(Int8PtrTy)));
EXPECT_TRUE(GEPOp.SourcePreds[1].matches({UndefValue::get(Int8PtrTy)},
ConstantInt::get(Int32Ty, 0)));
GEPOp.BuilderFunc({UndefValue::get(Int8PtrTy), ConstantInt::get(Int32Ty, 0)},
RI);
EXPECT_FALSE(verifyModule(M, &errs()));
}
TEST(OperationsTest, GEPPointerOperand) {
// Check that we only pick sized pointers for the GEP instructions
LLVMContext Ctx;
const char *SourceCode =
"declare void @f()\n"
"define void @test() {\n"
" %v = bitcast void ()* @f to i64 (i8 addrspace(4)*)*\n"
" %a = alloca i64, i32 10\n"
" ret void\n"
"}";
auto M = parseAssembly(SourceCode, Ctx);
fuzzerop::OpDescriptor Descr = fuzzerop::gepDescriptor(1);
// Get first basic block of the test function
Function &F = *M->getFunction("test");
BasicBlock &BB = *F.begin();
// Don't match %v
ASSERT_FALSE(Descr.SourcePreds[0].matches({}, &*BB.begin()));
// Match %a
ASSERT_TRUE(Descr.SourcePreds[0].matches({}, &*std::next(BB.begin())));
}
TEST(OperationsTest, ExtractAndInsertValue) {
LLVMContext Ctx;
Type *Int8PtrTy = Type::getInt8PtrTy(Ctx);
Type *Int32Ty = Type::getInt32Ty(Ctx);
Type *Int64Ty = Type::getInt64Ty(Ctx);
Type *StructTy = StructType::create(Ctx, {Int8PtrTy, Int32Ty});
Type *OpaqueTy = StructType::create(Ctx, "OpaqueStruct");
Type *ZeroSizedArrayTy = ArrayType::get(Int64Ty, 0);
Type *ArrayTy = ArrayType::get(Int64Ty, 4);
Type *VectorTy = VectorType::get(Int32Ty, 2);
auto EVOp = fuzzerop::extractValueDescriptor(1);
auto IVOp = fuzzerop::insertValueDescriptor(1);
// Sanity check the source preds.
Constant *SVal = UndefValue::get(StructTy);
Constant *OVal = UndefValue::get(OpaqueTy);
Constant *AVal = UndefValue::get(ArrayTy);
Constant *ZAVal = UndefValue::get(ZeroSizedArrayTy);
Constant *VVal = UndefValue::get(VectorTy);
EXPECT_TRUE(EVOp.SourcePreds[0].matches({}, SVal));
EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, OVal));
EXPECT_TRUE(EVOp.SourcePreds[0].matches({}, AVal));
EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, VVal));
EXPECT_TRUE(IVOp.SourcePreds[0].matches({}, SVal));
EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, OVal));
EXPECT_TRUE(IVOp.SourcePreds[0].matches({}, AVal));
EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, VVal));
// Don't consider zero sized arrays as viable sources
EXPECT_FALSE(EVOp.SourcePreds[0].matches({}, ZAVal));
EXPECT_FALSE(IVOp.SourcePreds[0].matches({}, ZAVal));
// Make sure we're range checking appropriately.
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 0)));
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 1)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({SVal}, ConstantInt::get(Int32Ty, 2)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({OVal}, ConstantInt::get(Int32Ty, 0)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({OVal}, ConstantInt::get(Int32Ty, 65536)));
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 0)));
EXPECT_TRUE(
EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 3)));
EXPECT_FALSE(
EVOp.SourcePreds[1].matches({AVal}, ConstantInt::get(Int32Ty, 4)));
EXPECT_THAT(
EVOp.SourcePreds[1].generate({SVal}, {}),
ElementsAre(ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1)));
// InsertValue should accept any type in the struct, but only in positions
// where it makes sense.
EXPECT_TRUE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int8PtrTy)));
EXPECT_TRUE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int32Ty)));
EXPECT_FALSE(IVOp.SourcePreds[1].matches({SVal}, UndefValue::get(Int64Ty)));
EXPECT_FALSE(IVOp.SourcePreds[2].matches({SVal, UndefValue::get(Int32Ty)},
ConstantInt::get(Int32Ty, 0)));
EXPECT_TRUE(IVOp.SourcePreds[2].matches({SVal, UndefValue::get(Int32Ty)},
ConstantInt::get(Int32Ty, 1)));
EXPECT_THAT(IVOp.SourcePreds[1].generate({SVal}, {}),
Each(AnyOf(HasType(Int32Ty), HasType(Int8PtrTy))));
EXPECT_THAT(
IVOp.SourcePreds[2].generate({SVal, ConstantInt::get(Int32Ty, 0)}, {}),
ElementsAre(ConstantInt::get(Int32Ty, 1)));
}
}