mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
37f389b2f8
The load command is currently specific to arm64 and holds information for instruction rewriting, e.g. converting a GOT load to an ADR to compute a local address. (On ELF the information is usually conveyed by relocations, e.g. R_X86_64_REX_GOTPCRELX, R_PPC64_TOC16_HA) Reviewed By: alexander-shaposhnikov Differential Revision: https://reviews.llvm.org/D104968
367 lines
14 KiB
C++
367 lines
14 KiB
C++
//===- Object.h - Mach-O object file model ----------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_OBJCOPY_MACHO_OBJECT_H
|
|
#define LLVM_OBJCOPY_MACHO_OBJECT_H
|
|
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/BinaryFormat/MachO.h"
|
|
#include "llvm/MC/StringTableBuilder.h"
|
|
#include "llvm/ObjectYAML/DWARFYAML.h"
|
|
#include "llvm/Support/StringSaver.h"
|
|
#include "llvm/Support/YAMLTraits.h"
|
|
#include <cstdint>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
namespace objcopy {
|
|
namespace macho {
|
|
|
|
struct MachHeader {
|
|
uint32_t Magic;
|
|
uint32_t CPUType;
|
|
uint32_t CPUSubType;
|
|
uint32_t FileType;
|
|
uint32_t NCmds;
|
|
uint32_t SizeOfCmds;
|
|
uint32_t Flags;
|
|
uint32_t Reserved = 0;
|
|
};
|
|
|
|
struct RelocationInfo;
|
|
struct Section {
|
|
uint32_t Index;
|
|
std::string Segname;
|
|
std::string Sectname;
|
|
// CanonicalName is a string formatted as “<Segname>,<Sectname>".
|
|
std::string CanonicalName;
|
|
uint64_t Addr = 0;
|
|
uint64_t Size = 0;
|
|
// Offset in the input file.
|
|
Optional<uint32_t> OriginalOffset;
|
|
uint32_t Offset = 0;
|
|
uint32_t Align = 0;
|
|
uint32_t RelOff = 0;
|
|
uint32_t NReloc = 0;
|
|
uint32_t Flags = 0;
|
|
uint32_t Reserved1 = 0;
|
|
uint32_t Reserved2 = 0;
|
|
uint32_t Reserved3 = 0;
|
|
StringRef Content;
|
|
std::vector<RelocationInfo> Relocations;
|
|
|
|
Section(StringRef SegName, StringRef SectName)
|
|
: Segname(std::string(SegName)), Sectname(std::string(SectName)),
|
|
CanonicalName((Twine(SegName) + Twine(',') + SectName).str()) {}
|
|
|
|
Section(StringRef SegName, StringRef SectName, StringRef Content)
|
|
: Segname(std::string(SegName)), Sectname(std::string(SectName)),
|
|
CanonicalName((Twine(SegName) + Twine(',') + SectName).str()),
|
|
Content(Content) {}
|
|
|
|
MachO::SectionType getType() const {
|
|
return static_cast<MachO::SectionType>(Flags & MachO::SECTION_TYPE);
|
|
}
|
|
|
|
bool isVirtualSection() const {
|
|
return (getType() == MachO::S_ZEROFILL ||
|
|
getType() == MachO::S_GB_ZEROFILL ||
|
|
getType() == MachO::S_THREAD_LOCAL_ZEROFILL);
|
|
}
|
|
|
|
bool hasValidOffset() const {
|
|
return !(isVirtualSection() || (OriginalOffset && *OriginalOffset == 0));
|
|
}
|
|
};
|
|
|
|
struct LoadCommand {
|
|
// The type MachO::macho_load_command is defined in llvm/BinaryFormat/MachO.h
|
|
// and it is a union of all the structs corresponding to various load
|
|
// commands.
|
|
MachO::macho_load_command MachOLoadCommand;
|
|
|
|
// The raw content of the payload of the load command (located right after the
|
|
// corresponding struct). In some cases it is either empty or can be
|
|
// copied-over without digging into its structure.
|
|
std::vector<uint8_t> Payload;
|
|
|
|
// Some load commands can contain (inside the payload) an array of sections,
|
|
// though the contents of the sections are stored separately. The struct
|
|
// Section describes only sections' metadata and where to find the
|
|
// corresponding content inside the binary.
|
|
std::vector<std::unique_ptr<Section>> Sections;
|
|
|
|
// Returns the segment name if the load command is a segment command.
|
|
Optional<StringRef> getSegmentName() const;
|
|
|
|
// Returns the segment vm address if the load command is a segment command.
|
|
Optional<uint64_t> getSegmentVMAddr() const;
|
|
};
|
|
|
|
// A symbol information. Fields which starts with "n_" are same as them in the
|
|
// nlist.
|
|
struct SymbolEntry {
|
|
std::string Name;
|
|
bool Referenced = false;
|
|
uint32_t Index;
|
|
uint8_t n_type;
|
|
uint8_t n_sect;
|
|
uint16_t n_desc;
|
|
uint64_t n_value;
|
|
|
|
bool isExternalSymbol() const { return n_type & MachO::N_EXT; }
|
|
|
|
bool isLocalSymbol() const { return !isExternalSymbol(); }
|
|
|
|
bool isUndefinedSymbol() const {
|
|
return (n_type & MachO::N_TYPE) == MachO::N_UNDF;
|
|
}
|
|
|
|
bool isSwiftSymbol() const {
|
|
return StringRef(Name).startswith("_$s") ||
|
|
StringRef(Name).startswith("_$S");
|
|
}
|
|
|
|
Optional<uint32_t> section() const {
|
|
return n_sect == MachO::NO_SECT ? None : Optional<uint32_t>(n_sect);
|
|
}
|
|
};
|
|
|
|
/// The location of the symbol table inside the binary is described by LC_SYMTAB
|
|
/// load command.
|
|
struct SymbolTable {
|
|
std::vector<std::unique_ptr<SymbolEntry>> Symbols;
|
|
|
|
using iterator = pointee_iterator<
|
|
std::vector<std::unique_ptr<SymbolEntry>>::const_iterator>;
|
|
|
|
iterator begin() const { return iterator(Symbols.begin()); }
|
|
iterator end() const { return iterator(Symbols.end()); }
|
|
|
|
const SymbolEntry *getSymbolByIndex(uint32_t Index) const;
|
|
SymbolEntry *getSymbolByIndex(uint32_t Index);
|
|
void removeSymbols(
|
|
function_ref<bool(const std::unique_ptr<SymbolEntry> &)> ToRemove);
|
|
};
|
|
|
|
struct IndirectSymbolEntry {
|
|
// The original value in an indirect symbol table. Higher bits encode extra
|
|
// information (INDIRECT_SYMBOL_LOCAL and INDIRECT_SYMBOL_ABS).
|
|
uint32_t OriginalIndex;
|
|
/// The Symbol referenced by this entry. It's None if the index is
|
|
/// INDIRECT_SYMBOL_LOCAL or INDIRECT_SYMBOL_ABS.
|
|
Optional<SymbolEntry *> Symbol;
|
|
|
|
IndirectSymbolEntry(uint32_t OriginalIndex, Optional<SymbolEntry *> Symbol)
|
|
: OriginalIndex(OriginalIndex), Symbol(Symbol) {}
|
|
};
|
|
|
|
struct IndirectSymbolTable {
|
|
std::vector<IndirectSymbolEntry> Symbols;
|
|
};
|
|
|
|
/// The location of the string table inside the binary is described by LC_SYMTAB
|
|
/// load command.
|
|
struct StringTable {
|
|
std::vector<std::string> Strings;
|
|
};
|
|
|
|
struct RelocationInfo {
|
|
// The referenced symbol entry. Set if !Scattered && Extern.
|
|
Optional<const SymbolEntry *> Symbol;
|
|
// The referenced section. Set if !Scattered && !Extern.
|
|
Optional<const Section *> Sec;
|
|
// True if Info is a scattered_relocation_info.
|
|
bool Scattered;
|
|
// True if the type is an ADDEND. r_symbolnum holds the addend instead of a
|
|
// symbol index.
|
|
bool IsAddend;
|
|
// True if the r_symbolnum points to a section number (i.e. r_extern=0).
|
|
bool Extern;
|
|
MachO::any_relocation_info Info;
|
|
|
|
unsigned getPlainRelocationSymbolNum(bool IsLittleEndian) {
|
|
if (IsLittleEndian)
|
|
return Info.r_word1 & 0xffffff;
|
|
return Info.r_word1 >> 8;
|
|
}
|
|
|
|
void setPlainRelocationSymbolNum(unsigned SymbolNum, bool IsLittleEndian) {
|
|
assert(SymbolNum < (1 << 24) && "SymbolNum out of range");
|
|
if (IsLittleEndian)
|
|
Info.r_word1 = (Info.r_word1 & ~0x00ffffff) | SymbolNum;
|
|
else
|
|
Info.r_word1 = (Info.r_word1 & ~0xffffff00) | (SymbolNum << 8);
|
|
}
|
|
};
|
|
|
|
/// The location of the rebase info inside the binary is described by
|
|
/// LC_DYLD_INFO load command. Dyld rebases an image whenever dyld loads it at
|
|
/// an address different from its preferred address. The rebase information is
|
|
/// a stream of byte sized opcodes whose symbolic names start with
|
|
/// REBASE_OPCODE_. Conceptually the rebase information is a table of tuples:
|
|
/// <seg-index, seg-offset, type>
|
|
/// The opcodes are a compressed way to encode the table by only
|
|
/// encoding when a column changes. In addition simple patterns
|
|
/// like "every n'th offset for m times" can be encoded in a few
|
|
/// bytes.
|
|
struct RebaseInfo {
|
|
// At the moment we do not parse this info (and it is simply copied over),
|
|
// but the proper support will be added later.
|
|
ArrayRef<uint8_t> Opcodes;
|
|
};
|
|
|
|
/// The location of the bind info inside the binary is described by
|
|
/// LC_DYLD_INFO load command. Dyld binds an image during the loading process,
|
|
/// if the image requires any pointers to be initialized to symbols in other
|
|
/// images. The bind information is a stream of byte sized opcodes whose
|
|
/// symbolic names start with BIND_OPCODE_. Conceptually the bind information is
|
|
/// a table of tuples: <seg-index, seg-offset, type, symbol-library-ordinal,
|
|
/// symbol-name, addend> The opcodes are a compressed way to encode the table by
|
|
/// only encoding when a column changes. In addition simple patterns like for
|
|
/// runs of pointers initialized to the same value can be encoded in a few
|
|
/// bytes.
|
|
struct BindInfo {
|
|
// At the moment we do not parse this info (and it is simply copied over),
|
|
// but the proper support will be added later.
|
|
ArrayRef<uint8_t> Opcodes;
|
|
};
|
|
|
|
/// The location of the weak bind info inside the binary is described by
|
|
/// LC_DYLD_INFO load command. Some C++ programs require dyld to unique symbols
|
|
/// so that all images in the process use the same copy of some code/data. This
|
|
/// step is done after binding. The content of the weak_bind info is an opcode
|
|
/// stream like the bind_info. But it is sorted alphabetically by symbol name.
|
|
/// This enable dyld to walk all images with weak binding information in order
|
|
/// and look for collisions. If there are no collisions, dyld does no updating.
|
|
/// That means that some fixups are also encoded in the bind_info. For
|
|
/// instance, all calls to "operator new" are first bound to libstdc++.dylib
|
|
/// using the information in bind_info. Then if some image overrides operator
|
|
/// new that is detected when the weak_bind information is processed and the
|
|
/// call to operator new is then rebound.
|
|
struct WeakBindInfo {
|
|
// At the moment we do not parse this info (and it is simply copied over),
|
|
// but the proper support will be added later.
|
|
ArrayRef<uint8_t> Opcodes;
|
|
};
|
|
|
|
/// The location of the lazy bind info inside the binary is described by
|
|
/// LC_DYLD_INFO load command. Some uses of external symbols do not need to be
|
|
/// bound immediately. Instead they can be lazily bound on first use. The
|
|
/// lazy_bind contains a stream of BIND opcodes to bind all lazy symbols. Normal
|
|
/// use is that dyld ignores the lazy_bind section when loading an image.
|
|
/// Instead the static linker arranged for the lazy pointer to initially point
|
|
/// to a helper function which pushes the offset into the lazy_bind area for the
|
|
/// symbol needing to be bound, then jumps to dyld which simply adds the offset
|
|
/// to lazy_bind_off to get the information on what to bind.
|
|
struct LazyBindInfo {
|
|
ArrayRef<uint8_t> Opcodes;
|
|
};
|
|
|
|
/// The location of the export info inside the binary is described by
|
|
/// LC_DYLD_INFO load command. The symbols exported by a dylib are encoded in a
|
|
/// trie. This is a compact representation that factors out common prefixes. It
|
|
/// also reduces LINKEDIT pages in RAM because it encodes all information (name,
|
|
/// address, flags) in one small, contiguous range. The export area is a stream
|
|
/// of nodes. The first node sequentially is the start node for the trie. Nodes
|
|
/// for a symbol start with a uleb128 that is the length of the exported symbol
|
|
/// information for the string so far. If there is no exported symbol, the node
|
|
/// starts with a zero byte. If there is exported info, it follows the length.
|
|
/// First is a uleb128 containing flags. Normally, it is followed by
|
|
/// a uleb128 encoded offset which is location of the content named
|
|
/// by the symbol from the mach_header for the image. If the flags
|
|
/// is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is
|
|
/// a uleb128 encoded library ordinal, then a zero terminated
|
|
/// UTF8 string. If the string is zero length, then the symbol
|
|
/// is re-export from the specified dylib with the same name.
|
|
/// If the flags is EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, then following
|
|
/// the flags is two uleb128s: the stub offset and the resolver offset.
|
|
/// The stub is used by non-lazy pointers. The resolver is used
|
|
/// by lazy pointers and must be called to get the actual address to use.
|
|
/// After the optional exported symbol information is a byte of
|
|
/// how many edges (0-255) that this node has leaving it,
|
|
/// followed by each edge.
|
|
/// Each edge is a zero terminated UTF8 of the addition chars
|
|
/// in the symbol, followed by a uleb128 offset for the node that
|
|
/// edge points to.
|
|
struct ExportInfo {
|
|
ArrayRef<uint8_t> Trie;
|
|
};
|
|
|
|
struct LinkData {
|
|
ArrayRef<uint8_t> Data;
|
|
};
|
|
|
|
struct Object {
|
|
MachHeader Header;
|
|
std::vector<LoadCommand> LoadCommands;
|
|
|
|
SymbolTable SymTable;
|
|
StringTable StrTable;
|
|
|
|
RebaseInfo Rebases;
|
|
BindInfo Binds;
|
|
WeakBindInfo WeakBinds;
|
|
LazyBindInfo LazyBinds;
|
|
ExportInfo Exports;
|
|
IndirectSymbolTable IndirectSymTable;
|
|
LinkData DataInCode;
|
|
LinkData LinkerOptimizationHint;
|
|
LinkData FunctionStarts;
|
|
LinkData CodeSignature;
|
|
|
|
Optional<uint32_t> SwiftVersion;
|
|
|
|
/// The index of LC_CODE_SIGNATURE load command if present.
|
|
Optional<size_t> CodeSignatureCommandIndex;
|
|
/// The index of LC_SYMTAB load command if present.
|
|
Optional<size_t> SymTabCommandIndex;
|
|
/// The index of LC_DYLD_INFO or LC_DYLD_INFO_ONLY load command if present.
|
|
Optional<size_t> DyLdInfoCommandIndex;
|
|
/// The index LC_DYSYMTAB load comamnd if present.
|
|
Optional<size_t> DySymTabCommandIndex;
|
|
/// The index LC_DATA_IN_CODE load comamnd if present.
|
|
Optional<size_t> DataInCodeCommandIndex;
|
|
/// The index of LC_LINKER_OPTIMIZATIN_HINT load comamnd if present.
|
|
Optional<size_t> LinkerOptimizationHintCommandIndex;
|
|
/// The index LC_FUNCTION_STARTS load comamnd if present.
|
|
Optional<size_t> FunctionStartsCommandIndex;
|
|
|
|
BumpPtrAllocator Alloc;
|
|
StringSaver NewSectionsContents;
|
|
|
|
Object() : NewSectionsContents(Alloc) {}
|
|
|
|
Error
|
|
removeSections(function_ref<bool(const std::unique_ptr<Section> &)> ToRemove);
|
|
|
|
Error removeLoadCommands(function_ref<bool(const LoadCommand &)> ToRemove);
|
|
|
|
void updateLoadCommandIndexes();
|
|
|
|
/// Creates a new segment load command in the object and returns a reference
|
|
/// to the newly created load command. The caller should verify that SegName
|
|
/// is not too long (SegName.size() should be less than or equal to 16).
|
|
LoadCommand &addSegment(StringRef SegName, uint64_t SegVMSize);
|
|
|
|
bool is64Bit() const {
|
|
return Header.Magic == MachO::MH_MAGIC_64 ||
|
|
Header.Magic == MachO::MH_CIGAM_64;
|
|
}
|
|
|
|
uint64_t nextAvailableSegmentAddress() const;
|
|
};
|
|
|
|
} // end namespace macho
|
|
} // end namespace objcopy
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_OBJCOPY_MACHO_OBJECT_H
|