1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/CodeGen/LatencyPriorityQueue.cpp
Dan Gohman 1967880025 Update CalcLatency to work in terms of edge latencies, rather than
node latencies. Use CalcLatency instead of manual code in
CalculatePriorities to keep it consistent. Previously it
computed slightly different results.

llvm-svn: 60817
2008-12-10 00:24:36 +00:00

148 lines
5.5 KiB
C++

//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LatencyPriorityQueue class, which is a
// SchedulingPriorityQueue that schedules using latency information to
// reduce the length of the critical path through the basic block.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "scheduler"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
unsigned LHSNum = LHS->NodeNum;
unsigned RHSNum = RHS->NodeNum;
// The most important heuristic is scheduling the critical path.
unsigned LHSLatency = PQ->getLatency(LHSNum);
unsigned RHSLatency = PQ->getLatency(RHSNum);
if (LHSLatency < RHSLatency) return true;
if (LHSLatency > RHSLatency) return false;
// After that, if two nodes have identical latencies, look to see if one will
// unblock more other nodes than the other.
unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
if (LHSBlocked < RHSBlocked) return true;
if (LHSBlocked > RHSBlocked) return false;
// Finally, just to provide a stable ordering, use the node number as a
// deciding factor.
return LHSNum < RHSNum;
}
/// CalcNodePriority - Calculate the maximal path from the node to the exit.
///
void LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
int &Latency = Latencies[SU.NodeNum];
if (Latency != -1)
return;
std::vector<const SUnit*> WorkList;
WorkList.push_back(&SU);
while (!WorkList.empty()) {
const SUnit *Cur = WorkList.back();
bool AllDone = true;
unsigned MaxSuccLatency = 0;
for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
I != E; ++I) {
int SuccLatency = Latencies[I->getSUnit()->NodeNum];
if (SuccLatency == -1) {
AllDone = false;
WorkList.push_back(I->getSUnit());
} else {
unsigned NewLatency = SuccLatency + I->getLatency();
MaxSuccLatency = std::max(MaxSuccLatency, NewLatency);
}
}
if (AllDone) {
Latencies[Cur->NodeNum] = MaxSuccLatency;
WorkList.pop_back();
}
}
}
/// CalculatePriorities - Calculate priorities of all scheduling units.
void LatencyPriorityQueue::CalculatePriorities() {
Latencies.assign(SUnits->size(), -1);
NumNodesSolelyBlocking.assign(SUnits->size(), 0);
// For each node, calculate the maximal path from the node to the exit.
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
CalcLatency((*SUnits)[i]);
}
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
/// of SU, return it, otherwise return null.
SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
SUnit *OnlyAvailablePred = 0;
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
I != E; ++I) {
SUnit &Pred = *I->getSUnit();
if (!Pred.isScheduled) {
// We found an available, but not scheduled, predecessor. If it's the
// only one we have found, keep track of it... otherwise give up.
if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
return 0;
OnlyAvailablePred = &Pred;
}
}
return OnlyAvailablePred;
}
void LatencyPriorityQueue::push_impl(SUnit *SU) {
// Look at all of the successors of this node. Count the number of nodes that
// this node is the sole unscheduled node for.
unsigned NumNodesBlocking = 0;
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I)
if (getSingleUnscheduledPred(I->getSUnit()) == SU)
++NumNodesBlocking;
NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
Queue.push(SU);
}
// ScheduledNode - As nodes are scheduled, we look to see if there are any
// successor nodes that have a single unscheduled predecessor. If so, that
// single predecessor has a higher priority, since scheduling it will make
// the node available.
void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I)
AdjustPriorityOfUnscheduledPreds(I->getSUnit());
}
/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
/// scheduled. If SU is not itself available, then there is at least one
/// predecessor node that has not been scheduled yet. If SU has exactly ONE
/// unscheduled predecessor, we want to increase its priority: it getting
/// scheduled will make this node available, so it is better than some other
/// node of the same priority that will not make a node available.
void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
if (SU->isAvailable) return; // All preds scheduled.
SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
// Okay, we found a single predecessor that is available, but not scheduled.
// Since it is available, it must be in the priority queue. First remove it.
remove(OnlyAvailablePred);
// Reinsert the node into the priority queue, which recomputes its
// NumNodesSolelyBlocking value.
push(OnlyAvailablePred);
}