mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
ccde9db05a
llvm-svn: 61514
1457 lines
52 KiB
C++
1457 lines
52 KiB
C++
//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the machine instruction level pre-register allocation
|
|
// live interval splitting pass. It finds live interval barriers, i.e.
|
|
// instructions which will kill all physical registers in certain register
|
|
// classes, and split all live intervals which cross the barrier.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "pre-alloc-split"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/LiveStackAnalysis.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/RegisterCoalescer.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
|
|
|
|
STATISTIC(NumSplits, "Number of intervals split");
|
|
STATISTIC(NumRemats, "Number of intervals split by rematerialization");
|
|
STATISTIC(NumFolds, "Number of intervals split with spill folding");
|
|
STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
|
|
|
|
namespace {
|
|
class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
|
|
MachineFunction *CurrMF;
|
|
const TargetMachine *TM;
|
|
const TargetInstrInfo *TII;
|
|
MachineFrameInfo *MFI;
|
|
MachineRegisterInfo *MRI;
|
|
LiveIntervals *LIs;
|
|
LiveStacks *LSs;
|
|
|
|
// Barrier - Current barrier being processed.
|
|
MachineInstr *Barrier;
|
|
|
|
// BarrierMBB - Basic block where the barrier resides in.
|
|
MachineBasicBlock *BarrierMBB;
|
|
|
|
// Barrier - Current barrier index.
|
|
unsigned BarrierIdx;
|
|
|
|
// CurrLI - Current live interval being split.
|
|
LiveInterval *CurrLI;
|
|
|
|
// CurrSLI - Current stack slot live interval.
|
|
LiveInterval *CurrSLI;
|
|
|
|
// CurrSValNo - Current val# for the stack slot live interval.
|
|
VNInfo *CurrSValNo;
|
|
|
|
// IntervalSSMap - A map from live interval to spill slots.
|
|
DenseMap<unsigned, int> IntervalSSMap;
|
|
|
|
// Def2SpillMap - A map from a def instruction index to spill index.
|
|
DenseMap<unsigned, unsigned> Def2SpillMap;
|
|
|
|
public:
|
|
static char ID;
|
|
PreAllocSplitting() : MachineFunctionPass(&ID) {}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.addPreserved<LiveIntervals>();
|
|
AU.addRequired<LiveStacks>();
|
|
AU.addPreserved<LiveStacks>();
|
|
AU.addPreserved<RegisterCoalescer>();
|
|
if (StrongPHIElim)
|
|
AU.addPreservedID(StrongPHIEliminationID);
|
|
else
|
|
AU.addPreservedID(PHIEliminationID);
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
virtual void releaseMemory() {
|
|
IntervalSSMap.clear();
|
|
Def2SpillMap.clear();
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "Pre-Register Allocaton Live Interval Splitting";
|
|
}
|
|
|
|
/// print - Implement the dump method.
|
|
virtual void print(std::ostream &O, const Module* M = 0) const {
|
|
LIs->print(O, M);
|
|
}
|
|
|
|
void print(std::ostream *O, const Module* M = 0) const {
|
|
if (O) print(*O, M);
|
|
}
|
|
|
|
private:
|
|
MachineBasicBlock::iterator
|
|
findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
|
|
unsigned&);
|
|
|
|
MachineBasicBlock::iterator
|
|
findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
|
|
SmallPtrSet<MachineInstr*, 4>&, unsigned&);
|
|
|
|
MachineBasicBlock::iterator
|
|
findRestorePoint(MachineBasicBlock*, MachineInstr*, unsigned,
|
|
SmallPtrSet<MachineInstr*, 4>&, unsigned&);
|
|
|
|
int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
|
|
|
|
bool IsAvailableInStack(MachineBasicBlock*, unsigned, unsigned, unsigned,
|
|
unsigned&, int&) const;
|
|
|
|
void UpdateSpillSlotInterval(VNInfo*, unsigned, unsigned);
|
|
|
|
VNInfo* UpdateRegisterInterval(VNInfo*, unsigned, unsigned);
|
|
|
|
bool ShrinkWrapToLastUse(MachineBasicBlock*, VNInfo*,
|
|
SmallVector<MachineOperand*, 4>&,
|
|
SmallPtrSet<MachineInstr*, 4>&);
|
|
|
|
void ShrinkWrapLiveInterval(VNInfo*, MachineBasicBlock*, MachineBasicBlock*,
|
|
MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8>&,
|
|
DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >&,
|
|
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >&,
|
|
SmallVector<MachineBasicBlock*, 4>&);
|
|
|
|
bool SplitRegLiveInterval(LiveInterval*);
|
|
|
|
bool SplitRegLiveIntervals(const TargetRegisterClass **);
|
|
|
|
void RepairLiveInterval(LiveInterval* CurrLI, VNInfo* ValNo,
|
|
MachineInstr* DefMI, unsigned RestoreIdx);
|
|
|
|
bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
|
|
MachineBasicBlock* BarrierMBB);
|
|
bool Rematerialize(unsigned vreg, VNInfo* ValNo,
|
|
MachineInstr* DefMI,
|
|
MachineBasicBlock::iterator RestorePt,
|
|
unsigned RestoreIdx,
|
|
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
|
|
MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
|
|
MachineInstr* DefMI,
|
|
MachineInstr* Barrier,
|
|
MachineBasicBlock* MBB,
|
|
int& SS,
|
|
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
|
|
void RenumberValno(VNInfo* VN);
|
|
void ReconstructLiveInterval(LiveInterval* LI);
|
|
VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator use,
|
|
MachineBasicBlock* MBB,
|
|
LiveInterval* LI,
|
|
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
|
|
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
|
|
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
|
|
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
|
|
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
|
|
bool toplevel, bool intrablock);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char PreAllocSplitting::ID = 0;
|
|
|
|
static RegisterPass<PreAllocSplitting>
|
|
X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
|
|
|
|
const PassInfo *const llvm::PreAllocSplittingID = &X;
|
|
|
|
|
|
/// findNextEmptySlot - Find a gap after the given machine instruction in the
|
|
/// instruction index map. If there isn't one, return end().
|
|
MachineBasicBlock::iterator
|
|
PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
|
|
unsigned &SpotIndex) {
|
|
MachineBasicBlock::iterator MII = MI;
|
|
if (++MII != MBB->end()) {
|
|
unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
|
|
if (Index) {
|
|
SpotIndex = Index;
|
|
return MII;
|
|
}
|
|
}
|
|
return MBB->end();
|
|
}
|
|
|
|
/// findSpillPoint - Find a gap as far away from the given MI that's suitable
|
|
/// for spilling the current live interval. The index must be before any
|
|
/// defs and uses of the live interval register in the mbb. Return begin() if
|
|
/// none is found.
|
|
MachineBasicBlock::iterator
|
|
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
|
|
MachineInstr *DefMI,
|
|
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
|
|
unsigned &SpillIndex) {
|
|
MachineBasicBlock::iterator Pt = MBB->begin();
|
|
|
|
// Go top down if RefsInMBB is empty.
|
|
if (RefsInMBB.empty() && !DefMI) {
|
|
MachineBasicBlock::iterator MII = MBB->begin();
|
|
MachineBasicBlock::iterator EndPt = MI;
|
|
do {
|
|
++MII;
|
|
unsigned Index = LIs->getInstructionIndex(MII);
|
|
unsigned Gap = LIs->findGapBeforeInstr(Index);
|
|
if (Gap) {
|
|
Pt = MII;
|
|
SpillIndex = Gap;
|
|
break;
|
|
}
|
|
} while (MII != EndPt);
|
|
} else {
|
|
MachineBasicBlock::iterator MII = MI;
|
|
MachineBasicBlock::iterator EndPt = DefMI
|
|
? MachineBasicBlock::iterator(DefMI) : MBB->begin();
|
|
while (MII != EndPt && !RefsInMBB.count(MII)) {
|
|
unsigned Index = LIs->getInstructionIndex(MII);
|
|
if (LIs->hasGapBeforeInstr(Index)) {
|
|
Pt = MII;
|
|
SpillIndex = LIs->findGapBeforeInstr(Index, true);
|
|
}
|
|
--MII;
|
|
}
|
|
}
|
|
|
|
return Pt;
|
|
}
|
|
|
|
/// findRestorePoint - Find a gap in the instruction index map that's suitable
|
|
/// for restoring the current live interval value. The index must be before any
|
|
/// uses of the live interval register in the mbb. Return end() if none is
|
|
/// found.
|
|
MachineBasicBlock::iterator
|
|
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
|
|
unsigned LastIdx,
|
|
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
|
|
unsigned &RestoreIndex) {
|
|
// FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
|
|
// begin index accordingly.
|
|
MachineBasicBlock::iterator Pt = MBB->end();
|
|
unsigned EndIdx = LIs->getMBBEndIdx(MBB);
|
|
|
|
// Go bottom up if RefsInMBB is empty and the end of the mbb isn't beyond
|
|
// the last index in the live range.
|
|
if (RefsInMBB.empty() && LastIdx >= EndIdx) {
|
|
MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
|
|
MachineBasicBlock::iterator EndPt = MI;
|
|
--MII;
|
|
do {
|
|
unsigned Index = LIs->getInstructionIndex(MII);
|
|
unsigned Gap = LIs->findGapBeforeInstr(Index);
|
|
if (Gap) {
|
|
Pt = MII;
|
|
RestoreIndex = Gap;
|
|
break;
|
|
}
|
|
--MII;
|
|
} while (MII != EndPt);
|
|
} else {
|
|
MachineBasicBlock::iterator MII = MI;
|
|
MII = ++MII;
|
|
// FIXME: Limit the number of instructions to examine to reduce
|
|
// compile time?
|
|
while (MII != MBB->end()) {
|
|
unsigned Index = LIs->getInstructionIndex(MII);
|
|
if (Index > LastIdx)
|
|
break;
|
|
unsigned Gap = LIs->findGapBeforeInstr(Index);
|
|
if (Gap) {
|
|
Pt = MII;
|
|
RestoreIndex = Gap;
|
|
}
|
|
if (RefsInMBB.count(MII))
|
|
break;
|
|
++MII;
|
|
}
|
|
}
|
|
|
|
return Pt;
|
|
}
|
|
|
|
/// CreateSpillStackSlot - Create a stack slot for the live interval being
|
|
/// split. If the live interval was previously split, just reuse the same
|
|
/// slot.
|
|
int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
|
|
const TargetRegisterClass *RC) {
|
|
int SS;
|
|
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
|
|
if (I != IntervalSSMap.end()) {
|
|
SS = I->second;
|
|
} else {
|
|
SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
|
|
IntervalSSMap[Reg] = SS;
|
|
}
|
|
|
|
// Create live interval for stack slot.
|
|
CurrSLI = &LSs->getOrCreateInterval(SS);
|
|
if (CurrSLI->hasAtLeastOneValue())
|
|
CurrSValNo = CurrSLI->getValNumInfo(0);
|
|
else
|
|
CurrSValNo = CurrSLI->getNextValue(~0U, 0, LSs->getVNInfoAllocator());
|
|
return SS;
|
|
}
|
|
|
|
/// IsAvailableInStack - Return true if register is available in a split stack
|
|
/// slot at the specified index.
|
|
bool
|
|
PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
|
|
unsigned Reg, unsigned DefIndex,
|
|
unsigned RestoreIndex, unsigned &SpillIndex,
|
|
int& SS) const {
|
|
if (!DefMBB)
|
|
return false;
|
|
|
|
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
|
|
if (I == IntervalSSMap.end())
|
|
return false;
|
|
DenseMap<unsigned, unsigned>::iterator II = Def2SpillMap.find(DefIndex);
|
|
if (II == Def2SpillMap.end())
|
|
return false;
|
|
|
|
// If last spill of def is in the same mbb as barrier mbb (where restore will
|
|
// be), make sure it's not below the intended restore index.
|
|
// FIXME: Undo the previous spill?
|
|
assert(LIs->getMBBFromIndex(II->second) == DefMBB);
|
|
if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
|
|
return false;
|
|
|
|
SS = I->second;
|
|
SpillIndex = II->second;
|
|
return true;
|
|
}
|
|
|
|
/// UpdateSpillSlotInterval - Given the specified val# of the register live
|
|
/// interval being split, and the spill and restore indicies, update the live
|
|
/// interval of the spill stack slot.
|
|
void
|
|
PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
|
|
unsigned RestoreIndex) {
|
|
assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
|
|
"Expect restore in the barrier mbb");
|
|
|
|
MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
|
|
if (MBB == BarrierMBB) {
|
|
// Intra-block spill + restore. We are done.
|
|
LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
|
|
CurrSLI->addRange(SLR);
|
|
return;
|
|
}
|
|
|
|
SmallPtrSet<MachineBasicBlock*, 4> Processed;
|
|
unsigned EndIdx = LIs->getMBBEndIdx(MBB);
|
|
LiveRange SLR(SpillIndex, EndIdx+1, CurrSValNo);
|
|
CurrSLI->addRange(SLR);
|
|
Processed.insert(MBB);
|
|
|
|
// Start from the spill mbb, figure out the extend of the spill slot's
|
|
// live interval.
|
|
SmallVector<MachineBasicBlock*, 4> WorkList;
|
|
const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
|
|
if (LR->end > EndIdx)
|
|
// If live range extend beyond end of mbb, add successors to work list.
|
|
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end(); SI != SE; ++SI)
|
|
WorkList.push_back(*SI);
|
|
|
|
while (!WorkList.empty()) {
|
|
MachineBasicBlock *MBB = WorkList.back();
|
|
WorkList.pop_back();
|
|
if (Processed.count(MBB))
|
|
continue;
|
|
unsigned Idx = LIs->getMBBStartIdx(MBB);
|
|
LR = CurrLI->getLiveRangeContaining(Idx);
|
|
if (LR && LR->valno == ValNo) {
|
|
EndIdx = LIs->getMBBEndIdx(MBB);
|
|
if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
|
|
// Spill slot live interval stops at the restore.
|
|
LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
|
|
CurrSLI->addRange(SLR);
|
|
} else if (LR->end > EndIdx) {
|
|
// Live range extends beyond end of mbb, process successors.
|
|
LiveRange SLR(Idx, EndIdx+1, CurrSValNo);
|
|
CurrSLI->addRange(SLR);
|
|
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end(); SI != SE; ++SI)
|
|
WorkList.push_back(*SI);
|
|
} else {
|
|
LiveRange SLR(Idx, LR->end, CurrSValNo);
|
|
CurrSLI->addRange(SLR);
|
|
}
|
|
Processed.insert(MBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// UpdateRegisterInterval - Given the specified val# of the current live
|
|
/// interval is being split, and the spill and restore indices, update the live
|
|
/// interval accordingly.
|
|
VNInfo*
|
|
PreAllocSplitting::UpdateRegisterInterval(VNInfo *ValNo, unsigned SpillIndex,
|
|
unsigned RestoreIndex) {
|
|
assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
|
|
"Expect restore in the barrier mbb");
|
|
|
|
SmallVector<std::pair<unsigned,unsigned>, 4> Before;
|
|
SmallVector<std::pair<unsigned,unsigned>, 4> After;
|
|
SmallVector<unsigned, 4> BeforeKills;
|
|
SmallVector<unsigned, 4> AfterKills;
|
|
SmallPtrSet<const LiveRange*, 4> Processed;
|
|
|
|
// First, let's figure out which parts of the live interval is now defined
|
|
// by the restore, which are defined by the original definition.
|
|
const LiveRange *LR = CurrLI->getLiveRangeContaining(RestoreIndex);
|
|
After.push_back(std::make_pair(RestoreIndex, LR->end));
|
|
if (CurrLI->isKill(ValNo, LR->end))
|
|
AfterKills.push_back(LR->end);
|
|
|
|
assert(LR->contains(SpillIndex));
|
|
if (SpillIndex > LR->start) {
|
|
Before.push_back(std::make_pair(LR->start, SpillIndex));
|
|
BeforeKills.push_back(SpillIndex);
|
|
}
|
|
Processed.insert(LR);
|
|
|
|
// Start from the restore mbb, figure out what part of the live interval
|
|
// are defined by the restore.
|
|
SmallVector<MachineBasicBlock*, 4> WorkList;
|
|
MachineBasicBlock *MBB = BarrierMBB;
|
|
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end(); SI != SE; ++SI)
|
|
WorkList.push_back(*SI);
|
|
|
|
SmallPtrSet<MachineBasicBlock*, 4> ProcessedBlocks;
|
|
ProcessedBlocks.insert(MBB);
|
|
|
|
while (!WorkList.empty()) {
|
|
MBB = WorkList.back();
|
|
WorkList.pop_back();
|
|
unsigned Idx = LIs->getMBBStartIdx(MBB);
|
|
LR = CurrLI->getLiveRangeContaining(Idx);
|
|
if (LR && LR->valno == ValNo && !Processed.count(LR)) {
|
|
After.push_back(std::make_pair(LR->start, LR->end));
|
|
if (CurrLI->isKill(ValNo, LR->end))
|
|
AfterKills.push_back(LR->end);
|
|
Idx = LIs->getMBBEndIdx(MBB);
|
|
if (LR->end > Idx) {
|
|
// Live range extend beyond at least one mbb. Let's see what other
|
|
// mbbs it reaches.
|
|
LIs->findReachableMBBs(LR->start, LR->end, WorkList);
|
|
}
|
|
Processed.insert(LR);
|
|
}
|
|
|
|
ProcessedBlocks.insert(MBB);
|
|
if (LR)
|
|
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end(); SI != SE; ++SI)
|
|
if (!ProcessedBlocks.count(*SI))
|
|
WorkList.push_back(*SI);
|
|
}
|
|
|
|
for (LiveInterval::iterator I = CurrLI->begin(), E = CurrLI->end();
|
|
I != E; ++I) {
|
|
LiveRange *LR = I;
|
|
if (LR->valno == ValNo && !Processed.count(LR)) {
|
|
Before.push_back(std::make_pair(LR->start, LR->end));
|
|
if (CurrLI->isKill(ValNo, LR->end))
|
|
BeforeKills.push_back(LR->end);
|
|
}
|
|
}
|
|
|
|
// Now create new val#s to represent the live ranges defined by the old def
|
|
// those defined by the restore.
|
|
unsigned AfterDef = ValNo->def;
|
|
MachineInstr *AfterCopy = ValNo->copy;
|
|
bool HasPHIKill = ValNo->hasPHIKill;
|
|
CurrLI->removeValNo(ValNo);
|
|
VNInfo *BValNo = (Before.empty())
|
|
? NULL
|
|
: CurrLI->getNextValue(AfterDef, AfterCopy, LIs->getVNInfoAllocator());
|
|
if (BValNo)
|
|
CurrLI->addKills(BValNo, BeforeKills);
|
|
|
|
VNInfo *AValNo = (After.empty())
|
|
? NULL
|
|
: CurrLI->getNextValue(RestoreIndex, 0, LIs->getVNInfoAllocator());
|
|
if (AValNo) {
|
|
AValNo->hasPHIKill = HasPHIKill;
|
|
CurrLI->addKills(AValNo, AfterKills);
|
|
}
|
|
|
|
for (unsigned i = 0, e = Before.size(); i != e; ++i) {
|
|
unsigned Start = Before[i].first;
|
|
unsigned End = Before[i].second;
|
|
CurrLI->addRange(LiveRange(Start, End, BValNo));
|
|
}
|
|
for (unsigned i = 0, e = After.size(); i != e; ++i) {
|
|
unsigned Start = After[i].first;
|
|
unsigned End = After[i].second;
|
|
CurrLI->addRange(LiveRange(Start, End, AValNo));
|
|
}
|
|
|
|
return AValNo;
|
|
}
|
|
|
|
/// ShrinkWrapToLastUse - There are uses of the current live interval in the
|
|
/// given block, shrink wrap the live interval to the last use (i.e. remove
|
|
/// from last use to the end of the mbb). In case mbb is the where the barrier
|
|
/// is, remove from the last use to the barrier.
|
|
bool
|
|
PreAllocSplitting::ShrinkWrapToLastUse(MachineBasicBlock *MBB, VNInfo *ValNo,
|
|
SmallVector<MachineOperand*, 4> &Uses,
|
|
SmallPtrSet<MachineInstr*, 4> &UseMIs) {
|
|
MachineOperand *LastMO = 0;
|
|
MachineInstr *LastMI = 0;
|
|
if (MBB != BarrierMBB && Uses.size() == 1) {
|
|
// Single use, no need to traverse the block. We can't assume this for the
|
|
// barrier bb though since the use is probably below the barrier.
|
|
LastMO = Uses[0];
|
|
LastMI = LastMO->getParent();
|
|
} else {
|
|
MachineBasicBlock::iterator MEE = MBB->begin();
|
|
MachineBasicBlock::iterator MII;
|
|
if (MBB == BarrierMBB)
|
|
MII = Barrier;
|
|
else
|
|
MII = MBB->end();
|
|
while (MII != MEE) {
|
|
--MII;
|
|
MachineInstr *UseMI = &*MII;
|
|
if (!UseMIs.count(UseMI))
|
|
continue;
|
|
for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = UseMI->getOperand(i);
|
|
if (MO.isReg() && MO.getReg() == CurrLI->reg) {
|
|
LastMO = &MO;
|
|
break;
|
|
}
|
|
}
|
|
LastMI = UseMI;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Cut off live range from last use (or beginning of the mbb if there
|
|
// are no uses in it) to the end of the mbb.
|
|
unsigned RangeStart, RangeEnd = LIs->getMBBEndIdx(MBB)+1;
|
|
if (LastMI) {
|
|
RangeStart = LIs->getUseIndex(LIs->getInstructionIndex(LastMI))+1;
|
|
assert(!LastMO->isKill() && "Last use already terminates the interval?");
|
|
LastMO->setIsKill();
|
|
} else {
|
|
assert(MBB == BarrierMBB);
|
|
RangeStart = LIs->getMBBStartIdx(MBB);
|
|
}
|
|
if (MBB == BarrierMBB)
|
|
RangeEnd = LIs->getUseIndex(BarrierIdx)+1;
|
|
CurrLI->removeRange(RangeStart, RangeEnd);
|
|
if (LastMI)
|
|
CurrLI->addKill(ValNo, RangeStart);
|
|
|
|
// Return true if the last use becomes a new kill.
|
|
return LastMI;
|
|
}
|
|
|
|
/// PerformPHIConstruction - From properly set up use and def lists, use a PHI
|
|
/// construction algorithm to compute the ranges and valnos for an interval.
|
|
VNInfo* PreAllocSplitting::PerformPHIConstruction(
|
|
MachineBasicBlock::iterator use,
|
|
MachineBasicBlock* MBB,
|
|
LiveInterval* LI,
|
|
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
|
|
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
|
|
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
|
|
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
|
|
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
|
|
bool toplevel, bool intrablock) {
|
|
// Return memoized result if it's available.
|
|
if (intrablock && NewVNs.count(use))
|
|
return NewVNs[use];
|
|
else if (!intrablock && LiveOut.count(MBB))
|
|
return LiveOut[MBB];
|
|
|
|
// Insert a sentinel into the map (which also acts as the DFS stack) so that
|
|
// we won't get stuck in infinite recursion when processing a loop.
|
|
if (!intrablock)
|
|
LiveOut[MBB] = 0;
|
|
|
|
typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
|
|
|
|
// Check if our block contains any uses or defs.
|
|
bool ContainsDefs = Defs.count(MBB);
|
|
bool ContainsUses = Uses.count(MBB);
|
|
|
|
VNInfo* ret = 0;
|
|
|
|
// Enumerate the cases of use/def contaning blocks.
|
|
if (!ContainsDefs && !ContainsUses) {
|
|
Fallback:
|
|
// NOTE: Because this is the fallback case from other cases, we do NOT
|
|
// assume that we are not intrablock here.
|
|
if (Phis.count(MBB)) return Phis[MBB];
|
|
|
|
unsigned StartIndex = LIs->getMBBStartIdx(MBB);
|
|
|
|
if (MBB->pred_size() == 1) {
|
|
Phis[MBB] = ret = PerformPHIConstruction((*MBB->pred_begin())->end(),
|
|
*(MBB->pred_begin()), LI, Defs,
|
|
Uses, NewVNs, LiveOut, Phis,
|
|
false, false);
|
|
unsigned EndIndex = 0;
|
|
if (intrablock) {
|
|
EndIndex = LIs->getInstructionIndex(use);
|
|
EndIndex = LiveIntervals::getUseIndex(EndIndex);
|
|
} else
|
|
EndIndex = LIs->getMBBEndIdx(MBB);
|
|
|
|
LI->addRange(LiveRange(StartIndex, EndIndex+1, ret));
|
|
} else {
|
|
Phis[MBB] = ret = LI->getNextValue(~0U, /*FIXME*/ 0,
|
|
LIs->getVNInfoAllocator());
|
|
if (!intrablock) LiveOut[MBB] = ret;
|
|
|
|
// If there are no uses or defs between our starting point and the
|
|
// beginning of the block, then recursive perform phi construction
|
|
// on our predecessors.
|
|
DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI, Defs,
|
|
Uses, NewVNs, LiveOut, Phis,
|
|
false, false);
|
|
if (Incoming != 0)
|
|
IncomingVNs[*PI] = Incoming;
|
|
}
|
|
|
|
// Otherwise, merge the incoming VNInfos with a phi join. Create a new
|
|
// VNInfo to represent the joined value.
|
|
for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
|
|
IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
|
|
I->second->hasPHIKill = true;
|
|
unsigned KillIndex = LIs->getMBBEndIdx(I->first);
|
|
LI->addKill(I->second, KillIndex);
|
|
}
|
|
|
|
unsigned EndIndex = 0;
|
|
if (intrablock) {
|
|
EndIndex = LIs->getInstructionIndex(use);
|
|
EndIndex = LiveIntervals::getUseIndex(EndIndex);
|
|
} else
|
|
EndIndex = LIs->getMBBEndIdx(MBB);
|
|
LI->addRange(LiveRange(StartIndex, EndIndex+1, ret));
|
|
}
|
|
} else if (ContainsDefs && !ContainsUses) {
|
|
SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
|
|
|
|
// Search for the def in this block. If we don't find it before the
|
|
// instruction we care about, go to the fallback case. Note that that
|
|
// should never happen: this cannot be intrablock, so use should
|
|
// always be an end() iterator.
|
|
assert(use == MBB->end() && "No use marked in intrablock");
|
|
|
|
MachineBasicBlock::iterator walker = use;
|
|
--walker;
|
|
while (walker != MBB->begin())
|
|
if (BlockDefs.count(walker)) {
|
|
break;
|
|
} else
|
|
--walker;
|
|
|
|
// Once we've found it, extend its VNInfo to our instruction.
|
|
unsigned DefIndex = LIs->getInstructionIndex(walker);
|
|
DefIndex = LiveIntervals::getDefIndex(DefIndex);
|
|
unsigned EndIndex = LIs->getMBBEndIdx(MBB);
|
|
|
|
ret = NewVNs[walker];
|
|
LI->addRange(LiveRange(DefIndex, EndIndex+1, ret));
|
|
} else if (!ContainsDefs && ContainsUses) {
|
|
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
|
|
|
|
// Search for the use in this block that precedes the instruction we care
|
|
// about, going to the fallback case if we don't find it.
|
|
|
|
if (use == MBB->begin())
|
|
goto Fallback;
|
|
|
|
MachineBasicBlock::iterator walker = use;
|
|
--walker;
|
|
bool found = false;
|
|
while (walker != MBB->begin())
|
|
if (BlockUses.count(walker)) {
|
|
found = true;
|
|
break;
|
|
} else
|
|
--walker;
|
|
|
|
// Must check begin() too.
|
|
if (!found) {
|
|
if (BlockUses.count(walker))
|
|
found = true;
|
|
else
|
|
goto Fallback;
|
|
}
|
|
|
|
unsigned UseIndex = LIs->getInstructionIndex(walker);
|
|
UseIndex = LiveIntervals::getUseIndex(UseIndex);
|
|
unsigned EndIndex = 0;
|
|
if (intrablock) {
|
|
EndIndex = LIs->getInstructionIndex(use);
|
|
EndIndex = LiveIntervals::getUseIndex(EndIndex);
|
|
} else
|
|
EndIndex = LIs->getMBBEndIdx(MBB);
|
|
|
|
// Now, recursively phi construct the VNInfo for the use we found,
|
|
// and then extend it to include the instruction we care about
|
|
ret = PerformPHIConstruction(walker, MBB, LI, Defs, Uses,
|
|
NewVNs, LiveOut, Phis, false, true);
|
|
|
|
// FIXME: Need to set kills properly for inter-block stuff.
|
|
if (LI->isKill(ret, UseIndex)) LI->removeKill(ret, UseIndex);
|
|
if (intrablock)
|
|
LI->addKill(ret, EndIndex);
|
|
|
|
LI->addRange(LiveRange(UseIndex, EndIndex+1, ret));
|
|
} else if (ContainsDefs && ContainsUses){
|
|
SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
|
|
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
|
|
|
|
// This case is basically a merging of the two preceding case, with the
|
|
// special note that checking for defs must take precedence over checking
|
|
// for uses, because of two-address instructions.
|
|
|
|
if (use == MBB->begin())
|
|
goto Fallback;
|
|
|
|
MachineBasicBlock::iterator walker = use;
|
|
--walker;
|
|
bool foundDef = false;
|
|
bool foundUse = false;
|
|
while (walker != MBB->begin())
|
|
if (BlockDefs.count(walker)) {
|
|
foundDef = true;
|
|
break;
|
|
} else if (BlockUses.count(walker)) {
|
|
foundUse = true;
|
|
break;
|
|
} else
|
|
--walker;
|
|
|
|
// Must check begin() too.
|
|
if (!foundDef && !foundUse) {
|
|
if (BlockDefs.count(walker))
|
|
foundDef = true;
|
|
else if (BlockUses.count(walker))
|
|
foundUse = true;
|
|
else
|
|
goto Fallback;
|
|
}
|
|
|
|
unsigned StartIndex = LIs->getInstructionIndex(walker);
|
|
StartIndex = foundDef ? LiveIntervals::getDefIndex(StartIndex) :
|
|
LiveIntervals::getUseIndex(StartIndex);
|
|
unsigned EndIndex = 0;
|
|
if (intrablock) {
|
|
EndIndex = LIs->getInstructionIndex(use);
|
|
EndIndex = LiveIntervals::getUseIndex(EndIndex);
|
|
} else
|
|
EndIndex = LIs->getMBBEndIdx(MBB);
|
|
|
|
if (foundDef)
|
|
ret = NewVNs[walker];
|
|
else
|
|
ret = PerformPHIConstruction(walker, MBB, LI, Defs, Uses,
|
|
NewVNs, LiveOut, Phis, false, true);
|
|
|
|
if (foundUse && LI->isKill(ret, StartIndex))
|
|
LI->removeKill(ret, StartIndex);
|
|
if (intrablock) {
|
|
LI->addKill(ret, EndIndex);
|
|
}
|
|
|
|
LI->addRange(LiveRange(StartIndex, EndIndex+1, ret));
|
|
}
|
|
|
|
// Memoize results so we don't have to recompute them.
|
|
if (!intrablock) LiveOut[MBB] = ret;
|
|
else NewVNs[use] = ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/// ReconstructLiveInterval - Recompute a live interval from scratch.
|
|
void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
|
|
BumpPtrAllocator& Alloc = LIs->getVNInfoAllocator();
|
|
|
|
// Clear the old ranges and valnos;
|
|
LI->clear();
|
|
|
|
// Cache the uses and defs of the register
|
|
typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
|
|
RegMap Defs, Uses;
|
|
|
|
// Keep track of the new VNs we're creating.
|
|
DenseMap<MachineInstr*, VNInfo*> NewVNs;
|
|
SmallPtrSet<VNInfo*, 2> PhiVNs;
|
|
|
|
// Cache defs, and create a new VNInfo for each def.
|
|
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
|
|
DE = MRI->def_end(); DI != DE; ++DI) {
|
|
Defs[(*DI).getParent()].insert(&*DI);
|
|
|
|
unsigned DefIdx = LIs->getInstructionIndex(&*DI);
|
|
DefIdx = LiveIntervals::getDefIndex(DefIdx);
|
|
|
|
VNInfo* NewVN = LI->getNextValue(DefIdx, /*FIXME*/ 0, Alloc);
|
|
NewVNs[&*DI] = NewVN;
|
|
}
|
|
|
|
// Cache uses as a separate pass from actually processing them.
|
|
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
|
|
UE = MRI->use_end(); UI != UE; ++UI)
|
|
Uses[(*UI).getParent()].insert(&*UI);
|
|
|
|
// Now, actually process every use and use a phi construction algorithm
|
|
// to walk from it to its reaching definitions, building VNInfos along
|
|
// the way.
|
|
DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
|
|
DenseMap<MachineBasicBlock*, VNInfo*> Phis;
|
|
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
|
|
UE = MRI->use_end(); UI != UE; ++UI) {
|
|
PerformPHIConstruction(&*UI, UI->getParent(), LI, Defs,
|
|
Uses, NewVNs, LiveOut, Phis, true, true);
|
|
}
|
|
|
|
// Add ranges for dead defs
|
|
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
|
|
DE = MRI->def_end(); DI != DE; ++DI) {
|
|
unsigned DefIdx = LIs->getInstructionIndex(&*DI);
|
|
DefIdx = LiveIntervals::getDefIndex(DefIdx);
|
|
|
|
if (LI->liveAt(DefIdx)) continue;
|
|
|
|
VNInfo* DeadVN = NewVNs[&*DI];
|
|
LI->addRange(LiveRange(DefIdx, DefIdx+1, DeadVN));
|
|
LI->addKill(DeadVN, DefIdx);
|
|
}
|
|
}
|
|
|
|
/// ShrinkWrapLiveInterval - Recursively traverse the predecessor
|
|
/// chain to find the new 'kills' and shrink wrap the live interval to the
|
|
/// new kill indices.
|
|
void
|
|
PreAllocSplitting::ShrinkWrapLiveInterval(VNInfo *ValNo, MachineBasicBlock *MBB,
|
|
MachineBasicBlock *SuccMBB, MachineBasicBlock *DefMBB,
|
|
SmallPtrSet<MachineBasicBlock*, 8> &Visited,
|
|
DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> > &Uses,
|
|
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> > &UseMIs,
|
|
SmallVector<MachineBasicBlock*, 4> &UseMBBs) {
|
|
if (Visited.count(MBB))
|
|
return;
|
|
|
|
// If live interval is live in another successor path, then we can't process
|
|
// this block. But we may able to do so after all the successors have been
|
|
// processed.
|
|
if (MBB != BarrierMBB) {
|
|
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
|
|
SE = MBB->succ_end(); SI != SE; ++SI) {
|
|
MachineBasicBlock *SMBB = *SI;
|
|
if (SMBB == SuccMBB)
|
|
continue;
|
|
if (CurrLI->liveAt(LIs->getMBBStartIdx(SMBB)))
|
|
return;
|
|
}
|
|
}
|
|
|
|
Visited.insert(MBB);
|
|
|
|
DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >::iterator
|
|
UMII = Uses.find(MBB);
|
|
if (UMII != Uses.end()) {
|
|
// At least one use in this mbb, lets look for the kill.
|
|
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >::iterator
|
|
UMII2 = UseMIs.find(MBB);
|
|
if (ShrinkWrapToLastUse(MBB, ValNo, UMII->second, UMII2->second))
|
|
// Found a kill, shrink wrapping of this path ends here.
|
|
return;
|
|
} else if (MBB == DefMBB) {
|
|
// There are no uses after the def.
|
|
MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def);
|
|
if (UseMBBs.empty()) {
|
|
// The only use must be below barrier in the barrier block. It's safe to
|
|
// remove the def.
|
|
LIs->RemoveMachineInstrFromMaps(DefMI);
|
|
DefMI->eraseFromParent();
|
|
CurrLI->removeRange(ValNo->def, LIs->getMBBEndIdx(MBB)+1);
|
|
}
|
|
} else if (MBB == BarrierMBB) {
|
|
// Remove entire live range from start of mbb to barrier.
|
|
CurrLI->removeRange(LIs->getMBBStartIdx(MBB),
|
|
LIs->getUseIndex(BarrierIdx)+1);
|
|
} else {
|
|
// Remove entire live range of the mbb out of the live interval.
|
|
CurrLI->removeRange(LIs->getMBBStartIdx(MBB), LIs->getMBBEndIdx(MBB)+1);
|
|
}
|
|
|
|
if (MBB == DefMBB)
|
|
// Reached the def mbb, stop traversing this path further.
|
|
return;
|
|
|
|
// Traverse the pathes up the predecessor chains further.
|
|
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
|
|
PE = MBB->pred_end(); PI != PE; ++PI) {
|
|
MachineBasicBlock *Pred = *PI;
|
|
if (Pred == MBB)
|
|
continue;
|
|
if (Pred == DefMBB && ValNo->hasPHIKill)
|
|
// Pred is the def bb and the def reaches other val#s, we must
|
|
// allow the value to be live out of the bb.
|
|
continue;
|
|
if (!CurrLI->liveAt(LIs->getMBBEndIdx(Pred)-1))
|
|
return;
|
|
ShrinkWrapLiveInterval(ValNo, Pred, MBB, DefMBB, Visited,
|
|
Uses, UseMIs, UseMBBs);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
void PreAllocSplitting::RepairLiveInterval(LiveInterval* CurrLI,
|
|
VNInfo* ValNo,
|
|
MachineInstr* DefMI,
|
|
unsigned RestoreIdx) {
|
|
// Shrink wrap the live interval by walking up the CFG and find the
|
|
// new kills.
|
|
// Now let's find all the uses of the val#.
|
|
DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> > Uses;
|
|
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> > UseMIs;
|
|
SmallPtrSet<MachineBasicBlock*, 4> Seen;
|
|
SmallVector<MachineBasicBlock*, 4> UseMBBs;
|
|
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(CurrLI->reg),
|
|
UE = MRI->use_end(); UI != UE; ++UI) {
|
|
MachineOperand &UseMO = UI.getOperand();
|
|
MachineInstr *UseMI = UseMO.getParent();
|
|
unsigned UseIdx = LIs->getInstructionIndex(UseMI);
|
|
LiveInterval::iterator ULR = CurrLI->FindLiveRangeContaining(UseIdx);
|
|
if (ULR->valno != ValNo)
|
|
continue;
|
|
MachineBasicBlock *UseMBB = UseMI->getParent();
|
|
// Remember which other mbb's use this val#.
|
|
if (Seen.insert(UseMBB) && UseMBB != BarrierMBB)
|
|
UseMBBs.push_back(UseMBB);
|
|
DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >::iterator
|
|
UMII = Uses.find(UseMBB);
|
|
if (UMII != Uses.end()) {
|
|
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >::iterator
|
|
UMII2 = UseMIs.find(UseMBB);
|
|
UMII->second.push_back(&UseMO);
|
|
UMII2->second.insert(UseMI);
|
|
} else {
|
|
SmallVector<MachineOperand*, 4> Ops;
|
|
Ops.push_back(&UseMO);
|
|
Uses.insert(std::make_pair(UseMBB, Ops));
|
|
SmallPtrSet<MachineInstr*, 4> MIs;
|
|
MIs.insert(UseMI);
|
|
UseMIs.insert(std::make_pair(UseMBB, MIs));
|
|
}
|
|
}
|
|
|
|
// Walk up the predecessor chains.
|
|
SmallPtrSet<MachineBasicBlock*, 8> Visited;
|
|
ShrinkWrapLiveInterval(ValNo, BarrierMBB, NULL, DefMI->getParent(), Visited,
|
|
Uses, UseMIs, UseMBBs);
|
|
|
|
// Remove live range from barrier to the restore. FIXME: Find a better
|
|
// point to re-start the live interval.
|
|
VNInfo* AfterValNo = UpdateRegisterInterval(ValNo,
|
|
LIs->getUseIndex(BarrierIdx)+1,
|
|
LIs->getDefIndex(RestoreIdx));
|
|
|
|
// Attempt to renumber the new valno into a new vreg.
|
|
RenumberValno(AfterValNo);
|
|
}
|
|
|
|
/// RenumberValno - Split the given valno out into a new vreg, allowing it to
|
|
/// be allocated to a different register. This function creates a new vreg,
|
|
/// copies the valno and its live ranges over to the new vreg's interval,
|
|
/// removes them from the old interval, and rewrites all uses and defs of
|
|
/// the original reg to the new vreg within those ranges.
|
|
void PreAllocSplitting::RenumberValno(VNInfo* VN) {
|
|
SmallVector<VNInfo*, 4> Stack;
|
|
SmallVector<VNInfo*, 4> VNsToCopy;
|
|
Stack.push_back(VN);
|
|
|
|
// Walk through and copy the valno we care about, and any other valnos
|
|
// that are two-address redefinitions of the one we care about. These
|
|
// will need to be rewritten as well. We also check for safety of the
|
|
// renumbering here, by making sure that none of the valno involved has
|
|
// phi kills.
|
|
while (!Stack.empty()) {
|
|
VNInfo* OldVN = Stack.back();
|
|
Stack.pop_back();
|
|
|
|
// Bail out if we ever encounter a valno that has a PHI kill. We can't
|
|
// renumber these.
|
|
if (OldVN->hasPHIKill) return;
|
|
|
|
VNsToCopy.push_back(OldVN);
|
|
|
|
// Locate two-address redefinitions
|
|
for (SmallVector<unsigned, 4>::iterator KI = OldVN->kills.begin(),
|
|
KE = OldVN->kills.end(); KI != KE; ++KI) {
|
|
MachineInstr* MI = LIs->getInstructionFromIndex(*KI);
|
|
//if (!MI) continue;
|
|
unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg);
|
|
if (DefIdx == ~0U) continue;
|
|
if (MI->isRegReDefinedByTwoAddr(DefIdx)) {
|
|
VNInfo* NextVN =
|
|
CurrLI->findDefinedVNInfo(LiveIntervals::getDefIndex(*KI));
|
|
Stack.push_back(NextVN);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create the new vreg
|
|
unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
|
|
|
|
// Create the new live interval
|
|
LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
|
|
|
|
for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE =
|
|
VNsToCopy.end(); OI != OE; ++OI) {
|
|
VNInfo* OldVN = *OI;
|
|
|
|
// Copy the valno over
|
|
VNInfo* NewVN = NewLI.getNextValue(OldVN->def, OldVN->copy,
|
|
LIs->getVNInfoAllocator());
|
|
NewLI.copyValNumInfo(NewVN, OldVN);
|
|
NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
|
|
|
|
// Remove the valno from the old interval
|
|
CurrLI->removeValNo(OldVN);
|
|
}
|
|
|
|
// Rewrite defs and uses. This is done in two stages to avoid invalidating
|
|
// the reg_iterator.
|
|
SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
|
|
|
|
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
|
|
E = MRI->reg_end(); I != E; ++I) {
|
|
MachineOperand& MO = I.getOperand();
|
|
unsigned InstrIdx = LIs->getInstructionIndex(&*I);
|
|
|
|
if ((MO.isUse() && NewLI.liveAt(LiveIntervals::getUseIndex(InstrIdx))) ||
|
|
(MO.isDef() && NewLI.liveAt(LiveIntervals::getDefIndex(InstrIdx))))
|
|
OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
|
|
}
|
|
|
|
for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
|
|
OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
|
|
MachineInstr* Inst = I->first;
|
|
unsigned OpIdx = I->second;
|
|
MachineOperand& MO = Inst->getOperand(OpIdx);
|
|
MO.setReg(NewVReg);
|
|
}
|
|
|
|
NumRenumbers++;
|
|
}
|
|
|
|
bool PreAllocSplitting::Rematerialize(unsigned vreg, VNInfo* ValNo,
|
|
MachineInstr* DefMI,
|
|
MachineBasicBlock::iterator RestorePt,
|
|
unsigned RestoreIdx,
|
|
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
|
|
MachineBasicBlock& MBB = *RestorePt->getParent();
|
|
|
|
MachineBasicBlock::iterator KillPt = BarrierMBB->end();
|
|
unsigned KillIdx = 0;
|
|
if (ValNo->def == ~0U || DefMI->getParent() == BarrierMBB)
|
|
KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, KillIdx);
|
|
else
|
|
KillPt = findNextEmptySlot(DefMI->getParent(), DefMI, KillIdx);
|
|
|
|
if (KillPt == DefMI->getParent()->end())
|
|
return false;
|
|
|
|
TII->reMaterialize(MBB, RestorePt, vreg, DefMI);
|
|
LIs->InsertMachineInstrInMaps(prior(RestorePt), RestoreIdx);
|
|
|
|
if (KillPt->getParent() == BarrierMBB) {
|
|
UpdateRegisterInterval(ValNo, LIs->getUseIndex(KillIdx)+1,
|
|
LIs->getDefIndex(RestoreIdx));
|
|
|
|
++NumSplits;
|
|
++NumRemats;
|
|
return true;
|
|
}
|
|
|
|
RepairLiveInterval(CurrLI, ValNo, DefMI, RestoreIdx);
|
|
|
|
++NumSplits;
|
|
++NumRemats;
|
|
return true;
|
|
}
|
|
|
|
MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
|
|
const TargetRegisterClass* RC,
|
|
MachineInstr* DefMI,
|
|
MachineInstr* Barrier,
|
|
MachineBasicBlock* MBB,
|
|
int& SS,
|
|
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
|
|
MachineBasicBlock::iterator Pt = MBB->begin();
|
|
|
|
// Go top down if RefsInMBB is empty.
|
|
if (RefsInMBB.empty())
|
|
return 0;
|
|
|
|
MachineBasicBlock::iterator FoldPt = Barrier;
|
|
while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
|
|
!RefsInMBB.count(FoldPt))
|
|
--FoldPt;
|
|
|
|
int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg, false);
|
|
if (OpIdx == -1)
|
|
return 0;
|
|
|
|
SmallVector<unsigned, 1> Ops;
|
|
Ops.push_back(OpIdx);
|
|
|
|
if (!TII->canFoldMemoryOperand(FoldPt, Ops))
|
|
return 0;
|
|
|
|
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
|
|
if (I != IntervalSSMap.end()) {
|
|
SS = I->second;
|
|
} else {
|
|
SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
|
|
|
|
}
|
|
|
|
MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
|
|
FoldPt, Ops, SS);
|
|
|
|
if (FMI) {
|
|
LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
|
|
FMI = MBB->insert(MBB->erase(FoldPt), FMI);
|
|
++NumFolds;
|
|
|
|
IntervalSSMap[vreg] = SS;
|
|
CurrSLI = &LSs->getOrCreateInterval(SS);
|
|
if (CurrSLI->hasAtLeastOneValue())
|
|
CurrSValNo = CurrSLI->getValNumInfo(0);
|
|
else
|
|
CurrSValNo = CurrSLI->getNextValue(~0U, 0, LSs->getVNInfoAllocator());
|
|
}
|
|
|
|
return FMI;
|
|
}
|
|
|
|
/// SplitRegLiveInterval - Split (spill and restore) the given live interval
|
|
/// so it would not cross the barrier that's being processed. Shrink wrap
|
|
/// (minimize) the live interval to the last uses.
|
|
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
|
|
CurrLI = LI;
|
|
|
|
// Find live range where current interval cross the barrier.
|
|
LiveInterval::iterator LR =
|
|
CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
|
|
VNInfo *ValNo = LR->valno;
|
|
|
|
if (ValNo->def == ~1U) {
|
|
// Defined by a dead def? How can this be?
|
|
assert(0 && "Val# is defined by a dead def?");
|
|
abort();
|
|
}
|
|
|
|
MachineInstr *DefMI = (ValNo->def != ~0U)
|
|
? LIs->getInstructionFromIndex(ValNo->def) : NULL;
|
|
|
|
// If this would create a new join point, do not split.
|
|
if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent()))
|
|
return false;
|
|
|
|
// Find all references in the barrier mbb.
|
|
SmallPtrSet<MachineInstr*, 4> RefsInMBB;
|
|
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
|
|
E = MRI->reg_end(); I != E; ++I) {
|
|
MachineInstr *RefMI = &*I;
|
|
if (RefMI->getParent() == BarrierMBB)
|
|
RefsInMBB.insert(RefMI);
|
|
}
|
|
|
|
// Find a point to restore the value after the barrier.
|
|
unsigned RestoreIndex;
|
|
MachineBasicBlock::iterator RestorePt =
|
|
findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex);
|
|
if (RestorePt == BarrierMBB->end())
|
|
return false;
|
|
|
|
if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
|
|
if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt,
|
|
RestoreIndex, RefsInMBB))
|
|
return true;
|
|
|
|
// Add a spill either before the barrier or after the definition.
|
|
MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
|
|
const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
|
|
unsigned SpillIndex = 0;
|
|
MachineInstr *SpillMI = NULL;
|
|
int SS = -1;
|
|
if (ValNo->def == ~0U) {
|
|
// If it's defined by a phi, we must split just before the barrier.
|
|
if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
|
|
BarrierMBB, SS, RefsInMBB))) {
|
|
SpillIndex = LIs->getInstructionIndex(SpillMI);
|
|
} else {
|
|
MachineBasicBlock::iterator SpillPt =
|
|
findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, SpillIndex);
|
|
if (SpillPt == BarrierMBB->begin())
|
|
return false; // No gap to insert spill.
|
|
// Add spill.
|
|
|
|
SS = CreateSpillStackSlot(CurrLI->reg, RC);
|
|
TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
|
|
SpillMI = prior(SpillPt);
|
|
LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
|
|
}
|
|
} else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
|
|
RestoreIndex, SpillIndex, SS)) {
|
|
// If it's already split, just restore the value. There is no need to spill
|
|
// the def again.
|
|
if (!DefMI)
|
|
return false; // Def is dead. Do nothing.
|
|
|
|
if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
|
|
BarrierMBB, SS, RefsInMBB))) {
|
|
SpillIndex = LIs->getInstructionIndex(SpillMI);
|
|
} else {
|
|
// Check if it's possible to insert a spill after the def MI.
|
|
MachineBasicBlock::iterator SpillPt;
|
|
if (DefMBB == BarrierMBB) {
|
|
// Add spill after the def and the last use before the barrier.
|
|
SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
|
|
RefsInMBB, SpillIndex);
|
|
if (SpillPt == DefMBB->begin())
|
|
return false; // No gap to insert spill.
|
|
} else {
|
|
SpillPt = findNextEmptySlot(DefMBB, DefMI, SpillIndex);
|
|
if (SpillPt == DefMBB->end())
|
|
return false; // No gap to insert spill.
|
|
}
|
|
// Add spill. The store instruction kills the register if def is before
|
|
// the barrier in the barrier block.
|
|
SS = CreateSpillStackSlot(CurrLI->reg, RC);
|
|
TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
|
|
DefMBB == BarrierMBB, SS, RC);
|
|
SpillMI = prior(SpillPt);
|
|
LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
|
|
}
|
|
}
|
|
|
|
// Remember def instruction index to spill index mapping.
|
|
if (DefMI && SpillMI)
|
|
Def2SpillMap[ValNo->def] = SpillIndex;
|
|
|
|
// Add restore.
|
|
TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
|
|
MachineInstr *LoadMI = prior(RestorePt);
|
|
LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex);
|
|
|
|
// If live interval is spilled in the same block as the barrier, just
|
|
// create a hole in the interval.
|
|
if (!DefMBB ||
|
|
(SpillMI && SpillMI->getParent() == BarrierMBB)) {
|
|
// Update spill stack slot live interval.
|
|
UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
|
|
LIs->getDefIndex(RestoreIndex));
|
|
|
|
UpdateRegisterInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
|
|
LIs->getDefIndex(RestoreIndex));
|
|
|
|
++NumSplits;
|
|
return true;
|
|
}
|
|
|
|
// Update spill stack slot live interval.
|
|
UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
|
|
LIs->getDefIndex(RestoreIndex));
|
|
|
|
RepairLiveInterval(CurrLI, ValNo, DefMI, RestoreIndex);
|
|
|
|
++NumSplits;
|
|
return true;
|
|
}
|
|
|
|
/// SplitRegLiveIntervals - Split all register live intervals that cross the
|
|
/// barrier that's being processed.
|
|
bool
|
|
PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs) {
|
|
// First find all the virtual registers whose live intervals are intercepted
|
|
// by the current barrier.
|
|
SmallVector<LiveInterval*, 8> Intervals;
|
|
for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
|
|
if (TII->IgnoreRegisterClassBarriers(*RC))
|
|
continue;
|
|
std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
|
|
for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
|
|
unsigned Reg = VRs[i];
|
|
if (!LIs->hasInterval(Reg))
|
|
continue;
|
|
LiveInterval *LI = &LIs->getInterval(Reg);
|
|
if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
|
|
// Virtual register live interval is intercepted by the barrier. We
|
|
// should split and shrink wrap its interval if possible.
|
|
Intervals.push_back(LI);
|
|
}
|
|
}
|
|
|
|
// Process the affected live intervals.
|
|
bool Change = false;
|
|
while (!Intervals.empty()) {
|
|
if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
|
|
break;
|
|
LiveInterval *LI = Intervals.back();
|
|
Intervals.pop_back();
|
|
Change |= SplitRegLiveInterval(LI);
|
|
}
|
|
|
|
return Change;
|
|
}
|
|
|
|
bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
|
|
MachineBasicBlock* DefMBB,
|
|
MachineBasicBlock* BarrierMBB) {
|
|
if (DefMBB == BarrierMBB)
|
|
return false;
|
|
|
|
if (LR->valno->hasPHIKill)
|
|
return false;
|
|
|
|
unsigned MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
|
|
if (LR->end < MBBEnd)
|
|
return false;
|
|
|
|
MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
|
|
if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
|
|
return true;
|
|
|
|
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
|
|
SmallPtrSet<MachineBasicBlock*, 4> Visited;
|
|
typedef std::pair<MachineBasicBlock*,
|
|
MachineBasicBlock::succ_iterator> ItPair;
|
|
SmallVector<ItPair, 4> Stack;
|
|
Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
|
|
|
|
while (!Stack.empty()) {
|
|
ItPair P = Stack.back();
|
|
Stack.pop_back();
|
|
|
|
MachineBasicBlock* PredMBB = P.first;
|
|
MachineBasicBlock::succ_iterator S = P.second;
|
|
|
|
if (S == PredMBB->succ_end())
|
|
continue;
|
|
else if (Visited.count(*S)) {
|
|
Stack.push_back(std::make_pair(PredMBB, ++S));
|
|
continue;
|
|
} else
|
|
Stack.push_back(std::make_pair(PredMBB, S+1));
|
|
|
|
MachineBasicBlock* MBB = *S;
|
|
Visited.insert(MBB);
|
|
|
|
if (MBB == BarrierMBB)
|
|
return true;
|
|
|
|
MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
|
|
MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
|
|
MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
|
|
while (MDTN) {
|
|
if (MDTN == DefMDTN)
|
|
return true;
|
|
else if (MDTN == BarrierMDTN)
|
|
break;
|
|
MDTN = MDTN->getIDom();
|
|
}
|
|
|
|
MBBEnd = LIs->getMBBEndIdx(MBB);
|
|
if (LR->end > MBBEnd)
|
|
Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
|
|
CurrMF = &MF;
|
|
TM = &MF.getTarget();
|
|
TII = TM->getInstrInfo();
|
|
MFI = MF.getFrameInfo();
|
|
MRI = &MF.getRegInfo();
|
|
LIs = &getAnalysis<LiveIntervals>();
|
|
LSs = &getAnalysis<LiveStacks>();
|
|
|
|
bool MadeChange = false;
|
|
|
|
// Make sure blocks are numbered in order.
|
|
MF.RenumberBlocks();
|
|
|
|
MachineBasicBlock *Entry = MF.begin();
|
|
SmallPtrSet<MachineBasicBlock*,16> Visited;
|
|
|
|
for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
|
|
DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
|
|
DFI != E; ++DFI) {
|
|
BarrierMBB = *DFI;
|
|
for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
|
|
E = BarrierMBB->end(); I != E; ++I) {
|
|
Barrier = &*I;
|
|
const TargetRegisterClass **BarrierRCs =
|
|
Barrier->getDesc().getRegClassBarriers();
|
|
if (!BarrierRCs)
|
|
continue;
|
|
BarrierIdx = LIs->getInstructionIndex(Barrier);
|
|
MadeChange |= SplitRegLiveIntervals(BarrierRCs);
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|