1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/include/llvm/CodeGen/SelectionDAG.h
Simon Pilgrim cb0d04c29e [DAG] Add initial SelectionDAG::isGuaranteedNotToBeUndefOrPoison framework (PR51129)
I've setup the basic framework for the isGuaranteedNotToBeUndefOrPoison call and updated DAGCombiner::visitFREEZE to use it, further Opcodes can be handled when we have test coverage.

I'm not aware of any vector test freeze coverage so the DemandedElts (and the Depth) args are not being used yet - but they are in place.

SelectionDAG::isGuaranteedNotToBePoison wrappers have also been added.

Differential Revision: https://reviews.llvm.org/D106668
2021-07-24 11:36:35 +01:00

2072 lines
91 KiB
C++

//===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the SelectionDAG class, and transitively defines the
// SDNode class and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAG_H
#define LLVM_CODEGEN_SELECTIONDAG_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/RecyclingAllocator.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <map>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
namespace llvm {
class AAResults;
class BlockAddress;
class BlockFrequencyInfo;
class Constant;
class ConstantFP;
class ConstantInt;
class DataLayout;
struct fltSemantics;
class FunctionLoweringInfo;
class GlobalValue;
struct KnownBits;
class LegacyDivergenceAnalysis;
class LLVMContext;
class MachineBasicBlock;
class MachineConstantPoolValue;
class MCSymbol;
class OptimizationRemarkEmitter;
class ProfileSummaryInfo;
class SDDbgValue;
class SDDbgOperand;
class SDDbgLabel;
class SelectionDAG;
class SelectionDAGTargetInfo;
class TargetLibraryInfo;
class TargetLowering;
class TargetMachine;
class TargetSubtargetInfo;
class Value;
class SDVTListNode : public FoldingSetNode {
friend struct FoldingSetTrait<SDVTListNode>;
/// A reference to an Interned FoldingSetNodeID for this node.
/// The Allocator in SelectionDAG holds the data.
/// SDVTList contains all types which are frequently accessed in SelectionDAG.
/// The size of this list is not expected to be big so it won't introduce
/// a memory penalty.
FoldingSetNodeIDRef FastID;
const EVT *VTs;
unsigned int NumVTs;
/// The hash value for SDVTList is fixed, so cache it to avoid
/// hash calculation.
unsigned HashValue;
public:
SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
FastID(ID), VTs(VT), NumVTs(Num) {
HashValue = ID.ComputeHash();
}
SDVTList getSDVTList() {
SDVTList result = {VTs, NumVTs};
return result;
}
};
/// Specialize FoldingSetTrait for SDVTListNode
/// to avoid computing temp FoldingSetNodeID and hash value.
template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
ID = X.FastID;
}
static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
unsigned IDHash, FoldingSetNodeID &TempID) {
if (X.HashValue != IDHash)
return false;
return ID == X.FastID;
}
static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
return X.HashValue;
}
};
template <> struct ilist_alloc_traits<SDNode> {
static void deleteNode(SDNode *) {
llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
}
};
/// Keeps track of dbg_value information through SDISel. We do
/// not build SDNodes for these so as not to perturb the generated code;
/// instead the info is kept off to the side in this structure. Each SDNode may
/// have one or more associated dbg_value entries. This information is kept in
/// DbgValMap.
/// Byval parameters are handled separately because they don't use alloca's,
/// which busts the normal mechanism. There is good reason for handling all
/// parameters separately: they may not have code generated for them, they
/// should always go at the beginning of the function regardless of other code
/// motion, and debug info for them is potentially useful even if the parameter
/// is unused. Right now only byval parameters are handled separately.
class SDDbgInfo {
BumpPtrAllocator Alloc;
SmallVector<SDDbgValue*, 32> DbgValues;
SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
SmallVector<SDDbgLabel*, 4> DbgLabels;
using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
DbgValMapType DbgValMap;
public:
SDDbgInfo() = default;
SDDbgInfo(const SDDbgInfo &) = delete;
SDDbgInfo &operator=(const SDDbgInfo &) = delete;
void add(SDDbgValue *V, bool isParameter);
void add(SDDbgLabel *L) { DbgLabels.push_back(L); }
/// Invalidate all DbgValues attached to the node and remove
/// it from the Node-to-DbgValues map.
void erase(const SDNode *Node);
void clear() {
DbgValMap.clear();
DbgValues.clear();
ByvalParmDbgValues.clear();
DbgLabels.clear();
Alloc.Reset();
}
BumpPtrAllocator &getAlloc() { return Alloc; }
bool empty() const {
return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
}
ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const {
auto I = DbgValMap.find(Node);
if (I != DbgValMap.end())
return I->second;
return ArrayRef<SDDbgValue*>();
}
using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
DbgIterator DbgBegin() { return DbgValues.begin(); }
DbgIterator DbgEnd() { return DbgValues.end(); }
DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); }
};
void checkForCycles(const SelectionDAG *DAG, bool force = false);
/// This is used to represent a portion of an LLVM function in a low-level
/// Data Dependence DAG representation suitable for instruction selection.
/// This DAG is constructed as the first step of instruction selection in order
/// to allow implementation of machine specific optimizations
/// and code simplifications.
///
/// The representation used by the SelectionDAG is a target-independent
/// representation, which has some similarities to the GCC RTL representation,
/// but is significantly more simple, powerful, and is a graph form instead of a
/// linear form.
///
class SelectionDAG {
const TargetMachine &TM;
const SelectionDAGTargetInfo *TSI = nullptr;
const TargetLowering *TLI = nullptr;
const TargetLibraryInfo *LibInfo = nullptr;
MachineFunction *MF;
Pass *SDAGISelPass = nullptr;
LLVMContext *Context;
CodeGenOpt::Level OptLevel;
LegacyDivergenceAnalysis * DA = nullptr;
FunctionLoweringInfo * FLI = nullptr;
/// The function-level optimization remark emitter. Used to emit remarks
/// whenever manipulating the DAG.
OptimizationRemarkEmitter *ORE;
ProfileSummaryInfo *PSI = nullptr;
BlockFrequencyInfo *BFI = nullptr;
/// The starting token.
SDNode EntryNode;
/// The root of the entire DAG.
SDValue Root;
/// A linked list of nodes in the current DAG.
ilist<SDNode> AllNodes;
/// The AllocatorType for allocating SDNodes. We use
/// pool allocation with recycling.
using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
sizeof(LargestSDNode),
alignof(MostAlignedSDNode)>;
/// Pool allocation for nodes.
NodeAllocatorType NodeAllocator;
/// This structure is used to memoize nodes, automatically performing
/// CSE with existing nodes when a duplicate is requested.
FoldingSet<SDNode> CSEMap;
/// Pool allocation for machine-opcode SDNode operands.
BumpPtrAllocator OperandAllocator;
ArrayRecycler<SDUse> OperandRecycler;
/// Pool allocation for misc. objects that are created once per SelectionDAG.
BumpPtrAllocator Allocator;
/// Tracks dbg_value and dbg_label information through SDISel.
SDDbgInfo *DbgInfo;
using CallSiteInfo = MachineFunction::CallSiteInfo;
using CallSiteInfoImpl = MachineFunction::CallSiteInfoImpl;
struct CallSiteDbgInfo {
CallSiteInfo CSInfo;
MDNode *HeapAllocSite = nullptr;
bool NoMerge = false;
};
DenseMap<const SDNode *, CallSiteDbgInfo> SDCallSiteDbgInfo;
uint16_t NextPersistentId = 0;
public:
/// Clients of various APIs that cause global effects on
/// the DAG can optionally implement this interface. This allows the clients
/// to handle the various sorts of updates that happen.
///
/// A DAGUpdateListener automatically registers itself with DAG when it is
/// constructed, and removes itself when destroyed in RAII fashion.
struct DAGUpdateListener {
DAGUpdateListener *const Next;
SelectionDAG &DAG;
explicit DAGUpdateListener(SelectionDAG &D)
: Next(D.UpdateListeners), DAG(D) {
DAG.UpdateListeners = this;
}
virtual ~DAGUpdateListener() {
assert(DAG.UpdateListeners == this &&
"DAGUpdateListeners must be destroyed in LIFO order");
DAG.UpdateListeners = Next;
}
/// The node N that was deleted and, if E is not null, an
/// equivalent node E that replaced it.
virtual void NodeDeleted(SDNode *N, SDNode *E);
/// The node N that was updated.
virtual void NodeUpdated(SDNode *N);
/// The node N that was inserted.
virtual void NodeInserted(SDNode *N);
};
struct DAGNodeDeletedListener : public DAGUpdateListener {
std::function<void(SDNode *, SDNode *)> Callback;
DAGNodeDeletedListener(SelectionDAG &DAG,
std::function<void(SDNode *, SDNode *)> Callback)
: DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
private:
virtual void anchor();
};
/// Help to insert SDNodeFlags automatically in transforming. Use
/// RAII to save and resume flags in current scope.
class FlagInserter {
SelectionDAG &DAG;
SDNodeFlags Flags;
FlagInserter *LastInserter;
public:
FlagInserter(SelectionDAG &SDAG, SDNodeFlags Flags)
: DAG(SDAG), Flags(Flags),
LastInserter(SDAG.getFlagInserter()) {
SDAG.setFlagInserter(this);
}
FlagInserter(SelectionDAG &SDAG, SDNode *N)
: FlagInserter(SDAG, N->getFlags()) {}
FlagInserter(const FlagInserter &) = delete;
FlagInserter &operator=(const FlagInserter &) = delete;
~FlagInserter() { DAG.setFlagInserter(LastInserter); }
SDNodeFlags getFlags() const { return Flags; }
};
/// When true, additional steps are taken to
/// ensure that getConstant() and similar functions return DAG nodes that
/// have legal types. This is important after type legalization since
/// any illegally typed nodes generated after this point will not experience
/// type legalization.
bool NewNodesMustHaveLegalTypes = false;
private:
/// DAGUpdateListener is a friend so it can manipulate the listener stack.
friend struct DAGUpdateListener;
/// Linked list of registered DAGUpdateListener instances.
/// This stack is maintained by DAGUpdateListener RAII.
DAGUpdateListener *UpdateListeners = nullptr;
/// Implementation of setSubgraphColor.
/// Return whether we had to truncate the search.
bool setSubgraphColorHelper(SDNode *N, const char *Color,
DenseSet<SDNode *> &visited,
int level, bool &printed);
template <typename SDNodeT, typename... ArgTypes>
SDNodeT *newSDNode(ArgTypes &&... Args) {
return new (NodeAllocator.template Allocate<SDNodeT>())
SDNodeT(std::forward<ArgTypes>(Args)...);
}
/// Build a synthetic SDNodeT with the given args and extract its subclass
/// data as an integer (e.g. for use in a folding set).
///
/// The args to this function are the same as the args to SDNodeT's
/// constructor, except the second arg (assumed to be a const DebugLoc&) is
/// omitted.
template <typename SDNodeT, typename... ArgTypes>
static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
ArgTypes &&... Args) {
// The compiler can reduce this expression to a constant iff we pass an
// empty DebugLoc. Thankfully, the debug location doesn't have any bearing
// on the subclass data.
return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
.getRawSubclassData();
}
template <typename SDNodeTy>
static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
SDVTList VTs, EVT MemoryVT,
MachineMemOperand *MMO) {
return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
.getRawSubclassData();
}
void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
void removeOperands(SDNode *Node) {
if (!Node->OperandList)
return;
OperandRecycler.deallocate(
ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
Node->OperandList);
Node->NumOperands = 0;
Node->OperandList = nullptr;
}
void CreateTopologicalOrder(std::vector<SDNode*>& Order);
public:
// Maximum depth for recursive analysis such as computeKnownBits, etc.
static constexpr unsigned MaxRecursionDepth = 6;
explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
SelectionDAG(const SelectionDAG &) = delete;
SelectionDAG &operator=(const SelectionDAG &) = delete;
~SelectionDAG();
/// Prepare this SelectionDAG to process code in the given MachineFunction.
void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
LegacyDivergenceAnalysis * Divergence,
ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin);
void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
FLI = FuncInfo;
}
/// Clear state and free memory necessary to make this
/// SelectionDAG ready to process a new block.
void clear();
MachineFunction &getMachineFunction() const { return *MF; }
const Pass *getPass() const { return SDAGISelPass; }
const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
const TargetMachine &getTarget() const { return TM; }
const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
const LegacyDivergenceAnalysis *getDivergenceAnalysis() const { return DA; }
LLVMContext *getContext() const { return Context; }
OptimizationRemarkEmitter &getORE() const { return *ORE; }
ProfileSummaryInfo *getPSI() const { return PSI; }
BlockFrequencyInfo *getBFI() const { return BFI; }
FlagInserter *getFlagInserter() { return Inserter; }
void setFlagInserter(FlagInserter *FI) { Inserter = FI; }
/// Just dump dot graph to a user-provided path and title.
/// This doesn't open the dot viewer program and
/// helps visualization when outside debugging session.
/// FileName expects absolute path. If provided
/// without any path separators then the file
/// will be created in the current directory.
/// Error will be emitted if the path is insane.
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void dumpDotGraph(const Twine &FileName, const Twine &Title);
#endif
/// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
void viewGraph(const std::string &Title);
void viewGraph();
#ifndef NDEBUG
std::map<const SDNode *, std::string> NodeGraphAttrs;
#endif
/// Clear all previously defined node graph attributes.
/// Intended to be used from a debugging tool (eg. gdb).
void clearGraphAttrs();
/// Set graph attributes for a node. (eg. "color=red".)
void setGraphAttrs(const SDNode *N, const char *Attrs);
/// Get graph attributes for a node. (eg. "color=red".)
/// Used from getNodeAttributes.
std::string getGraphAttrs(const SDNode *N) const;
/// Convenience for setting node color attribute.
void setGraphColor(const SDNode *N, const char *Color);
/// Convenience for setting subgraph color attribute.
void setSubgraphColor(SDNode *N, const char *Color);
using allnodes_const_iterator = ilist<SDNode>::const_iterator;
allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
using allnodes_iterator = ilist<SDNode>::iterator;
allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
allnodes_iterator allnodes_end() { return AllNodes.end(); }
ilist<SDNode>::size_type allnodes_size() const {
return AllNodes.size();
}
iterator_range<allnodes_iterator> allnodes() {
return make_range(allnodes_begin(), allnodes_end());
}
iterator_range<allnodes_const_iterator> allnodes() const {
return make_range(allnodes_begin(), allnodes_end());
}
/// Return the root tag of the SelectionDAG.
const SDValue &getRoot() const { return Root; }
/// Return the token chain corresponding to the entry of the function.
SDValue getEntryNode() const {
return SDValue(const_cast<SDNode *>(&EntryNode), 0);
}
/// Set the current root tag of the SelectionDAG.
///
const SDValue &setRoot(SDValue N) {
assert((!N.getNode() || N.getValueType() == MVT::Other) &&
"DAG root value is not a chain!");
if (N.getNode())
checkForCycles(N.getNode(), this);
Root = N;
if (N.getNode())
checkForCycles(this);
return Root;
}
#ifndef NDEBUG
void VerifyDAGDiverence();
#endif
/// This iterates over the nodes in the SelectionDAG, folding
/// certain types of nodes together, or eliminating superfluous nodes. The
/// Level argument controls whether Combine is allowed to produce nodes and
/// types that are illegal on the target.
void Combine(CombineLevel Level, AAResults *AA,
CodeGenOpt::Level OptLevel);
/// This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target.
/// Returns "true" if it made any changes.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
bool LegalizeTypes();
/// This transforms the SelectionDAG into a SelectionDAG that is
/// compatible with the target instruction selector, as indicated by the
/// TargetLowering object.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void Legalize();
/// Transforms a SelectionDAG node and any operands to it into a node
/// that is compatible with the target instruction selector, as indicated by
/// the TargetLowering object.
///
/// \returns true if \c N is a valid, legal node after calling this.
///
/// This essentially runs a single recursive walk of the \c Legalize process
/// over the given node (and its operands). This can be used to incrementally
/// legalize the DAG. All of the nodes which are directly replaced,
/// potentially including N, are added to the output parameter \c
/// UpdatedNodes so that the delta to the DAG can be understood by the
/// caller.
///
/// When this returns false, N has been legalized in a way that make the
/// pointer passed in no longer valid. It may have even been deleted from the
/// DAG, and so it shouldn't be used further. When this returns true, the
/// N passed in is a legal node, and can be immediately processed as such.
/// This may still have done some work on the DAG, and will still populate
/// UpdatedNodes with any new nodes replacing those originally in the DAG.
bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
/// This transforms the SelectionDAG into a SelectionDAG
/// that only uses vector math operations supported by the target. This is
/// necessary as a separate step from Legalize because unrolling a vector
/// operation can introduce illegal types, which requires running
/// LegalizeTypes again.
///
/// This returns true if it made any changes; in that case, LegalizeTypes
/// is called again before Legalize.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
bool LegalizeVectors();
/// This method deletes all unreachable nodes in the SelectionDAG.
void RemoveDeadNodes();
/// Remove the specified node from the system. This node must
/// have no referrers.
void DeleteNode(SDNode *N);
/// Return an SDVTList that represents the list of values specified.
SDVTList getVTList(EVT VT);
SDVTList getVTList(EVT VT1, EVT VT2);
SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
SDVTList getVTList(ArrayRef<EVT> VTs);
//===--------------------------------------------------------------------===//
// Node creation methods.
/// Create a ConstantSDNode wrapping a constant value.
/// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
///
/// If only legal types can be produced, this does the necessary
/// transformations (e.g., if the vector element type is illegal).
/// @{
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
bool isTarget = false, bool isOpaque = false);
SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
bool isTarget = false, bool isOpaque = false);
SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
bool IsOpaque = false) {
return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
VT, IsTarget, IsOpaque);
}
SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
bool isTarget = false, bool isOpaque = false);
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
bool isTarget = false);
SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL,
bool LegalTypes = true);
SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL,
bool isTarget = false);
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
bool isOpaque = false) {
return getConstant(Val, DL, VT, true, isOpaque);
}
SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
bool isOpaque = false) {
return getConstant(Val, DL, VT, true, isOpaque);
}
SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
bool isOpaque = false) {
return getConstant(Val, DL, VT, true, isOpaque);
}
/// Create a true or false constant of type \p VT using the target's
/// BooleanContent for type \p OpVT.
SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
/// @}
/// Create a ConstantFPSDNode wrapping a constant value.
/// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
///
/// If only legal types can be produced, this does the necessary
/// transformations (e.g., if the vector element type is illegal).
/// The forms that take a double should only be used for simple constants
/// that can be exactly represented in VT. No checks are made.
/// @{
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
bool isTarget = false);
SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
bool isTarget = false);
SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
bool isTarget = false);
SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
return getConstantFP(Val, DL, VT, true);
}
SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
return getConstantFP(Val, DL, VT, true);
}
SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
return getConstantFP(Val, DL, VT, true);
}
/// @}
SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
int64_t offset = 0, bool isTargetGA = false,
unsigned TargetFlags = 0);
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
int64_t offset = 0, unsigned TargetFlags = 0) {
return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
}
SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
SDValue getTargetFrameIndex(int FI, EVT VT) {
return getFrameIndex(FI, VT, true);
}
SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
unsigned TargetFlags = 0);
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags = 0) {
return getJumpTable(JTI, VT, true, TargetFlags);
}
SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align = None,
int Offs = 0, bool isT = false,
unsigned TargetFlags = 0);
SDValue getTargetConstantPool(const Constant *C, EVT VT,
MaybeAlign Align = None, int Offset = 0,
unsigned TargetFlags = 0) {
return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
}
SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
MaybeAlign Align = None, int Offs = 0,
bool isT = false, unsigned TargetFlags = 0);
SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT,
MaybeAlign Align = None, int Offset = 0,
unsigned TargetFlags = 0) {
return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
}
SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
unsigned TargetFlags = 0);
// When generating a branch to a BB, we don't in general know enough
// to provide debug info for the BB at that time, so keep this one around.
SDValue getBasicBlock(MachineBasicBlock *MBB);
SDValue getExternalSymbol(const char *Sym, EVT VT);
SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
unsigned TargetFlags = 0);
SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
SDValue getValueType(EVT);
SDValue getRegister(unsigned Reg, EVT VT);
SDValue getRegisterMask(const uint32_t *RegMask);
SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
MCSymbol *Label);
SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0,
bool isTarget = false, unsigned TargetFlags = 0);
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
int64_t Offset = 0, unsigned TargetFlags = 0) {
return getBlockAddress(BA, VT, Offset, true, TargetFlags);
}
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
SDValue N) {
return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
getRegister(Reg, N.getValueType()), N);
}
// This version of the getCopyToReg method takes an extra operand, which
// indicates that there is potentially an incoming glue value (if Glue is not
// null) and that there should be a glue result.
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
SDValue Glue) {
SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
return getNode(ISD::CopyToReg, dl, VTs,
makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
}
// Similar to last getCopyToReg() except parameter Reg is a SDValue
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
SDValue Glue) {
SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, Reg, N, Glue };
return getNode(ISD::CopyToReg, dl, VTs,
makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
}
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
SDVTList VTs = getVTList(VT, MVT::Other);
SDValue Ops[] = { Chain, getRegister(Reg, VT) };
return getNode(ISD::CopyFromReg, dl, VTs, Ops);
}
// This version of the getCopyFromReg method takes an extra operand, which
// indicates that there is potentially an incoming glue value (if Glue is not
// null) and that there should be a glue result.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
SDValue Glue) {
SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
return getNode(ISD::CopyFromReg, dl, VTs,
makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
}
SDValue getCondCode(ISD::CondCode Cond);
/// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
/// which must be a vector type, must match the number of mask elements
/// NumElts. An integer mask element equal to -1 is treated as undefined.
SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
ArrayRef<int> Mask);
/// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
/// which must be a vector type, must match the number of operands in Ops.
/// The operands must have the same type as (or, for integers, a type wider
/// than) VT's element type.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
// VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
/// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
/// which must be a vector type, must match the number of operands in Ops.
/// The operands must have the same type as (or, for integers, a type wider
/// than) VT's element type.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
// VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
/// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
/// elements. VT must be a vector type. Op's type must be the same as (or,
/// for integers, a type wider than) VT's element type.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
// VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
if (Op.getOpcode() == ISD::UNDEF) {
assert((VT.getVectorElementType() == Op.getValueType() ||
(VT.isInteger() &&
VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
"A splatted value must have a width equal or (for integers) "
"greater than the vector element type!");
return getNode(ISD::UNDEF, SDLoc(), VT);
}
SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
// Return a splat ISD::SPLAT_VECTOR node, consisting of Op splatted to all
// elements.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op) {
if (Op.getOpcode() == ISD::UNDEF) {
assert((VT.getVectorElementType() == Op.getValueType() ||
(VT.isInteger() &&
VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
"A splatted value must have a width equal or (for integers) "
"greater than the vector element type!");
return getNode(ISD::UNDEF, SDLoc(), VT);
}
return getNode(ISD::SPLAT_VECTOR, DL, VT, Op);
}
/// Returns a vector of type ResVT whose elements contain the linear sequence
/// <0, Step, Step * 2, Step * 3, ...>
SDValue getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal);
/// Returns a vector of type ResVT whose elements contain the linear sequence
/// <0, 1, 2, 3, ...>
SDValue getStepVector(const SDLoc &DL, EVT ResVT);
/// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
/// the shuffle node in input but with swapped operands.
///
/// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
/// Convert Op, which must be of float type, to the
/// float type VT, by either extending or rounding (by truncation).
SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be a STRICT operation of float type, to the
/// float type VT, by either extending or rounding (by truncation).
std::pair<SDValue, SDValue>
getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the
/// integer type VT, by either any-extending or truncating it.
SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the
/// integer type VT, by either sign-extending or truncating it.
SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the
/// integer type VT, by either zero-extending or truncating it.
SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
/// Return the expression required to zero extend the Op
/// value assuming it was the smaller SrcTy value.
SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the integer type VT, by
/// either truncating it or performing either zero or sign extension as
/// appropriate extension for the pointer's semantics.
SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
/// Return the expression required to extend the Op as a pointer value
/// assuming it was the smaller SrcTy value. This may be either a zero extend
/// or a sign extend.
SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the integer type VT,
/// by using an extension appropriate for the target's
/// BooleanContent for type OpVT or truncating it.
SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
/// Create a bitwise NOT operation as (XOR Val, -1).
SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
/// Create a logical NOT operation as (XOR Val, BooleanOne).
SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
/// Returns sum of the base pointer and offset.
/// Unlike getObjectPtrOffset this does not set NoUnsignedWrap by default.
SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL,
const SDNodeFlags Flags = SDNodeFlags());
SDValue getMemBasePlusOffset(SDValue Base, SDValue Offset, const SDLoc &DL,
const SDNodeFlags Flags = SDNodeFlags());
/// Create an add instruction with appropriate flags when used for
/// addressing some offset of an object. i.e. if a load is split into multiple
/// components, create an add nuw from the base pointer to the offset.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset) {
SDNodeFlags Flags;
Flags.setNoUnsignedWrap(true);
return getMemBasePlusOffset(Ptr, Offset, SL, Flags);
}
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, SDValue Offset) {
// The object itself can't wrap around the address space, so it shouldn't be
// possible for the adds of the offsets to the split parts to overflow.
SDNodeFlags Flags;
Flags.setNoUnsignedWrap(true);
return getMemBasePlusOffset(Ptr, Offset, SL, Flags);
}
/// Return a new CALLSEQ_START node, that starts new call frame, in which
/// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
/// OutSize specifies part of the frame set up prior to the sequence.
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
const SDLoc &DL) {
SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain,
getIntPtrConstant(InSize, DL, true),
getIntPtrConstant(OutSize, DL, true) };
return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
}
/// Return a new CALLSEQ_END node, which always must have a
/// glue result (to ensure it's not CSE'd).
/// CALLSEQ_END does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
SDValue InGlue, const SDLoc &DL) {
SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 4> Ops;
Ops.push_back(Chain);
Ops.push_back(Op1);
Ops.push_back(Op2);
if (InGlue.getNode())
Ops.push_back(InGlue);
return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
}
/// Return true if the result of this operation is always undefined.
bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
/// Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getUNDEF(EVT VT) {
return getNode(ISD::UNDEF, SDLoc(), VT);
}
/// Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm) {
assert(MulImm.getMinSignedBits() <= VT.getSizeInBits() &&
"Immediate does not fit VT");
return getNode(ISD::VSCALE, DL, VT,
getConstant(MulImm.sextOrTrunc(VT.getSizeInBits()), DL, VT));
}
/// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
}
/// Gets or creates the specified node.
///
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDUse> Ops);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops, const SDNodeFlags Flags);
SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
ArrayRef<SDValue> Ops);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
ArrayRef<SDValue> Ops, const SDNodeFlags Flags);
// Use flags from current flag inserter.
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
ArrayRef<SDValue> Ops);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, SDValue N3);
// Specialize based on number of operands.
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
const SDNodeFlags Flags);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, const SDNodeFlags Flags);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, SDValue N3, const SDNodeFlags Flags);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, SDValue N3, SDValue N4);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, SDValue N3, SDValue N4, SDValue N5);
// Specialize again based on number of operands for nodes with a VTList
// rather than a single VT.
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
SDValue N2);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
SDValue N2, SDValue N3);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
SDValue N2, SDValue N3, SDValue N4);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
SDValue N2, SDValue N3, SDValue N4, SDValue N5);
/// Compute a TokenFactor to force all the incoming stack arguments to be
/// loaded from the stack. This is used in tail call lowering to protect
/// stack arguments from being clobbered.
SDValue getStackArgumentTokenFactor(SDValue Chain);
SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
SDValue Size, Align Alignment, bool isVol,
bool AlwaysInline, bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo,
const AAMDNodes &AAInfo = AAMDNodes());
SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
SDValue Size, Align Alignment, bool isVol, bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo,
const AAMDNodes &AAInfo = AAMDNodes());
SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
SDValue Size, Align Alignment, bool isVol, bool isTailCall,
MachinePointerInfo DstPtrInfo,
const AAMDNodes &AAInfo = AAMDNodes());
SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
unsigned DstAlign, SDValue Src, unsigned SrcAlign,
SDValue Size, Type *SizeTy, unsigned ElemSz,
bool isTailCall, MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo);
SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
unsigned DstAlign, SDValue Src, unsigned SrcAlign,
SDValue Size, Type *SizeTy, unsigned ElemSz,
bool isTailCall, MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo);
SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
unsigned DstAlign, SDValue Value, SDValue Size,
Type *SizeTy, unsigned ElemSz, bool isTailCall,
MachinePointerInfo DstPtrInfo);
/// Helper function to make it easier to build SetCC's if you just have an
/// ISD::CondCode instead of an SDValue.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
ISD::CondCode Cond, SDValue Chain = SDValue(),
bool IsSignaling = false) {
assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
"Cannot compare scalars to vectors");
assert(LHS.getValueType().isVector() == VT.isVector() &&
"Cannot compare scalars to vectors");
assert(Cond != ISD::SETCC_INVALID &&
"Cannot create a setCC of an invalid node.");
if (Chain)
return getNode(IsSignaling ? ISD::STRICT_FSETCCS : ISD::STRICT_FSETCC, DL,
{VT, MVT::Other}, {Chain, LHS, RHS, getCondCode(Cond)});
return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
}
/// Helper function to make it easier to build Select's if you just have
/// operands and don't want to check for vector.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
SDValue RHS) {
assert(LHS.getValueType() == RHS.getValueType() &&
"Cannot use select on differing types");
assert(VT.isVector() == LHS.getValueType().isVector() &&
"Cannot mix vectors and scalars");
auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
return getNode(Opcode, DL, VT, Cond, LHS, RHS);
}
/// Helper function to make it easier to build SelectCC's if you just have an
/// ISD::CondCode instead of an SDValue.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
SDValue False, ISD::CondCode Cond) {
return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
False, getCondCode(Cond));
}
/// Try to simplify a select/vselect into 1 of its operands or a constant.
SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
/// Try to simplify a shift into 1 of its operands or a constant.
SDValue simplifyShift(SDValue X, SDValue Y);
/// Try to simplify a floating-point binary operation into 1 of its operands
/// or a constant.
SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y,
SDNodeFlags Flags);
/// VAArg produces a result and token chain, and takes a pointer
/// and a source value as input.
SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
SDValue SV, unsigned Align);
/// Gets a node for an atomic cmpxchg op. There are two
/// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
/// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
/// a success flag (initially i1), and a chain.
SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTs, SDValue Chain, SDValue Ptr,
SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
/// Gets a node for an atomic op, produces result (if relevant)
/// and chain and takes 2 operands.
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
/// Gets a node for an atomic op, produces result and chain and
/// takes 1 operand.
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
/// Gets a node for an atomic op, produces result and chain and takes N
/// operands.
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTList, ArrayRef<SDValue> Ops,
MachineMemOperand *MMO);
/// Creates a MemIntrinsicNode that may produce a
/// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
/// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
/// less than FIRST_TARGET_MEMORY_OPCODE.
SDValue getMemIntrinsicNode(
unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad |
MachineMemOperand::MOStore,
uint64_t Size = 0, const AAMDNodes &AAInfo = AAMDNodes());
inline SDValue getMemIntrinsicNode(
unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
EVT MemVT, MachinePointerInfo PtrInfo, MaybeAlign Alignment = None,
MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad |
MachineMemOperand::MOStore,
uint64_t Size = 0, const AAMDNodes &AAInfo = AAMDNodes()) {
// Ensure that codegen never sees alignment 0
return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, PtrInfo,
Alignment.getValueOr(getEVTAlign(MemVT)), Flags,
Size, AAInfo);
}
SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
ArrayRef<SDValue> Ops, EVT MemVT,
MachineMemOperand *MMO);
/// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends
/// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between
/// offsets `Offset` and `Offset + Size`.
SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain,
int FrameIndex, int64_t Size, int64_t Offset = -1);
/// Creates a PseudoProbeSDNode with function GUID `Guid` and
/// the index of the block `Index` it is probing, as well as the attributes
/// `attr` of the probe.
SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid,
uint64_t Index, uint32_t Attr);
/// Create a MERGE_VALUES node from the given operands.
SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
/// Loads are not normal binary operators: their result type is not
/// determined by their operands, and they produce a value AND a token chain.
///
/// This function will set the MOLoad flag on MMOFlags, but you can set it if
/// you want. The MOStore flag must not be set.
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo,
MaybeAlign Alignment = MaybeAlign(),
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes(),
const MDNode *Ranges = nullptr);
/// FIXME: Remove once transition to Align is over.
inline SDValue
getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo, unsigned Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes(),
const MDNode *Ranges = nullptr) {
return getLoad(VT, dl, Chain, Ptr, PtrInfo, MaybeAlign(Alignment), MMOFlags,
AAInfo, Ranges);
}
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
MachineMemOperand *MMO);
SDValue
getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
MaybeAlign Alignment = MaybeAlign(),
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
/// FIXME: Remove once transition to Align is over.
inline SDValue
getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
unsigned Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes()) {
return getExtLoad(ExtType, dl, VT, Chain, Ptr, PtrInfo, MemVT,
MaybeAlign(Alignment), MMOFlags, AAInfo);
}
SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
SDValue Chain, SDValue Ptr, EVT MemVT,
MachineMemOperand *MMO);
SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes(),
const MDNode *Ranges = nullptr);
inline SDValue getLoad(
ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
SDValue Chain, SDValue Ptr, SDValue Offset, MachinePointerInfo PtrInfo,
EVT MemVT, MaybeAlign Alignment = MaybeAlign(),
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr) {
// Ensures that codegen never sees a None Alignment.
return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, PtrInfo, MemVT,
Alignment.getValueOr(getEVTAlign(MemVT)), MMOFlags, AAInfo,
Ranges);
}
/// FIXME: Remove once transition to Align is over.
inline SDValue
getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes(),
const MDNode *Ranges = nullptr) {
return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, PtrInfo, MemVT,
MaybeAlign(Alignment), MMOFlags, AAInfo, Ranges);
}
SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
EVT MemVT, MachineMemOperand *MMO);
/// Helper function to build ISD::STORE nodes.
///
/// This function will set the MOStore flag on MMOFlags, but you can set it if
/// you want. The MOLoad and MOInvariant flags must not be set.
SDValue
getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachinePointerInfo PtrInfo, Align Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
inline SDValue
getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachinePointerInfo PtrInfo, MaybeAlign Alignment = MaybeAlign(),
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes()) {
return getStore(Chain, dl, Val, Ptr, PtrInfo,
Alignment.getValueOr(getEVTAlign(Val.getValueType())),
MMOFlags, AAInfo);
}
/// FIXME: Remove once transition to Align is over.
inline SDValue
getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachinePointerInfo PtrInfo, unsigned Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes()) {
return getStore(Chain, dl, Val, Ptr, PtrInfo, MaybeAlign(Alignment),
MMOFlags, AAInfo);
}
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachineMemOperand *MMO);
SDValue
getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachinePointerInfo PtrInfo, EVT SVT, Align Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
inline SDValue
getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachinePointerInfo PtrInfo, EVT SVT,
MaybeAlign Alignment = MaybeAlign(),
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes()) {
return getTruncStore(Chain, dl, Val, Ptr, PtrInfo, SVT,
Alignment.getValueOr(getEVTAlign(SVT)), MMOFlags,
AAInfo);
}
/// FIXME: Remove once transition to Align is over.
inline SDValue
getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes()) {
return getTruncStore(Chain, dl, Val, Ptr, PtrInfo, SVT,
MaybeAlign(Alignment), MMOFlags, AAInfo);
}
SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base,
SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT,
MachineMemOperand *MMO, ISD::MemIndexedMode AM,
ISD::LoadExtType, bool IsExpanding = false);
SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT,
MachineMemOperand *MMO, ISD::MemIndexedMode AM,
bool IsTruncating = false, bool IsCompressing = false);
SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl,
SDValue Base, SDValue Offset,
ISD::MemIndexedMode AM);
SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl,
ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy);
SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl,
ArrayRef<SDValue> Ops, MachineMemOperand *MMO,
ISD::MemIndexType IndexType,
bool IsTruncating = false);
/// Construct a node to track a Value* through the backend.
SDValue getSrcValue(const Value *v);
/// Return an MDNodeSDNode which holds an MDNode.
SDValue getMDNode(const MDNode *MD);
/// Return a bitcast using the SDLoc of the value operand, and casting to the
/// provided type. Use getNode to set a custom SDLoc.
SDValue getBitcast(EVT VT, SDValue V);
/// Return an AddrSpaceCastSDNode.
SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
unsigned DestAS);
/// Return a freeze using the SDLoc of the value operand.
SDValue getFreeze(SDValue V);
/// Return an AssertAlignSDNode.
SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A);
/// Return the specified value casted to
/// the target's desired shift amount type.
SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
/// Expand the specified \c ISD::VAARG node as the Legalize pass would.
SDValue expandVAArg(SDNode *Node);
/// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
SDValue expandVACopy(SDNode *Node);
/// Returs an GlobalAddress of the function from the current module with
/// name matching the given ExternalSymbol. Additionally can provide the
/// matched function.
/// Panics the function doesn't exists.
SDValue getSymbolFunctionGlobalAddress(SDValue Op,
Function **TargetFunction = nullptr);
/// *Mutate* the specified node in-place to have the
/// specified operands. If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists. If the resultant node does not exist in the DAG, the
/// input node is returned. As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4, SDValue Op5);
SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
/// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
/// values or more, move values into new TokenFactors in 64k-1 blocks, until
/// the final TokenFactor has less than 64k operands.
SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
/// *Mutate* the specified machine node's memory references to the provided
/// list.
void setNodeMemRefs(MachineSDNode *N,
ArrayRef<MachineMemOperand *> NewMemRefs);
// Calculate divergence of node \p N based on its operands.
bool calculateDivergence(SDNode *N);
// Propagates the change in divergence to users
void updateDivergence(SDNode * N);
/// These are used for target selectors to *mutate* the
/// specified node to have the specified return type, Target opcode, and
/// operands. Note that target opcodes are stored as
/// ~TargetOpcode in the node opcode field. The resultant node is returned.
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
SDValue Op1, SDValue Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
ArrayRef<SDValue> Ops);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
EVT VT2, ArrayRef<SDValue> Ops);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
EVT VT2, SDValue Op1, SDValue Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
ArrayRef<SDValue> Ops);
/// This *mutates* the specified node to have the specified
/// return type, opcode, and operands.
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
ArrayRef<SDValue> Ops);
/// Mutate the specified strict FP node to its non-strict equivalent,
/// unlinking the node from its chain and dropping the metadata arguments.
/// The node must be a strict FP node.
SDNode *mutateStrictFPToFP(SDNode *Node);
/// These are used for target selectors to create a new node
/// with specified return type(s), MachineInstr opcode, and operands.
///
/// Note that getMachineNode returns the resultant node. If there is already
/// a node of the specified opcode and operands, it returns that node instead
/// of the current one.
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
SDValue Op1);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
SDValue Op1, SDValue Op2);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, SDValue Op1, SDValue Op2);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
SDValue Op3);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
ArrayRef<SDValue> Ops);
/// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
SDValue Operand);
/// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
SDValue Operand, SDValue Subreg);
/// Get the specified node if it's already available, or else return NULL.
SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList,
ArrayRef<SDValue> Ops, const SDNodeFlags Flags);
SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList,
ArrayRef<SDValue> Ops);
/// Check if a node exists without modifying its flags.
bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops);
/// Creates a SDDbgValue node.
SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
unsigned R, bool IsIndirect, const DebugLoc &DL,
unsigned O);
/// Creates a constant SDDbgValue node.
SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
const Value *C, const DebugLoc &DL,
unsigned O);
/// Creates a FrameIndex SDDbgValue node.
SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
unsigned FI, bool IsIndirect,
const DebugLoc &DL, unsigned O);
/// Creates a FrameIndex SDDbgValue node.
SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
unsigned FI,
ArrayRef<SDNode *> Dependencies,
bool IsIndirect, const DebugLoc &DL,
unsigned O);
/// Creates a VReg SDDbgValue node.
SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
unsigned VReg, bool IsIndirect,
const DebugLoc &DL, unsigned O);
/// Creates a SDDbgValue node from a list of locations.
SDDbgValue *getDbgValueList(DIVariable *Var, DIExpression *Expr,
ArrayRef<SDDbgOperand> Locs,
ArrayRef<SDNode *> Dependencies, bool IsIndirect,
const DebugLoc &DL, unsigned O, bool IsVariadic);
/// Creates a SDDbgLabel node.
SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
/// Transfer debug values from one node to another, while optionally
/// generating fragment expressions for split-up values. If \p InvalidateDbg
/// is set, debug values are invalidated after they are transferred.
void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
unsigned SizeInBits = 0, bool InvalidateDbg = true);
/// Remove the specified node from the system. If any of its
/// operands then becomes dead, remove them as well. Inform UpdateListener
/// for each node deleted.
void RemoveDeadNode(SDNode *N);
/// This method deletes the unreachable nodes in the
/// given list, and any nodes that become unreachable as a result.
void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
/// Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG. Use the first
/// version if 'From' is known to have a single result, use the second
/// if you have two nodes with identical results (or if 'To' has a superset
/// of the results of 'From'), use the third otherwise.
///
/// These methods all take an optional UpdateListener, which (if not null) is
/// informed about nodes that are deleted and modified due to recursive
/// changes in the dag.
///
/// These functions only replace all existing uses. It's possible that as
/// these replacements are being performed, CSE may cause the From node
/// to be given new uses. These new uses of From are left in place, and
/// not automatically transferred to To.
///
void ReplaceAllUsesWith(SDValue From, SDValue To);
void ReplaceAllUsesWith(SDNode *From, SDNode *To);
void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
/// Replace any uses of From with To, leaving
/// uses of other values produced by From.getNode() alone.
void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
/// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
/// This correctly handles the case where
/// there is an overlap between the From values and the To values.
void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
unsigned Num);
/// If an existing load has uses of its chain, create a token factor node with
/// that chain and the new memory node's chain and update users of the old
/// chain to the token factor. This ensures that the new memory node will have
/// the same relative memory dependency position as the old load. Returns the
/// new merged load chain.
SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain);
/// If an existing load has uses of its chain, create a token factor node with
/// that chain and the new memory node's chain and update users of the old
/// chain to the token factor. This ensures that the new memory node will have
/// the same relative memory dependency position as the old load. Returns the
/// new merged load chain.
SDValue makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, SDValue NewMemOp);
/// Topological-sort the AllNodes list and a
/// assign a unique node id for each node in the DAG based on their
/// topological order. Returns the number of nodes.
unsigned AssignTopologicalOrder();
/// Move node N in the AllNodes list to be immediately
/// before the given iterator Position. This may be used to update the
/// topological ordering when the list of nodes is modified.
void RepositionNode(allnodes_iterator Position, SDNode *N) {
AllNodes.insert(Position, AllNodes.remove(N));
}
/// Returns an APFloat semantics tag appropriate for the given type. If VT is
/// a vector type, the element semantics are returned.
static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
switch (VT.getScalarType().getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unknown FP format");
case MVT::f16: return APFloat::IEEEhalf();
case MVT::bf16: return APFloat::BFloat();
case MVT::f32: return APFloat::IEEEsingle();
case MVT::f64: return APFloat::IEEEdouble();
case MVT::f80: return APFloat::x87DoubleExtended();
case MVT::f128: return APFloat::IEEEquad();
case MVT::ppcf128: return APFloat::PPCDoubleDouble();
}
}
/// Add a dbg_value SDNode. If SD is non-null that means the
/// value is produced by SD.
void AddDbgValue(SDDbgValue *DB, bool isParameter);
/// Add a dbg_label SDNode.
void AddDbgLabel(SDDbgLabel *DB);
/// Get the debug values which reference the given SDNode.
ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
return DbgInfo->getSDDbgValues(SD);
}
public:
/// Return true if there are any SDDbgValue nodes associated
/// with this SelectionDAG.
bool hasDebugValues() const { return !DbgInfo->empty(); }
SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); }
SDDbgInfo::DbgIterator ByvalParmDbgBegin() const {
return DbgInfo->ByvalParmDbgBegin();
}
SDDbgInfo::DbgIterator ByvalParmDbgEnd() const {
return DbgInfo->ByvalParmDbgEnd();
}
SDDbgInfo::DbgLabelIterator DbgLabelBegin() const {
return DbgInfo->DbgLabelBegin();
}
SDDbgInfo::DbgLabelIterator DbgLabelEnd() const {
return DbgInfo->DbgLabelEnd();
}
/// To be invoked on an SDNode that is slated to be erased. This
/// function mirrors \c llvm::salvageDebugInfo.
void salvageDebugInfo(SDNode &N);
void dump() const;
/// In most cases this function returns the ABI alignment for a given type,
/// except for illegal vector types where the alignment exceeds that of the
/// stack. In such cases we attempt to break the vector down to a legal type
/// and return the ABI alignment for that instead.
Align getReducedAlign(EVT VT, bool UseABI);
/// Create a stack temporary based on the size in bytes and the alignment
SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment);
/// Create a stack temporary, suitable for holding the specified value type.
/// If minAlign is specified, the slot size will have at least that alignment.
SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
/// Create a stack temporary suitable for holding either of the specified
/// value types.
SDValue CreateStackTemporary(EVT VT1, EVT VT2);
SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
const GlobalAddressSDNode *GA,
const SDNode *N2);
SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops);
SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops,
const SDNodeFlags Flags = SDNodeFlags());
/// Fold floating-point operations with 2 operands when both operands are
/// constants and/or undefined.
SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue N1, SDValue N2);
/// Constant fold a setcc to true or false.
SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
const SDLoc &dl);
/// See if the specified operand can be simplified with the knowledge that
/// only the bits specified by DemandedBits are used. If so, return the
/// simpler operand, otherwise return a null SDValue.
///
/// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
/// simplify nodes with multiple uses more aggressively.)
SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits);
/// See if the specified operand can be simplified with the knowledge that
/// only the bits specified by DemandedBits are used in the elements specified
/// by DemandedElts. If so, return the simpler operand, otherwise return a
/// null SDValue.
///
/// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
/// simplify nodes with multiple uses more aggressively.)
SDValue GetDemandedBits(SDValue V, const APInt &DemandedBits,
const APInt &DemandedElts);
/// Return true if the sign bit of Op is known to be zero.
/// We use this predicate to simplify operations downstream.
bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
/// Return true if 'Op & Mask' is known to be zero. We
/// use this predicate to simplify operations downstream. Op and Mask are
/// known to be the same type.
bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
unsigned Depth = 0) const;
/// Return true if 'Op & Mask' is known to be zero in DemandedElts. We
/// use this predicate to simplify operations downstream. Op and Mask are
/// known to be the same type.
bool MaskedValueIsZero(SDValue Op, const APInt &Mask,
const APInt &DemandedElts, unsigned Depth = 0) const;
/// Return true if '(Op & Mask) == Mask'.
/// Op and Mask are known to be the same type.
bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask,
unsigned Depth = 0) const;
/// Determine which bits of Op are known to be either zero or one and return
/// them in Known. For vectors, the known bits are those that are shared by
/// every vector element.
/// Targets can implement the computeKnownBitsForTargetNode method in the
/// TargetLowering class to allow target nodes to be understood.
KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
/// Determine which bits of Op are known to be either zero or one and return
/// them in Known. The DemandedElts argument allows us to only collect the
/// known bits that are shared by the requested vector elements.
/// Targets can implement the computeKnownBitsForTargetNode method in the
/// TargetLowering class to allow target nodes to be understood.
KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
unsigned Depth = 0) const;
/// Used to represent the possible overflow behavior of an operation.
/// Never: the operation cannot overflow.
/// Always: the operation will always overflow.
/// Sometime: the operation may or may not overflow.
enum OverflowKind {
OFK_Never,
OFK_Sometime,
OFK_Always,
};
/// Determine if the result of the addition of 2 node can overflow.
OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
/// Test if the given value is known to have exactly one bit set. This differs
/// from computeKnownBits in that it doesn't necessarily determine which bit
/// is set.
bool isKnownToBeAPowerOfTwo(SDValue Val) const;
/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign
/// bit (itself), but other cases can give us information. For example,
/// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
/// to each other, so we return 3. Targets can implement the
/// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
/// target nodes to be understood.
unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign
/// bit (itself), but other cases can give us information. For example,
/// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
/// to each other, so we return 3. The DemandedElts argument allows
/// us to only collect the minimum sign bits of the requested vector elements.
/// Targets can implement the ComputeNumSignBitsForTarget method in the
/// TargetLowering class to allow target nodes to be understood.
unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
unsigned Depth = 0) const;
/// Return true if this function can prove that \p Op is never poison
/// and, if \p PoisonOnly is false, does not have undef bits.
bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly = false,
unsigned Depth = 0) const;
/// Return true if this function can prove that \p Op is never poison
/// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
/// argument limits the check to the requested vector elements.
bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, const APInt &DemandedElts,
bool PoisonOnly = false,
unsigned Depth = 0) const;
/// Return true if this function can prove that \p Op is never poison.
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth = 0) const {
return isGuaranteedNotToBeUndefOrPoison(Op, /*PoisonOnly*/ true, Depth);
}
/// Return true if this function can prove that \p Op is never poison. The
/// DemandedElts argument limits the check to the requested vector elements.
bool isGuaranteedNotToBePoison(SDValue Op, const APInt &DemandedElts,
unsigned Depth = 0) const {
return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts,
/*PoisonOnly*/ true, Depth);
}
/// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
/// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
/// is guaranteed to have the same semantics as an ADD. This handles the
/// equivalence:
/// X|Cst == X+Cst iff X&Cst = 0.
bool isBaseWithConstantOffset(SDValue Op) const;
/// Test whether the given SDValue is known to never be NaN. If \p SNaN is
/// true, returns if \p Op is known to never be a signaling NaN (it may still
/// be a qNaN).
bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
/// \returns true if \p Op is known to never be a signaling NaN.
bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
return isKnownNeverNaN(Op, true, Depth);
}
/// Test whether the given floating point SDValue is known to never be
/// positive or negative zero.
bool isKnownNeverZeroFloat(SDValue Op) const;
/// Test whether the given SDValue is known to contain non-zero value(s).
bool isKnownNeverZero(SDValue Op) const;
/// Test whether two SDValues are known to compare equal. This
/// is true if they are the same value, or if one is negative zero and the
/// other positive zero.
bool isEqualTo(SDValue A, SDValue B) const;
/// Return true if A and B have no common bits set. As an example, this can
/// allow an 'add' to be transformed into an 'or'.
bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
/// Test whether \p V has a splatted value for all the demanded elements.
///
/// On success \p UndefElts will indicate the elements that have UNDEF
/// values instead of the splat value, this is only guaranteed to be correct
/// for \p DemandedElts.
///
/// NOTE: The function will return true for a demanded splat of UNDEF values.
bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts,
unsigned Depth = 0);
/// Test whether \p V has a splatted value.
bool isSplatValue(SDValue V, bool AllowUndefs = false);
/// If V is a splatted value, return the source vector and its splat index.
SDValue getSplatSourceVector(SDValue V, int &SplatIndex);
/// If V is a splat vector, return its scalar source operand by extracting
/// that element from the source vector. If LegalTypes is true, this method
/// may only return a legally-typed splat value. If it cannot legalize the
/// splatted value it will return SDValue().
SDValue getSplatValue(SDValue V, bool LegalTypes = false);
/// If a SHL/SRA/SRL node \p V has a constant or splat constant shift amount
/// that is less than the element bit-width of the shift node, return it.
const APInt *getValidShiftAmountConstant(SDValue V,
const APInt &DemandedElts) const;
/// If a SHL/SRA/SRL node \p V has constant shift amounts that are all less
/// than the element bit-width of the shift node, return the minimum value.
const APInt *
getValidMinimumShiftAmountConstant(SDValue V,
const APInt &DemandedElts) const;
/// If a SHL/SRA/SRL node \p V has constant shift amounts that are all less
/// than the element bit-width of the shift node, return the maximum value.
const APInt *
getValidMaximumShiftAmountConstant(SDValue V,
const APInt &DemandedElts) const;
/// Match a binop + shuffle pyramid that represents a horizontal reduction
/// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
/// Extract. The reduction must use one of the opcodes listed in /p
/// CandidateBinOps and on success /p BinOp will contain the matching opcode.
/// Returns the vector that is being reduced on, or SDValue() if a reduction
/// was not matched. If \p AllowPartials is set then in the case of a
/// reduction pattern that only matches the first few stages, the extracted
/// subvector of the start of the reduction is returned.
SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
ArrayRef<ISD::NodeType> CandidateBinOps,
bool AllowPartials = false);
/// Utility function used by legalize and lowering to
/// "unroll" a vector operation by splitting out the scalars and operating
/// on each element individually. If the ResNE is 0, fully unroll the vector
/// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
/// If the ResNE is greater than the width of the vector op, unroll the
/// vector op and fill the end of the resulting vector with UNDEFS.
SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
/// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
/// This is a separate function because those opcodes have two results.
std::pair<SDValue, SDValue> UnrollVectorOverflowOp(SDNode *N,
unsigned ResNE = 0);
/// Return true if loads are next to each other and can be
/// merged. Check that both are nonvolatile and if LD is loading
/// 'Bytes' bytes from a location that is 'Dist' units away from the
/// location that the 'Base' load is loading from.
bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
unsigned Bytes, int Dist) const;
/// Infer alignment of a load / store address. Return None if it cannot be
/// inferred.
MaybeAlign InferPtrAlign(SDValue Ptr) const;
/// Compute the VTs needed for the low/hi parts of a type
/// which is split (or expanded) into two not necessarily identical pieces.
std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
/// Compute the VTs needed for the low/hi parts of a type, dependent on an
/// enveloping VT that has been split into two identical pieces. Sets the
/// HisIsEmpty flag when hi type has zero storage size.
std::pair<EVT, EVT> GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT,
bool *HiIsEmpty) const;
/// Split the vector with EXTRACT_SUBVECTOR using the provides
/// VTs and return the low/high part.
std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
const EVT &LoVT, const EVT &HiVT);
/// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
return SplitVector(N, DL, LoVT, HiVT);
}
/// Split the node's operand with EXTRACT_SUBVECTOR and
/// return the low/high part.
std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
{
return SplitVector(N->getOperand(OpNo), SDLoc(N));
}
/// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
SDValue WidenVector(const SDValue &N, const SDLoc &DL);
/// Append the extracted elements from Start to Count out of the vector Op in
/// Args. If Count is 0, all of the elements will be extracted. The extracted
/// elements will have type EVT if it is provided, and otherwise their type
/// will be Op's element type.
void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
unsigned Start = 0, unsigned Count = 0,
EVT EltVT = EVT());
/// Compute the default alignment value for the given type.
Align getEVTAlign(EVT MemoryVT) const;
/// Compute the default alignment value for the given type.
/// FIXME: Remove once transition to Align is over.
inline unsigned getEVTAlignment(EVT MemoryVT) const {
return getEVTAlign(MemoryVT).value();
}
/// Test whether the given value is a constant int or similar node.
SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N) const;
/// Test whether the given value is a constant FP or similar node.
SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) const ;
/// \returns true if \p N is any kind of constant or build_vector of
/// constants, int or float. If a vector, it may not necessarily be a splat.
inline bool isConstantValueOfAnyType(SDValue N) const {
return isConstantIntBuildVectorOrConstantInt(N) ||
isConstantFPBuildVectorOrConstantFP(N);
}
void addCallSiteInfo(const SDNode *CallNode, CallSiteInfoImpl &&CallInfo) {
SDCallSiteDbgInfo[CallNode].CSInfo = std::move(CallInfo);
}
CallSiteInfo getSDCallSiteInfo(const SDNode *CallNode) {
auto I = SDCallSiteDbgInfo.find(CallNode);
if (I != SDCallSiteDbgInfo.end())
return std::move(I->second).CSInfo;
return CallSiteInfo();
}
void addHeapAllocSite(const SDNode *Node, MDNode *MD) {
SDCallSiteDbgInfo[Node].HeapAllocSite = MD;
}
/// Return the HeapAllocSite type associated with the SDNode, if it exists.
MDNode *getHeapAllocSite(const SDNode *Node) {
auto It = SDCallSiteDbgInfo.find(Node);
if (It == SDCallSiteDbgInfo.end())
return nullptr;
return It->second.HeapAllocSite;
}
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge) {
if (NoMerge)
SDCallSiteDbgInfo[Node].NoMerge = NoMerge;
}
bool getNoMergeSiteInfo(const SDNode *Node) {
auto I = SDCallSiteDbgInfo.find(Node);
if (I == SDCallSiteDbgInfo.end())
return false;
return I->second.NoMerge;
}
/// Return the current function's default denormal handling kind for the given
/// floating point type.
DenormalMode getDenormalMode(EVT VT) const {
return MF->getDenormalMode(EVTToAPFloatSemantics(VT));
}
bool shouldOptForSize() const;
/// Get the (commutative) neutral element for the given opcode, if it exists.
SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT,
SDNodeFlags Flags);
private:
void InsertNode(SDNode *N);
bool RemoveNodeFromCSEMaps(SDNode *N);
void AddModifiedNodeToCSEMaps(SDNode *N);
SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
void *&InsertPos);
SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
void DeleteNodeNotInCSEMaps(SDNode *N);
void DeallocateNode(SDNode *N);
void allnodes_clear();
/// Look up the node specified by ID in CSEMap. If it exists, return it. If
/// not, return the insertion token that will make insertion faster. This
/// overload is for nodes other than Constant or ConstantFP, use the other one
/// for those.
SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
/// Look up the node specified by ID in CSEMap. If it exists, return it. If
/// not, return the insertion token that will make insertion faster. Performs
/// additional processing for constant nodes.
SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
void *&InsertPos);
/// List of non-single value types.
FoldingSet<SDVTListNode> VTListMap;
/// Maps to auto-CSE operations.
std::vector<CondCodeSDNode*> CondCodeNodes;
std::vector<SDNode*> ValueTypeNodes;
std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
StringMap<SDNode*> ExternalSymbols;
std::map<std::pair<std::string, unsigned>, SDNode *> TargetExternalSymbols;
DenseMap<MCSymbol *, SDNode *> MCSymbols;
FlagInserter *Inserter = nullptr;
};
template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
static nodes_iterator nodes_begin(SelectionDAG *G) {
return nodes_iterator(G->allnodes_begin());
}
static nodes_iterator nodes_end(SelectionDAG *G) {
return nodes_iterator(G->allnodes_end());
}
};
} // end namespace llvm
#endif // LLVM_CODEGEN_SELECTIONDAG_H