1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/lib/Transforms/Utils/LoopUtils.cpp
Simon Pilgrim cac15052d4 [Analysis] Pass RecurrenceDescriptor as const reference. NFCI.
We were passing the RecurrenceDescriptor by value to most of the reduction analysis methods, despite it being rather bulky with TrackingVH members (that can be costly to copy). In all these cases we're only using the RecurrenceDescriptor for rather basic purposes (access to types/kinds etc.).

Differential Revision: https://reviews.llvm.org/D104029
2021-06-11 10:24:14 +01:00

1833 lines
70 KiB
C++

//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PriorityWorklist.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/MustExecute.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "loop-utils"
static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
MemorySSAUpdater *MSSAU,
bool PreserveLCSSA) {
bool Changed = false;
// We re-use a vector for the in-loop predecesosrs.
SmallVector<BasicBlock *, 4> InLoopPredecessors;
auto RewriteExit = [&](BasicBlock *BB) {
assert(InLoopPredecessors.empty() &&
"Must start with an empty predecessors list!");
auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
// See if there are any non-loop predecessors of this exit block and
// keep track of the in-loop predecessors.
bool IsDedicatedExit = true;
for (auto *PredBB : predecessors(BB))
if (L->contains(PredBB)) {
if (isa<IndirectBrInst>(PredBB->getTerminator()))
// We cannot rewrite exiting edges from an indirectbr.
return false;
if (isa<CallBrInst>(PredBB->getTerminator()))
// We cannot rewrite exiting edges from a callbr.
return false;
InLoopPredecessors.push_back(PredBB);
} else {
IsDedicatedExit = false;
}
assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
// Nothing to do if this is already a dedicated exit.
if (IsDedicatedExit)
return false;
auto *NewExitBB = SplitBlockPredecessors(
BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
if (!NewExitBB)
LLVM_DEBUG(
dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
<< *L << "\n");
else
LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
<< NewExitBB->getName() << "\n");
return true;
};
// Walk the exit blocks directly rather than building up a data structure for
// them, but only visit each one once.
SmallPtrSet<BasicBlock *, 4> Visited;
for (auto *BB : L->blocks())
for (auto *SuccBB : successors(BB)) {
// We're looking for exit blocks so skip in-loop successors.
if (L->contains(SuccBB))
continue;
// Visit each exit block exactly once.
if (!Visited.insert(SuccBB).second)
continue;
Changed |= RewriteExit(SuccBB);
}
return Changed;
}
/// Returns the instructions that use values defined in the loop.
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
SmallVector<Instruction *, 8> UsedOutside;
for (auto *Block : L->getBlocks())
// FIXME: I believe that this could use copy_if if the Inst reference could
// be adapted into a pointer.
for (auto &Inst : *Block) {
auto Users = Inst.users();
if (any_of(Users, [&](User *U) {
auto *Use = cast<Instruction>(U);
return !L->contains(Use->getParent());
}))
UsedOutside.push_back(&Inst);
}
return UsedOutside;
}
void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
// By definition, all loop passes need the LoopInfo analysis and the
// Dominator tree it depends on. Because they all participate in the loop
// pass manager, they must also preserve these.
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
// We must also preserve LoopSimplify and LCSSA. We locally access their IDs
// here because users shouldn't directly get them from this header.
extern char &LoopSimplifyID;
extern char &LCSSAID;
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
// This is used in the LPPassManager to perform LCSSA verification on passes
// which preserve lcssa form
AU.addRequired<LCSSAVerificationPass>();
AU.addPreserved<LCSSAVerificationPass>();
// Loop passes are designed to run inside of a loop pass manager which means
// that any function analyses they require must be required by the first loop
// pass in the manager (so that it is computed before the loop pass manager
// runs) and preserved by all loop pasess in the manager. To make this
// reasonably robust, the set needed for most loop passes is maintained here.
// If your loop pass requires an analysis not listed here, you will need to
// carefully audit the loop pass manager nesting structure that results.
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<SCEVAAWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
// FIXME: When all loop passes preserve MemorySSA, it can be required and
// preserved here instead of the individual handling in each pass.
}
/// Manually defined generic "LoopPass" dependency initialization. This is used
/// to initialize the exact set of passes from above in \c
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
/// with:
///
/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
///
/// As-if "LoopPass" were a pass.
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
}
/// Create MDNode for input string.
static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
LLVMContext &Context = TheLoop->getHeader()->getContext();
Metadata *MDs[] = {
MDString::get(Context, Name),
ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
return MDNode::get(Context, MDs);
}
/// Set input string into loop metadata by keeping other values intact.
/// If the string is already in loop metadata update value if it is
/// different.
void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
unsigned V) {
SmallVector<Metadata *, 4> MDs(1);
// If the loop already has metadata, retain it.
MDNode *LoopID = TheLoop->getLoopID();
if (LoopID) {
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
// If it is of form key = value, try to parse it.
if (Node->getNumOperands() == 2) {
MDString *S = dyn_cast<MDString>(Node->getOperand(0));
if (S && S->getString().equals(StringMD)) {
ConstantInt *IntMD =
mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
if (IntMD && IntMD->getSExtValue() == V)
// It is already in place. Do nothing.
return;
// We need to update the value, so just skip it here and it will
// be added after copying other existed nodes.
continue;
}
}
MDs.push_back(Node);
}
}
// Add new metadata.
MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
// Replace current metadata node with new one.
LLVMContext &Context = TheLoop->getHeader()->getContext();
MDNode *NewLoopID = MDNode::get(Context, MDs);
// Set operand 0 to refer to the loop id itself.
NewLoopID->replaceOperandWith(0, NewLoopID);
TheLoop->setLoopID(NewLoopID);
}
Optional<ElementCount>
llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
Optional<int> Width =
getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
if (Width.hasValue()) {
Optional<int> IsScalable = getOptionalIntLoopAttribute(
TheLoop, "llvm.loop.vectorize.scalable.enable");
return ElementCount::get(*Width, IsScalable.getValueOr(false));
}
return None;
}
Optional<MDNode *> llvm::makeFollowupLoopID(
MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
if (!OrigLoopID) {
if (AlwaysNew)
return nullptr;
return None;
}
assert(OrigLoopID->getOperand(0) == OrigLoopID);
bool InheritAllAttrs = !InheritOptionsExceptPrefix;
bool InheritSomeAttrs =
InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
SmallVector<Metadata *, 8> MDs;
MDs.push_back(nullptr);
bool Changed = false;
if (InheritAllAttrs || InheritSomeAttrs) {
for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
MDNode *Op = cast<MDNode>(Existing.get());
auto InheritThisAttribute = [InheritSomeAttrs,
InheritOptionsExceptPrefix](MDNode *Op) {
if (!InheritSomeAttrs)
return false;
// Skip malformatted attribute metadata nodes.
if (Op->getNumOperands() == 0)
return true;
Metadata *NameMD = Op->getOperand(0).get();
if (!isa<MDString>(NameMD))
return true;
StringRef AttrName = cast<MDString>(NameMD)->getString();
// Do not inherit excluded attributes.
return !AttrName.startswith(InheritOptionsExceptPrefix);
};
if (InheritThisAttribute(Op))
MDs.push_back(Op);
else
Changed = true;
}
} else {
// Modified if we dropped at least one attribute.
Changed = OrigLoopID->getNumOperands() > 1;
}
bool HasAnyFollowup = false;
for (StringRef OptionName : FollowupOptions) {
MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
if (!FollowupNode)
continue;
HasAnyFollowup = true;
for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
MDs.push_back(Option.get());
Changed = true;
}
}
// Attributes of the followup loop not specified explicity, so signal to the
// transformation pass to add suitable attributes.
if (!AlwaysNew && !HasAnyFollowup)
return None;
// If no attributes were added or remove, the previous loop Id can be reused.
if (!AlwaysNew && !Changed)
return OrigLoopID;
// No attributes is equivalent to having no !llvm.loop metadata at all.
if (MDs.size() == 1)
return nullptr;
// Build the new loop ID.
MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
return FollowupLoopID;
}
bool llvm::hasDisableAllTransformsHint(const Loop *L) {
return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
}
bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
}
TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
return TM_SuppressedByUser;
Optional<int> Count =
getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
if (Count.hasValue())
return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
return TM_ForcedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
return TM_ForcedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
return TM_SuppressedByUser;
Optional<int> Count =
getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
if (Count.hasValue())
return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
return TM_ForcedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
Optional<bool> Enable =
getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
if (Enable == false)
return TM_SuppressedByUser;
Optional<ElementCount> VectorizeWidth =
getOptionalElementCountLoopAttribute(L);
Optional<int> InterleaveCount =
getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
// 'Forcing' vector width and interleave count to one effectively disables
// this tranformation.
if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
InterleaveCount == 1)
return TM_SuppressedByUser;
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
return TM_Disable;
if (Enable == true)
return TM_ForcedByUser;
if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
return TM_Disable;
if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
return TM_Enable;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
return TM_ForcedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
return TM_SuppressedByUser;
if (hasDisableAllTransformsHint(L))
return TM_Disable;
return TM_Unspecified;
}
/// Does a BFS from a given node to all of its children inside a given loop.
/// The returned vector of nodes includes the starting point.
SmallVector<DomTreeNode *, 16>
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
SmallVector<DomTreeNode *, 16> Worklist;
auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
// Only include subregions in the top level loop.
BasicBlock *BB = DTN->getBlock();
if (CurLoop->contains(BB))
Worklist.push_back(DTN);
};
AddRegionToWorklist(N);
for (size_t I = 0; I < Worklist.size(); I++) {
for (DomTreeNode *Child : Worklist[I]->children())
AddRegionToWorklist(Child);
}
return Worklist;
}
void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
LoopInfo *LI, MemorySSA *MSSA) {
assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
auto *Preheader = L->getLoopPreheader();
assert(Preheader && "Preheader should exist!");
std::unique_ptr<MemorySSAUpdater> MSSAU;
if (MSSA)
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
// Now that we know the removal is safe, remove the loop by changing the
// branch from the preheader to go to the single exit block.
//
// Because we're deleting a large chunk of code at once, the sequence in which
// we remove things is very important to avoid invalidation issues.
// Tell ScalarEvolution that the loop is deleted. Do this before
// deleting the loop so that ScalarEvolution can look at the loop
// to determine what it needs to clean up.
if (SE)
SE->forgetLoop(L);
auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
assert(OldBr && "Preheader must end with a branch");
assert(OldBr->isUnconditional() && "Preheader must have a single successor");
// Connect the preheader to the exit block. Keep the old edge to the header
// around to perform the dominator tree update in two separate steps
// -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
// preheader -> header.
//
//
// 0. Preheader 1. Preheader 2. Preheader
// | | | |
// V | V |
// Header <--\ | Header <--\ | Header <--\
// | | | | | | | | | | |
// | V | | | V | | | V |
// | Body --/ | | Body --/ | | Body --/
// V V V V V
// Exit Exit Exit
//
// By doing this is two separate steps we can perform the dominator tree
// update without using the batch update API.
//
// Even when the loop is never executed, we cannot remove the edge from the
// source block to the exit block. Consider the case where the unexecuted loop
// branches back to an outer loop. If we deleted the loop and removed the edge
// coming to this inner loop, this will break the outer loop structure (by
// deleting the backedge of the outer loop). If the outer loop is indeed a
// non-loop, it will be deleted in a future iteration of loop deletion pass.
IRBuilder<> Builder(OldBr);
auto *ExitBlock = L->getUniqueExitBlock();
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
if (ExitBlock) {
assert(ExitBlock && "Should have a unique exit block!");
assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
// Remove the old branch. The conditional branch becomes a new terminator.
OldBr->eraseFromParent();
// Rewrite phis in the exit block to get their inputs from the Preheader
// instead of the exiting block.
for (PHINode &P : ExitBlock->phis()) {
// Set the zero'th element of Phi to be from the preheader and remove all
// other incoming values. Given the loop has dedicated exits, all other
// incoming values must be from the exiting blocks.
int PredIndex = 0;
P.setIncomingBlock(PredIndex, Preheader);
// Removes all incoming values from all other exiting blocks (including
// duplicate values from an exiting block).
// Nuke all entries except the zero'th entry which is the preheader entry.
// NOTE! We need to remove Incoming Values in the reverse order as done
// below, to keep the indices valid for deletion (removeIncomingValues
// updates getNumIncomingValues and shifts all values down into the
// operand being deleted).
for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
P.removeIncomingValue(e - i, false);
assert((P.getNumIncomingValues() == 1 &&
P.getIncomingBlock(PredIndex) == Preheader) &&
"Should have exactly one value and that's from the preheader!");
}
if (DT) {
DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
if (MSSA) {
MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
*DT);
if (VerifyMemorySSA)
MSSA->verifyMemorySSA();
}
}
// Disconnect the loop body by branching directly to its exit.
Builder.SetInsertPoint(Preheader->getTerminator());
Builder.CreateBr(ExitBlock);
// Remove the old branch.
Preheader->getTerminator()->eraseFromParent();
} else {
assert(L->hasNoExitBlocks() &&
"Loop should have either zero or one exit blocks.");
Builder.SetInsertPoint(OldBr);
Builder.CreateUnreachable();
Preheader->getTerminator()->eraseFromParent();
}
if (DT) {
DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
if (MSSA) {
MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
*DT);
SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
L->block_end());
MSSAU->removeBlocks(DeadBlockSet);
if (VerifyMemorySSA)
MSSA->verifyMemorySSA();
}
}
// Use a map to unique and a vector to guarantee deterministic ordering.
llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
if (ExitBlock) {
// Given LCSSA form is satisfied, we should not have users of instructions
// within the dead loop outside of the loop. However, LCSSA doesn't take
// unreachable uses into account. We handle them here.
// We could do it after drop all references (in this case all users in the
// loop will be already eliminated and we have less work to do but according
// to API doc of User::dropAllReferences only valid operation after dropping
// references, is deletion. So let's substitute all usages of
// instruction from the loop with undef value of corresponding type first.
for (auto *Block : L->blocks())
for (Instruction &I : *Block) {
auto *Undef = UndefValue::get(I.getType());
for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
UI != E;) {
Use &U = *UI;
++UI;
if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
if (L->contains(Usr->getParent()))
continue;
// If we have a DT then we can check that uses outside a loop only in
// unreachable block.
if (DT)
assert(!DT->isReachableFromEntry(U) &&
"Unexpected user in reachable block");
U.set(Undef);
}
auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
if (!DVI)
continue;
auto Key =
DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
if (Key != DeadDebugSet.end())
continue;
DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
DeadDebugInst.push_back(DVI);
}
// After the loop has been deleted all the values defined and modified
// inside the loop are going to be unavailable.
// Since debug values in the loop have been deleted, inserting an undef
// dbg.value truncates the range of any dbg.value before the loop where the
// loop used to be. This is particularly important for constant values.
DIBuilder DIB(*ExitBlock->getModule());
Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
assert(InsertDbgValueBefore &&
"There should be a non-PHI instruction in exit block, else these "
"instructions will have no parent.");
for (auto *DVI : DeadDebugInst)
DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
DVI->getVariable(), DVI->getExpression(),
DVI->getDebugLoc(), InsertDbgValueBefore);
}
// Remove the block from the reference counting scheme, so that we can
// delete it freely later.
for (auto *Block : L->blocks())
Block->dropAllReferences();
if (MSSA && VerifyMemorySSA)
MSSA->verifyMemorySSA();
if (LI) {
// Erase the instructions and the blocks without having to worry
// about ordering because we already dropped the references.
// NOTE: This iteration is safe because erasing the block does not remove
// its entry from the loop's block list. We do that in the next section.
for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
LpI != LpE; ++LpI)
(*LpI)->eraseFromParent();
// Finally, the blocks from loopinfo. This has to happen late because
// otherwise our loop iterators won't work.
SmallPtrSet<BasicBlock *, 8> blocks;
blocks.insert(L->block_begin(), L->block_end());
for (BasicBlock *BB : blocks)
LI->removeBlock(BB);
// The last step is to update LoopInfo now that we've eliminated this loop.
// Note: LoopInfo::erase remove the given loop and relink its subloops with
// its parent. While removeLoop/removeChildLoop remove the given loop but
// not relink its subloops, which is what we want.
if (Loop *ParentLoop = L->getParentLoop()) {
Loop::iterator I = find(*ParentLoop, L);
assert(I != ParentLoop->end() && "Couldn't find loop");
ParentLoop->removeChildLoop(I);
} else {
Loop::iterator I = find(*LI, L);
assert(I != LI->end() && "Couldn't find loop");
LI->removeLoop(I);
}
LI->destroy(L);
}
}
static Loop *getOutermostLoop(Loop *L) {
while (Loop *Parent = L->getParentLoop())
L = Parent;
return L;
}
void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
LoopInfo &LI, MemorySSA *MSSA) {
auto *Latch = L->getLoopLatch();
assert(Latch && "multiple latches not yet supported");
auto *Header = L->getHeader();
Loop *OutermostLoop = getOutermostLoop(L);
SE.forgetLoop(L);
// Note: By splitting the backedge, and then explicitly making it unreachable
// we gracefully handle corner cases such as non-bottom tested loops and the
// like. We also have the benefit of being able to reuse existing well tested
// code. It might be worth special casing the common bottom tested case at
// some point to avoid code churn.
std::unique_ptr<MemorySSAUpdater> MSSAU;
if (MSSA)
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
(void)changeToUnreachable(BackedgeBB->getTerminator(), /*UseTrap*/false,
/*PreserveLCSSA*/true, &DTU, MSSAU.get());
// Erase (and destroy) this loop instance. Handles relinking sub-loops
// and blocks within the loop as needed.
LI.erase(L);
// If the loop we broke had a parent, then changeToUnreachable might have
// caused a block to be removed from the parent loop (see loop_nest_lcssa
// test case in zero-btc.ll for an example), thus changing the parent's
// exit blocks. If that happened, we need to rebuild LCSSA on the outermost
// loop which might have a had a block removed.
if (OutermostLoop != L)
formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
}
/// Checks if \p L has single exit through latch block except possibly
/// "deoptimizing" exits. Returns branch instruction terminating the loop
/// latch if above check is successful, nullptr otherwise.
static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
BasicBlock *Latch = L->getLoopLatch();
if (!Latch)
return nullptr;
BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
return nullptr;
assert((LatchBR->getSuccessor(0) == L->getHeader() ||
LatchBR->getSuccessor(1) == L->getHeader()) &&
"At least one edge out of the latch must go to the header");
SmallVector<BasicBlock *, 4> ExitBlocks;
L->getUniqueNonLatchExitBlocks(ExitBlocks);
if (any_of(ExitBlocks, [](const BasicBlock *EB) {
return !EB->getTerminatingDeoptimizeCall();
}))
return nullptr;
return LatchBR;
}
Optional<unsigned>
llvm::getLoopEstimatedTripCount(Loop *L,
unsigned *EstimatedLoopInvocationWeight) {
// Support loops with an exiting latch and other existing exists only
// deoptimize.
BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
if (!LatchBranch)
return None;
// To estimate the number of times the loop body was executed, we want to
// know the number of times the backedge was taken, vs. the number of times
// we exited the loop.
uint64_t BackedgeTakenWeight, LatchExitWeight;
if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
return None;
if (LatchBranch->getSuccessor(0) != L->getHeader())
std::swap(BackedgeTakenWeight, LatchExitWeight);
if (!LatchExitWeight)
return None;
if (EstimatedLoopInvocationWeight)
*EstimatedLoopInvocationWeight = LatchExitWeight;
// Estimated backedge taken count is a ratio of the backedge taken weight by
// the weight of the edge exiting the loop, rounded to nearest.
uint64_t BackedgeTakenCount =
llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
// Estimated trip count is one plus estimated backedge taken count.
return BackedgeTakenCount + 1;
}
bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
unsigned EstimatedloopInvocationWeight) {
// Support loops with an exiting latch and other existing exists only
// deoptimize.
BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
if (!LatchBranch)
return false;
// Calculate taken and exit weights.
unsigned LatchExitWeight = 0;
unsigned BackedgeTakenWeight = 0;
if (EstimatedTripCount > 0) {
LatchExitWeight = EstimatedloopInvocationWeight;
BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
}
// Make a swap if back edge is taken when condition is "false".
if (LatchBranch->getSuccessor(0) != L->getHeader())
std::swap(BackedgeTakenWeight, LatchExitWeight);
MDBuilder MDB(LatchBranch->getContext());
// Set/Update profile metadata.
LatchBranch->setMetadata(
LLVMContext::MD_prof,
MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
return true;
}
bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
ScalarEvolution &SE) {
Loop *OuterL = InnerLoop->getParentLoop();
if (!OuterL)
return true;
// Get the backedge taken count for the inner loop
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
!InnerLoopBECountSC->getType()->isIntegerTy())
return false;
// Get whether count is invariant to the outer loop
ScalarEvolution::LoopDisposition LD =
SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
if (LD != ScalarEvolution::LoopInvariant)
return false;
return true;
}
Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
Value *Right) {
CmpInst::Predicate Pred;
switch (RK) {
default:
llvm_unreachable("Unknown min/max recurrence kind");
case RecurKind::UMin:
Pred = CmpInst::ICMP_ULT;
break;
case RecurKind::UMax:
Pred = CmpInst::ICMP_UGT;
break;
case RecurKind::SMin:
Pred = CmpInst::ICMP_SLT;
break;
case RecurKind::SMax:
Pred = CmpInst::ICMP_SGT;
break;
case RecurKind::FMin:
Pred = CmpInst::FCMP_OLT;
break;
case RecurKind::FMax:
Pred = CmpInst::FCMP_OGT;
break;
}
Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
return Select;
}
// Helper to generate an ordered reduction.
Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
unsigned Op, RecurKind RdxKind,
ArrayRef<Value *> RedOps) {
unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
// Extract and apply reduction ops in ascending order:
// e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
Value *Result = Acc;
for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
Value *Ext =
Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
"bin.rdx");
} else {
assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
"Invalid min/max");
Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
}
if (!RedOps.empty())
propagateIRFlags(Result, RedOps);
}
return Result;
}
// Helper to generate a log2 shuffle reduction.
Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
unsigned Op, RecurKind RdxKind,
ArrayRef<Value *> RedOps) {
unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
// VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
// and vector ops, reducing the set of values being computed by half each
// round.
assert(isPowerOf2_32(VF) &&
"Reduction emission only supported for pow2 vectors!");
Value *TmpVec = Src;
SmallVector<int, 32> ShuffleMask(VF);
for (unsigned i = VF; i != 1; i >>= 1) {
// Move the upper half of the vector to the lower half.
for (unsigned j = 0; j != i / 2; ++j)
ShuffleMask[j] = i / 2 + j;
// Fill the rest of the mask with undef.
std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
// The builder propagates its fast-math-flags setting.
TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
"bin.rdx");
} else {
assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
"Invalid min/max");
TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
}
if (!RedOps.empty())
propagateIRFlags(TmpVec, RedOps);
// We may compute the reassociated scalar ops in a way that does not
// preserve nsw/nuw etc. Conservatively, drop those flags.
if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
ReductionInst->dropPoisonGeneratingFlags();
}
// The result is in the first element of the vector.
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}
Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
const TargetTransformInfo *TTI,
Value *Src, RecurKind RdxKind,
ArrayRef<Value *> RedOps) {
TargetTransformInfo::ReductionFlags RdxFlags;
RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax ||
RdxKind == RecurKind::FMax;
RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin;
auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
switch (RdxKind) {
case RecurKind::Add:
return Builder.CreateAddReduce(Src);
case RecurKind::Mul:
return Builder.CreateMulReduce(Src);
case RecurKind::And:
return Builder.CreateAndReduce(Src);
case RecurKind::Or:
return Builder.CreateOrReduce(Src);
case RecurKind::Xor:
return Builder.CreateXorReduce(Src);
case RecurKind::FAdd:
return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
Src);
case RecurKind::FMul:
return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
case RecurKind::SMax:
return Builder.CreateIntMaxReduce(Src, true);
case RecurKind::SMin:
return Builder.CreateIntMinReduce(Src, true);
case RecurKind::UMax:
return Builder.CreateIntMaxReduce(Src, false);
case RecurKind::UMin:
return Builder.CreateIntMinReduce(Src, false);
case RecurKind::FMax:
return Builder.CreateFPMaxReduce(Src);
case RecurKind::FMin:
return Builder.CreateFPMinReduce(Src);
default:
llvm_unreachable("Unhandled opcode");
}
}
Value *llvm::createTargetReduction(IRBuilderBase &B,
const TargetTransformInfo *TTI,
const RecurrenceDescriptor &Desc,
Value *Src) {
// TODO: Support in-order reductions based on the recurrence descriptor.
// All ops in the reduction inherit fast-math-flags from the recurrence
// descriptor.
IRBuilderBase::FastMathFlagGuard FMFGuard(B);
B.setFastMathFlags(Desc.getFastMathFlags());
return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind());
}
Value *llvm::createOrderedReduction(IRBuilderBase &B,
const RecurrenceDescriptor &Desc,
Value *Src, Value *Start) {
assert(Desc.getRecurrenceKind() == RecurKind::FAdd &&
"Unexpected reduction kind");
assert(Src->getType()->isVectorTy() && "Expected a vector type");
assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
return B.CreateFAddReduce(Start, Src);
}
void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
auto *VecOp = dyn_cast<Instruction>(I);
if (!VecOp)
return;
auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
: dyn_cast<Instruction>(OpValue);
if (!Intersection)
return;
const unsigned Opcode = Intersection->getOpcode();
VecOp->copyIRFlags(Intersection);
for (auto *V : VL) {
auto *Instr = dyn_cast<Instruction>(V);
if (!Instr)
continue;
if (OpValue == nullptr || Opcode == Instr->getOpcode())
VecOp->andIRFlags(V);
}
}
bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
ScalarEvolution &SE) {
const SCEV *Zero = SE.getZero(S->getType());
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
}
bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
ScalarEvolution &SE) {
const SCEV *Zero = SE.getZero(S->getType());
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
}
bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
bool Signed) {
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
APInt::getMinValue(BitWidth);
auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, Predicate, S,
SE.getConstant(Min));
}
bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
bool Signed) {
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
APInt::getMaxValue(BitWidth);
auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
return SE.isAvailableAtLoopEntry(S, L) &&
SE.isLoopEntryGuardedByCond(L, Predicate, S,
SE.getConstant(Max));
}
//===----------------------------------------------------------------------===//
// rewriteLoopExitValues - Optimize IV users outside the loop.
// As a side effect, reduces the amount of IV processing within the loop.
//===----------------------------------------------------------------------===//
// Return true if the SCEV expansion generated by the rewriter can replace the
// original value. SCEV guarantees that it produces the same value, but the way
// it is produced may be illegal IR. Ideally, this function will only be
// called for verification.
static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
// If an SCEV expression subsumed multiple pointers, its expansion could
// reassociate the GEP changing the base pointer. This is illegal because the
// final address produced by a GEP chain must be inbounds relative to its
// underlying object. Otherwise basic alias analysis, among other things,
// could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
// producing an expression involving multiple pointers. Until then, we must
// bail out here.
//
// Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
// because it understands lcssa phis while SCEV does not.
Value *FromPtr = FromVal;
Value *ToPtr = ToVal;
if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
FromPtr = GEP->getPointerOperand();
if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
ToPtr = GEP->getPointerOperand();
if (FromPtr != FromVal || ToPtr != ToVal) {
// Quickly check the common case
if (FromPtr == ToPtr)
return true;
// SCEV may have rewritten an expression that produces the GEP's pointer
// operand. That's ok as long as the pointer operand has the same base
// pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
// base of a recurrence. This handles the case in which SCEV expansion
// converts a pointer type recurrence into a nonrecurrent pointer base
// indexed by an integer recurrence.
// If the GEP base pointer is a vector of pointers, abort.
if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
return false;
const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
if (FromBase == ToBase)
return true;
LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
<< *FromBase << " != " << *ToBase << "\n");
return false;
}
return true;
}
static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
SmallPtrSet<const Instruction *, 8> Visited;
SmallVector<const Instruction *, 8> WorkList;
Visited.insert(I);
WorkList.push_back(I);
while (!WorkList.empty()) {
const Instruction *Curr = WorkList.pop_back_val();
// This use is outside the loop, nothing to do.
if (!L->contains(Curr))
continue;
// Do we assume it is a "hard" use which will not be eliminated easily?
if (Curr->mayHaveSideEffects())
return true;
// Otherwise, add all its users to worklist.
for (auto U : Curr->users()) {
auto *UI = cast<Instruction>(U);
if (Visited.insert(UI).second)
WorkList.push_back(UI);
}
}
return false;
}
// Collect information about PHI nodes which can be transformed in
// rewriteLoopExitValues.
struct RewritePhi {
PHINode *PN; // For which PHI node is this replacement?
unsigned Ith; // For which incoming value?
const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
bool HighCost; // Is this expansion a high-cost?
Value *Expansion = nullptr;
bool ValidRewrite = false;
RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
bool H)
: PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
HighCost(H) {}
};
// Check whether it is possible to delete the loop after rewriting exit
// value. If it is possible, ignore ReplaceExitValue and do rewriting
// aggressively.
static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
BasicBlock *Preheader = L->getLoopPreheader();
// If there is no preheader, the loop will not be deleted.
if (!Preheader)
return false;
// In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
// We obviate multiple ExitingBlocks case for simplicity.
// TODO: If we see testcase with multiple ExitingBlocks can be deleted
// after exit value rewriting, we can enhance the logic here.
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
SmallVector<BasicBlock *, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
return false;
BasicBlock *ExitBlock = ExitBlocks[0];
BasicBlock::iterator BI = ExitBlock->begin();
while (PHINode *P = dyn_cast<PHINode>(BI)) {
Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
// If the Incoming value of P is found in RewritePhiSet, we know it
// could be rewritten to use a loop invariant value in transformation
// phase later. Skip it in the loop invariant check below.
bool found = false;
for (const RewritePhi &Phi : RewritePhiSet) {
if (!Phi.ValidRewrite)
continue;
unsigned i = Phi.Ith;
if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
found = true;
break;
}
}
Instruction *I;
if (!found && (I = dyn_cast<Instruction>(Incoming)))
if (!L->hasLoopInvariantOperands(I))
return false;
++BI;
}
for (auto *BB : L->blocks())
if (llvm::any_of(*BB, [](Instruction &I) {
return I.mayHaveSideEffects();
}))
return false;
return true;
}
int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
ScalarEvolution *SE,
const TargetTransformInfo *TTI,
SCEVExpander &Rewriter, DominatorTree *DT,
ReplaceExitVal ReplaceExitValue,
SmallVector<WeakTrackingVH, 16> &DeadInsts) {
// Check a pre-condition.
assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
"Indvars did not preserve LCSSA!");
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
SmallVector<RewritePhi, 8> RewritePhiSet;
// Find all values that are computed inside the loop, but used outside of it.
// Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
// the exit blocks of the loop to find them.
for (BasicBlock *ExitBB : ExitBlocks) {
// If there are no PHI nodes in this exit block, then no values defined
// inside the loop are used on this path, skip it.
PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
if (!PN) continue;
unsigned NumPreds = PN->getNumIncomingValues();
// Iterate over all of the PHI nodes.
BasicBlock::iterator BBI = ExitBB->begin();
while ((PN = dyn_cast<PHINode>(BBI++))) {
if (PN->use_empty())
continue; // dead use, don't replace it
if (!SE->isSCEVable(PN->getType()))
continue;
// It's necessary to tell ScalarEvolution about this explicitly so that
// it can walk the def-use list and forget all SCEVs, as it may not be
// watching the PHI itself. Once the new exit value is in place, there
// may not be a def-use connection between the loop and every instruction
// which got a SCEVAddRecExpr for that loop.
SE->forgetValue(PN);
// Iterate over all of the values in all the PHI nodes.
for (unsigned i = 0; i != NumPreds; ++i) {
// If the value being merged in is not integer or is not defined
// in the loop, skip it.
Value *InVal = PN->getIncomingValue(i);
if (!isa<Instruction>(InVal))
continue;
// If this pred is for a subloop, not L itself, skip it.
if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
continue; // The Block is in a subloop, skip it.
// Check that InVal is defined in the loop.
Instruction *Inst = cast<Instruction>(InVal);
if (!L->contains(Inst))
continue;
// Okay, this instruction has a user outside of the current loop
// and varies predictably *inside* the loop. Evaluate the value it
// contains when the loop exits, if possible. We prefer to start with
// expressions which are true for all exits (so as to maximize
// expression reuse by the SCEVExpander), but resort to per-exit
// evaluation if that fails.
const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
if (isa<SCEVCouldNotCompute>(ExitValue) ||
!SE->isLoopInvariant(ExitValue, L) ||
!isSafeToExpand(ExitValue, *SE)) {
// TODO: This should probably be sunk into SCEV in some way; maybe a
// getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
// most SCEV expressions and other recurrence types (e.g. shift
// recurrences). Is there existing code we can reuse?
const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
if (isa<SCEVCouldNotCompute>(ExitCount))
continue;
if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
if (AddRec->getLoop() == L)
ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
if (isa<SCEVCouldNotCompute>(ExitValue) ||
!SE->isLoopInvariant(ExitValue, L) ||
!isSafeToExpand(ExitValue, *SE))
continue;
}
// Computing the value outside of the loop brings no benefit if it is
// definitely used inside the loop in a way which can not be optimized
// away. Avoid doing so unless we know we have a value which computes
// the ExitValue already. TODO: This should be merged into SCEV
// expander to leverage its knowledge of existing expressions.
if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
!isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
continue;
// Check if expansions of this SCEV would count as being high cost.
bool HighCost = Rewriter.isHighCostExpansion(
ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
// Note that we must not perform expansions until after
// we query *all* the costs, because if we perform temporary expansion
// inbetween, one that we might not intend to keep, said expansion
// *may* affect cost calculation of the the next SCEV's we'll query,
// and next SCEV may errneously get smaller cost.
// Collect all the candidate PHINodes to be rewritten.
RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
}
}
}
// Now that we've done preliminary filtering and billed all the SCEV's,
// we can perform the last sanity check - the expansion must be valid.
for (RewritePhi &Phi : RewritePhiSet) {
Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
Phi.ExpansionPoint);
LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
<< *(Phi.Expansion) << '\n'
<< " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
// FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
if (!Phi.ValidRewrite) {
DeadInsts.push_back(Phi.Expansion);
continue;
}
#ifndef NDEBUG
// If we reuse an instruction from a loop which is neither L nor one of
// its containing loops, we end up breaking LCSSA form for this loop by
// creating a new use of its instruction.
if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
if (EVL != L)
assert(EVL->contains(L) && "LCSSA breach detected!");
#endif
}
// TODO: after isValidRewrite() is an assertion, evaluate whether
// it is beneficial to change how we calculate high-cost:
// if we have SCEV 'A' which we know we will expand, should we calculate
// the cost of other SCEV's after expanding SCEV 'A',
// thus potentially giving cost bonus to those other SCEV's?
bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
int NumReplaced = 0;
// Transformation.
for (const RewritePhi &Phi : RewritePhiSet) {
if (!Phi.ValidRewrite)
continue;
PHINode *PN = Phi.PN;
Value *ExitVal = Phi.Expansion;
// Only do the rewrite when the ExitValue can be expanded cheaply.
// If LoopCanBeDel is true, rewrite exit value aggressively.
if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
DeadInsts.push_back(ExitVal);
continue;
}
NumReplaced++;
Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
PN->setIncomingValue(Phi.Ith, ExitVal);
// If this instruction is dead now, delete it. Don't do it now to avoid
// invalidating iterators.
if (isInstructionTriviallyDead(Inst, TLI))
DeadInsts.push_back(Inst);
// Replace PN with ExitVal if that is legal and does not break LCSSA.
if (PN->getNumIncomingValues() == 1 &&
LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
PN->replaceAllUsesWith(ExitVal);
PN->eraseFromParent();
}
}
// The insertion point instruction may have been deleted; clear it out
// so that the rewriter doesn't trip over it later.
Rewriter.clearInsertPoint();
return NumReplaced;
}
/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
/// \p OrigLoop.
void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
Loop *RemainderLoop, uint64_t UF) {
assert(UF > 0 && "Zero unrolled factor is not supported");
assert(UnrolledLoop != RemainderLoop &&
"Unrolled and Remainder loops are expected to distinct");
// Get number of iterations in the original scalar loop.
unsigned OrigLoopInvocationWeight = 0;
Optional<unsigned> OrigAverageTripCount =
getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
if (!OrigAverageTripCount)
return;
// Calculate number of iterations in unrolled loop.
unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
// Calculate number of iterations for remainder loop.
unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
OrigLoopInvocationWeight);
setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
OrigLoopInvocationWeight);
}
/// Utility that implements appending of loops onto a worklist.
/// Loops are added in preorder (analogous for reverse postorder for trees),
/// and the worklist is processed LIFO.
template <typename RangeT>
void llvm::appendReversedLoopsToWorklist(
RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
// We use an internal worklist to build up the preorder traversal without
// recursion.
SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
// We walk the initial sequence of loops in reverse because we generally want
// to visit defs before uses and the worklist is LIFO.
for (Loop *RootL : Loops) {
assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
assert(PreOrderWorklist.empty() &&
"Must start with an empty preorder walk worklist.");
PreOrderWorklist.push_back(RootL);
do {
Loop *L = PreOrderWorklist.pop_back_val();
PreOrderWorklist.append(L->begin(), L->end());
PreOrderLoops.push_back(L);
} while (!PreOrderWorklist.empty());
Worklist.insert(std::move(PreOrderLoops));
PreOrderLoops.clear();
}
}
template <typename RangeT>
void llvm::appendLoopsToWorklist(RangeT &&Loops,
SmallPriorityWorklist<Loop *, 4> &Worklist) {
appendReversedLoopsToWorklist(reverse(Loops), Worklist);
}
template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
template void
llvm::appendLoopsToWorklist<Loop &>(Loop &L,
SmallPriorityWorklist<Loop *, 4> &Worklist);
void llvm::appendLoopsToWorklist(LoopInfo &LI,
SmallPriorityWorklist<Loop *, 4> &Worklist) {
appendReversedLoopsToWorklist(LI, Worklist);
}
Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
LoopInfo *LI, LPPassManager *LPM) {
Loop &New = *LI->AllocateLoop();
if (PL)
PL->addChildLoop(&New);
else
LI->addTopLevelLoop(&New);
if (LPM)
LPM->addLoop(New);
// Add all of the blocks in L to the new loop.
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I)
if (LI->getLoopFor(*I) == L)
New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
// Add all of the subloops to the new loop.
for (Loop *I : *L)
cloneLoop(I, &New, VM, LI, LPM);
return &New;
}
/// IR Values for the lower and upper bounds of a pointer evolution. We
/// need to use value-handles because SCEV expansion can invalidate previously
/// expanded values. Thus expansion of a pointer can invalidate the bounds for
/// a previous one.
struct PointerBounds {
TrackingVH<Value> Start;
TrackingVH<Value> End;
};
/// Expand code for the lower and upper bound of the pointer group \p CG
/// in \p TheLoop. \return the values for the bounds.
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
Loop *TheLoop, Instruction *Loc,
SCEVExpander &Exp) {
ScalarEvolution *SE = Exp.getSE();
// TODO: Add helper to retrieve pointers to CG.
Value *Ptr = CG->RtCheck.Pointers[CG->Members[0]].PointerValue;
const SCEV *Sc = SE->getSCEV(Ptr);
unsigned AS = Ptr->getType()->getPointerAddressSpace();
LLVMContext &Ctx = Loc->getContext();
// Use this type for pointer arithmetic.
Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
if (SE->isLoopInvariant(Sc, TheLoop)) {
LLVM_DEBUG(dbgs() << "LAA: Adding RT check for a loop invariant ptr:"
<< *Ptr << "\n");
// Ptr could be in the loop body. If so, expand a new one at the correct
// location.
Instruction *Inst = dyn_cast<Instruction>(Ptr);
Value *NewPtr = (Inst && TheLoop->contains(Inst))
? Exp.expandCodeFor(Sc, PtrArithTy, Loc)
: Ptr;
// We must return a half-open range, which means incrementing Sc.
const SCEV *ScPlusOne = SE->getAddExpr(Sc, SE->getOne(PtrArithTy));
Value *NewPtrPlusOne = Exp.expandCodeFor(ScPlusOne, PtrArithTy, Loc);
return {NewPtr, NewPtrPlusOne};
} else {
Value *Start = nullptr, *End = nullptr;
LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High
<< "\n");
return {Start, End};
}
}
/// Turns a collection of checks into a collection of expanded upper and
/// lower bounds for both pointers in the check.
static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
Instruction *Loc, SCEVExpander &Exp) {
SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
// Here we're relying on the SCEV Expander's cache to only emit code for the
// same bounds once.
transform(PointerChecks, std::back_inserter(ChecksWithBounds),
[&](const RuntimePointerCheck &Check) {
PointerBounds First = expandBounds(Check.first, L, Loc, Exp),
Second = expandBounds(Check.second, L, Loc, Exp);
return std::make_pair(First, Second);
});
return ChecksWithBounds;
}
std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
Instruction *Loc, Loop *TheLoop,
const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
SCEVExpander &Exp) {
// TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
// TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp);
LLVMContext &Ctx = Loc->getContext();
Instruction *FirstInst = nullptr;
IRBuilder<> ChkBuilder(Loc);
// Our instructions might fold to a constant.
Value *MemoryRuntimeCheck = nullptr;
// FIXME: this helper is currently a duplicate of the one in
// LoopVectorize.cpp.
auto GetFirstInst = [](Instruction *FirstInst, Value *V,
Instruction *Loc) -> Instruction * {
if (FirstInst)
return FirstInst;
if (Instruction *I = dyn_cast<Instruction>(V))
return I->getParent() == Loc->getParent() ? I : nullptr;
return nullptr;
};
for (const auto &Check : ExpandedChecks) {
const PointerBounds &A = Check.first, &B = Check.second;
// Check if two pointers (A and B) conflict where conflict is computed as:
// start(A) <= end(B) && start(B) <= end(A)
unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
(AS1 == A.End->getType()->getPointerAddressSpace()) &&
"Trying to bounds check pointers with different address spaces");
Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
// [A|B].Start points to the first accessed byte under base [A|B].
// [A|B].End points to the last accessed byte, plus one.
// There is no conflict when the intervals are disjoint:
// NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
//
// bound0 = (B.Start < A.End)
// bound1 = (A.Start < B.End)
// IsConflict = bound0 & bound1
Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
if (MemoryRuntimeCheck) {
IsConflict =
ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
}
MemoryRuntimeCheck = IsConflict;
}
if (!MemoryRuntimeCheck)
return std::make_pair(nullptr, nullptr);
// We have to do this trickery because the IRBuilder might fold the check to a
// constant expression in which case there is no Instruction anchored in a
// the block.
Instruction *Check =
BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
ChkBuilder.Insert(Check, "memcheck.conflict");
FirstInst = GetFirstInst(FirstInst, Check, Loc);
return std::make_pair(FirstInst, Check);
}
Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L,
unsigned MSSAThreshold,
MemorySSA &MSSA,
AAResults &AA) {
auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
if (!TI || !TI->isConditional())
return {};
auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
// The case with the condition outside the loop should already be handled
// earlier.
if (!CondI || !L.contains(CondI))
return {};
SmallVector<Instruction *> InstToDuplicate;
InstToDuplicate.push_back(CondI);
SmallVector<Value *, 4> WorkList;
WorkList.append(CondI->op_begin(), CondI->op_end());
SmallVector<MemoryAccess *, 4> AccessesToCheck;
SmallVector<MemoryLocation, 4> AccessedLocs;
while (!WorkList.empty()) {
Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
if (!I || !L.contains(I))
continue;
// TODO: support additional instructions.
if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
return {};
// Do not duplicate volatile and atomic loads.
if (auto *LI = dyn_cast<LoadInst>(I))
if (LI->isVolatile() || LI->isAtomic())
return {};
InstToDuplicate.push_back(I);
if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
// Queue the defining access to check for alias checks.
AccessesToCheck.push_back(MemUse->getDefiningAccess());
AccessedLocs.push_back(MemoryLocation::get(I));
} else {
// MemoryDefs may clobber the location or may be atomic memory
// operations. Bail out.
return {};
}
}
WorkList.append(I->op_begin(), I->op_end());
}
if (InstToDuplicate.empty())
return {};
SmallVector<BasicBlock *, 4> ExitingBlocks;
L.getExitingBlocks(ExitingBlocks);
auto HasNoClobbersOnPath =
[&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
SmallVector<MemoryAccess *, 4> AccessesToCheck)
-> Optional<IVConditionInfo> {
IVConditionInfo Info;
// First, collect all blocks in the loop that are on a patch from Succ
// to the header.
SmallVector<BasicBlock *, 4> WorkList;
WorkList.push_back(Succ);
WorkList.push_back(Header);
SmallPtrSet<BasicBlock *, 4> Seen;
Seen.insert(Header);
Info.PathIsNoop &=
all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
while (!WorkList.empty()) {
BasicBlock *Current = WorkList.pop_back_val();
if (!L.contains(Current))
continue;
const auto &SeenIns = Seen.insert(Current);
if (!SeenIns.second)
continue;
Info.PathIsNoop &= all_of(
*Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
WorkList.append(succ_begin(Current), succ_end(Current));
}
// Require at least 2 blocks on a path through the loop. This skips
// paths that directly exit the loop.
if (Seen.size() < 2)
return {};
// Next, check if there are any MemoryDefs that are on the path through
// the loop (in the Seen set) and they may-alias any of the locations in
// AccessedLocs. If that is the case, they may modify the condition and
// partial unswitching is not possible.
SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
while (!AccessesToCheck.empty()) {
MemoryAccess *Current = AccessesToCheck.pop_back_val();
auto SeenI = SeenAccesses.insert(Current);
if (!SeenI.second || !Seen.contains(Current->getBlock()))
continue;
// Bail out if exceeded the threshold.
if (SeenAccesses.size() >= MSSAThreshold)
return {};
// MemoryUse are read-only accesses.
if (isa<MemoryUse>(Current))
continue;
// For a MemoryDef, check if is aliases any of the location feeding
// the original condition.
if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
return isModSet(
AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
}))
return {};
}
for (Use &U : Current->uses())
AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
}
// We could also allow loops with known trip counts without mustprogress,
// but ScalarEvolution may not be available.
Info.PathIsNoop &= isMustProgress(&L);
// If the path is considered a no-op so far, check if it reaches a
// single exit block without any phis. This ensures no values from the
// loop are used outside of the loop.
if (Info.PathIsNoop) {
for (auto *Exiting : ExitingBlocks) {
if (!Seen.contains(Exiting))
continue;
for (auto *Succ : successors(Exiting)) {
if (L.contains(Succ))
continue;
Info.PathIsNoop &= llvm::empty(Succ->phis()) &&
(!Info.ExitForPath || Info.ExitForPath == Succ);
if (!Info.PathIsNoop)
break;
assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
"cannot have multiple exit blocks");
Info.ExitForPath = Succ;
}
}
}
if (!Info.ExitForPath)
Info.PathIsNoop = false;
Info.InstToDuplicate = InstToDuplicate;
return Info;
};
// If we branch to the same successor, partial unswitching will not be
// beneficial.
if (TI->getSuccessor(0) == TI->getSuccessor(1))
return {};
if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
AccessesToCheck)) {
Info->KnownValue = ConstantInt::getTrue(TI->getContext());
return Info;
}
if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
AccessesToCheck)) {
Info->KnownValue = ConstantInt::getFalse(TI->getContext());
return Info;
}
return {};
}