1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/CodeGen/MachineModuleInfo.cpp
Matthias Braun f96b4d234c CodeGen: Remove MachineFunctionAnalysis => Enable (Machine)ModulePasses
Re-apply this patch, hopefully I will get away without any warnings
in the constructor now.

This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.

This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.

Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.

Differential Revision: http://reviews.llvm.org/D23736

llvm-svn: 279602
2016-08-24 01:52:46 +00:00

520 lines
18 KiB
C++

//===-- llvm/CodeGen/MachineModuleInfo.cpp ----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionInitializer.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
using namespace llvm::dwarf;
// Handle the Pass registration stuff necessary to use DataLayout's.
INITIALIZE_TM_PASS(MachineModuleInfo, "machinemoduleinfo",
"Machine Module Information", false, false)
char MachineModuleInfo::ID = 0;
// Out of line virtual method.
MachineModuleInfoImpl::~MachineModuleInfoImpl() {}
namespace llvm {
class MMIAddrLabelMapCallbackPtr final : CallbackVH {
MMIAddrLabelMap *Map;
public:
MMIAddrLabelMapCallbackPtr() : Map(nullptr) {}
MMIAddrLabelMapCallbackPtr(Value *V) : CallbackVH(V), Map(nullptr) {}
void setPtr(BasicBlock *BB) {
ValueHandleBase::operator=(BB);
}
void setMap(MMIAddrLabelMap *map) { Map = map; }
void deleted() override;
void allUsesReplacedWith(Value *V2) override;
};
class MMIAddrLabelMap {
MCContext &Context;
struct AddrLabelSymEntry {
/// Symbols - The symbols for the label.
TinyPtrVector<MCSymbol *> Symbols;
Function *Fn; // The containing function of the BasicBlock.
unsigned Index; // The index in BBCallbacks for the BasicBlock.
};
DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols;
/// BBCallbacks - Callbacks for the BasicBlock's that we have entries for. We
/// use this so we get notified if a block is deleted or RAUWd.
std::vector<MMIAddrLabelMapCallbackPtr> BBCallbacks;
/// DeletedAddrLabelsNeedingEmission - This is a per-function list of symbols
/// whose corresponding BasicBlock got deleted. These symbols need to be
/// emitted at some point in the file, so AsmPrinter emits them after the
/// function body.
DenseMap<AssertingVH<Function>, std::vector<MCSymbol*> >
DeletedAddrLabelsNeedingEmission;
public:
MMIAddrLabelMap(MCContext &context) : Context(context) {}
~MMIAddrLabelMap() {
assert(DeletedAddrLabelsNeedingEmission.empty() &&
"Some labels for deleted blocks never got emitted");
}
ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB);
void takeDeletedSymbolsForFunction(Function *F,
std::vector<MCSymbol*> &Result);
void UpdateForDeletedBlock(BasicBlock *BB);
void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New);
};
}
ArrayRef<MCSymbol *> MMIAddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) {
assert(BB->hasAddressTaken() &&
"Shouldn't get label for block without address taken");
AddrLabelSymEntry &Entry = AddrLabelSymbols[BB];
// If we already had an entry for this block, just return it.
if (!Entry.Symbols.empty()) {
assert(BB->getParent() == Entry.Fn && "Parent changed");
return Entry.Symbols;
}
// Otherwise, this is a new entry, create a new symbol for it and add an
// entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd.
BBCallbacks.emplace_back(BB);
BBCallbacks.back().setMap(this);
Entry.Index = BBCallbacks.size() - 1;
Entry.Fn = BB->getParent();
Entry.Symbols.push_back(Context.createTempSymbol());
return Entry.Symbols;
}
/// takeDeletedSymbolsForFunction - If we have any deleted symbols for F, return
/// them.
void MMIAddrLabelMap::
takeDeletedSymbolsForFunction(Function *F, std::vector<MCSymbol*> &Result) {
DenseMap<AssertingVH<Function>, std::vector<MCSymbol*> >::iterator I =
DeletedAddrLabelsNeedingEmission.find(F);
// If there are no entries for the function, just return.
if (I == DeletedAddrLabelsNeedingEmission.end()) return;
// Otherwise, take the list.
std::swap(Result, I->second);
DeletedAddrLabelsNeedingEmission.erase(I);
}
void MMIAddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) {
// If the block got deleted, there is no need for the symbol. If the symbol
// was already emitted, we can just forget about it, otherwise we need to
// queue it up for later emission when the function is output.
AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]);
AddrLabelSymbols.erase(BB);
assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?");
BBCallbacks[Entry.Index] = nullptr; // Clear the callback.
assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) &&
"Block/parent mismatch");
for (MCSymbol *Sym : Entry.Symbols) {
if (Sym->isDefined())
return;
// If the block is not yet defined, we need to emit it at the end of the
// function. Add the symbol to the DeletedAddrLabelsNeedingEmission list
// for the containing Function. Since the block is being deleted, its
// parent may already be removed, we have to get the function from 'Entry'.
DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym);
}
}
void MMIAddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) {
// Get the entry for the RAUW'd block and remove it from our map.
AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]);
AddrLabelSymbols.erase(Old);
assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?");
AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New];
// If New is not address taken, just move our symbol over to it.
if (NewEntry.Symbols.empty()) {
BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback.
NewEntry = std::move(OldEntry); // Set New's entry.
return;
}
BBCallbacks[OldEntry.Index] = nullptr; // Update the callback.
// Otherwise, we need to add the old symbols to the new block's set.
NewEntry.Symbols.insert(NewEntry.Symbols.end(), OldEntry.Symbols.begin(),
OldEntry.Symbols.end());
}
void MMIAddrLabelMapCallbackPtr::deleted() {
Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr()));
}
void MMIAddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) {
Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2));
}
//===----------------------------------------------------------------------===//
MachineModuleInfo::MachineModuleInfo(const TargetMachine *TM)
: ImmutablePass(ID), TM(*TM),
Context(TM->getMCAsmInfo(), TM->getMCRegisterInfo(),
TM->getObjFileLowering(), nullptr, false) {
initializeMachineModuleInfoPass(*PassRegistry::getPassRegistry());
}
MachineModuleInfo::~MachineModuleInfo() {
}
bool MachineModuleInfo::doInitialization(Module &M) {
ObjFileMMI = nullptr;
CurCallSite = 0;
CallsEHReturn = false;
CallsUnwindInit = false;
HasEHFunclets = false;
DbgInfoAvailable = UsesVAFloatArgument = UsesMorestackAddr = false;
PersonalityTypeCache = EHPersonality::Unknown;
AddrLabelSymbols = nullptr;
TheModule = &M;
return false;
}
bool MachineModuleInfo::doFinalization(Module &M) {
Personalities.clear();
delete AddrLabelSymbols;
AddrLabelSymbols = nullptr;
Context.reset();
delete ObjFileMMI;
ObjFileMMI = nullptr;
return false;
}
/// EndFunction - Discard function meta information.
///
void MachineModuleInfo::EndFunction() {
// Clean up frame info.
FrameInstructions.clear();
// Clean up exception info.
LandingPads.clear();
PersonalityTypeCache = EHPersonality::Unknown;
CallSiteMap.clear();
TypeInfos.clear();
FilterIds.clear();
FilterEnds.clear();
CallsEHReturn = false;
CallsUnwindInit = false;
HasEHFunclets = false;
VariableDbgInfos.clear();
}
//===- Address of Block Management ----------------------------------------===//
/// getAddrLabelSymbolToEmit - Return the symbol to be used for the specified
/// basic block when its address is taken. If other blocks were RAUW'd to
/// this one, we may have to emit them as well, return the whole set.
ArrayRef<MCSymbol *>
MachineModuleInfo::getAddrLabelSymbolToEmit(const BasicBlock *BB) {
// Lazily create AddrLabelSymbols.
if (!AddrLabelSymbols)
AddrLabelSymbols = new MMIAddrLabelMap(Context);
return AddrLabelSymbols->getAddrLabelSymbolToEmit(const_cast<BasicBlock*>(BB));
}
/// takeDeletedSymbolsForFunction - If the specified function has had any
/// references to address-taken blocks generated, but the block got deleted,
/// return the symbol now so we can emit it. This prevents emitting a
/// reference to a symbol that has no definition.
void MachineModuleInfo::
takeDeletedSymbolsForFunction(const Function *F,
std::vector<MCSymbol*> &Result) {
// If no blocks have had their addresses taken, we're done.
if (!AddrLabelSymbols) return;
return AddrLabelSymbols->
takeDeletedSymbolsForFunction(const_cast<Function*>(F), Result);
}
//===- EH -----------------------------------------------------------------===//
/// getOrCreateLandingPadInfo - Find or create an LandingPadInfo for the
/// specified MachineBasicBlock.
LandingPadInfo &MachineModuleInfo::getOrCreateLandingPadInfo
(MachineBasicBlock *LandingPad) {
unsigned N = LandingPads.size();
for (unsigned i = 0; i < N; ++i) {
LandingPadInfo &LP = LandingPads[i];
if (LP.LandingPadBlock == LandingPad)
return LP;
}
LandingPads.push_back(LandingPadInfo(LandingPad));
return LandingPads[N];
}
/// addInvoke - Provide the begin and end labels of an invoke style call and
/// associate it with a try landing pad block.
void MachineModuleInfo::addInvoke(MachineBasicBlock *LandingPad,
MCSymbol *BeginLabel, MCSymbol *EndLabel) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
LP.BeginLabels.push_back(BeginLabel);
LP.EndLabels.push_back(EndLabel);
}
/// addLandingPad - Provide the label of a try LandingPad block.
///
MCSymbol *MachineModuleInfo::addLandingPad(MachineBasicBlock *LandingPad) {
MCSymbol *LandingPadLabel = Context.createTempSymbol();
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
LP.LandingPadLabel = LandingPadLabel;
return LandingPadLabel;
}
void MachineModuleInfo::addPersonality(const Function *Personality) {
for (unsigned i = 0; i < Personalities.size(); ++i)
if (Personalities[i] == Personality)
return;
Personalities.push_back(Personality);
}
/// addCatchTypeInfo - Provide the catch typeinfo for a landing pad.
///
void MachineModuleInfo::
addCatchTypeInfo(MachineBasicBlock *LandingPad,
ArrayRef<const GlobalValue *> TyInfo) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
for (unsigned N = TyInfo.size(); N; --N)
LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
}
/// addFilterTypeInfo - Provide the filter typeinfo for a landing pad.
///
void MachineModuleInfo::
addFilterTypeInfo(MachineBasicBlock *LandingPad,
ArrayRef<const GlobalValue *> TyInfo) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
std::vector<unsigned> IdsInFilter(TyInfo.size());
for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
}
/// addCleanup - Add a cleanup action for a landing pad.
///
void MachineModuleInfo::addCleanup(MachineBasicBlock *LandingPad) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
LP.TypeIds.push_back(0);
}
void MachineModuleInfo::addSEHCatchHandler(MachineBasicBlock *LandingPad,
const Function *Filter,
const BlockAddress *RecoverBA) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
SEHHandler Handler;
Handler.FilterOrFinally = Filter;
Handler.RecoverBA = RecoverBA;
LP.SEHHandlers.push_back(Handler);
}
void MachineModuleInfo::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
const Function *Cleanup) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
SEHHandler Handler;
Handler.FilterOrFinally = Cleanup;
Handler.RecoverBA = nullptr;
LP.SEHHandlers.push_back(Handler);
}
/// TidyLandingPads - Remap landing pad labels and remove any deleted landing
/// pads.
void MachineModuleInfo::TidyLandingPads(DenseMap<MCSymbol*, uintptr_t> *LPMap) {
for (unsigned i = 0; i != LandingPads.size(); ) {
LandingPadInfo &LandingPad = LandingPads[i];
if (LandingPad.LandingPadLabel &&
!LandingPad.LandingPadLabel->isDefined() &&
(!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
LandingPad.LandingPadLabel = nullptr;
// Special case: we *should* emit LPs with null LP MBB. This indicates
// "nounwind" case.
if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
LandingPads.erase(LandingPads.begin() + i);
continue;
}
for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
MCSymbol *EndLabel = LandingPad.EndLabels[j];
if ((BeginLabel->isDefined() ||
(LPMap && (*LPMap)[BeginLabel] != 0)) &&
(EndLabel->isDefined() ||
(LPMap && (*LPMap)[EndLabel] != 0))) continue;
LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
--j;
--e;
}
// Remove landing pads with no try-ranges.
if (LandingPads[i].BeginLabels.empty()) {
LandingPads.erase(LandingPads.begin() + i);
continue;
}
// If there is no landing pad, ensure that the list of typeids is empty.
// If the only typeid is a cleanup, this is the same as having no typeids.
if (!LandingPad.LandingPadBlock ||
(LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
LandingPad.TypeIds.clear();
++i;
}
}
/// setCallSiteLandingPad - Map the landing pad's EH symbol to the call site
/// indexes.
void MachineModuleInfo::setCallSiteLandingPad(MCSymbol *Sym,
ArrayRef<unsigned> Sites) {
LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
}
/// getTypeIDFor - Return the type id for the specified typeinfo. This is
/// function wide.
unsigned MachineModuleInfo::getTypeIDFor(const GlobalValue *TI) {
for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
if (TypeInfos[i] == TI) return i + 1;
TypeInfos.push_back(TI);
return TypeInfos.size();
}
/// getFilterIDFor - Return the filter id for the specified typeinfos. This is
/// function wide.
int MachineModuleInfo::getFilterIDFor(std::vector<unsigned> &TyIds) {
// If the new filter coincides with the tail of an existing filter, then
// re-use the existing filter. Folding filters more than this requires
// re-ordering filters and/or their elements - probably not worth it.
for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
E = FilterEnds.end(); I != E; ++I) {
unsigned i = *I, j = TyIds.size();
while (i && j)
if (FilterIds[--i] != TyIds[--j])
goto try_next;
if (!j)
// The new filter coincides with range [i, end) of the existing filter.
return -(1 + i);
try_next:;
}
// Add the new filter.
int FilterID = -(1 + FilterIds.size());
FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
FilterEnds.push_back(FilterIds.size());
FilterIds.push_back(0); // terminator
return FilterID;
}
MachineFunction &MachineModuleInfo::getMachineFunction(const Function &F) {
// Shortcut for the common case where a sequence of MachineFunctionPasses
// all query for the same Function.
if (LastRequest == &F)
return *LastResult;
auto I = MachineFunctions.insert(
std::make_pair(&F, std::unique_ptr<MachineFunction>()));
MachineFunction *MF;
if (I.second) {
// No pre-existing machine function, create a new one.
MF = new MachineFunction(&F, TM, NextFnNum++, *this);
// Update the set entry.
I.first->second.reset(MF);
if (MFInitializer)
if (MFInitializer->initializeMachineFunction(*MF))
report_fatal_error("Unable to initialize machine function");
} else {
MF = I.first->second.get();
}
LastRequest = &F;
LastResult = MF;
return *MF;
}
void MachineModuleInfo::deleteMachineFunctionFor(Function &F) {
MachineFunctions.erase(&F);
LastRequest = nullptr;
LastResult = nullptr;
}
namespace {
/// This pass frees the MachineFunction object associated with a Function.
class FreeMachineFunction : public FunctionPass {
public:
static char ID;
FreeMachineFunction() : FunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineModuleInfo>();
AU.addPreserved<MachineModuleInfo>();
}
bool runOnFunction(Function &F) override {
MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
MMI.deleteMachineFunctionFor(F);
return true;
}
};
char FreeMachineFunction::ID;
} // end anonymous namespace
namespace llvm {
FunctionPass *createFreeMachineFunctionPass() {
return new FreeMachineFunction();
}
} // end namespace llvm