1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 04:22:57 +02:00
llvm-mirror/test/CodeGen/SystemZ/atomicrmw-nand-02.ll
Richard Sandiford 32c979f9e1 [SystemZ] Postpone NI->RISBG conversion to convertToThreeAddress()
r186399 aggressively used the RISBG instruction for immediate ANDs,
both because it can handle some values that AND IMMEDIATE can't,
and because it allows the destination register to be different from
the source.  I realized later while implementing the distinct-ops
support that it would be better to leave the choice up to
convertToThreeAddress() instead.  The AND IMMEDIATE form is shorter
and is less likely to be cracked.

This is a problem for 32-bit ANDs because we assume that all 32-bit
operations will leave the high word untouched, whereas RISBG used in
this way will either clear the high word or copy it from the source
register.  The patch uses the z196 instruction RISBLG for this instead.

This means that z10 will be restricted to NILL, NILH and NILF for
32-bit ANDs, but I think that should be OK for now.  Although we're
using z10 as the base architecture, the optimization work is going
to be focused more on z196 and zEC12.

llvm-svn: 187492
2013-07-31 11:36:35 +00:00

140 lines
4.0 KiB
LLVM

; Test 16-bit atomic NANDs.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s -check-prefix=CHECK
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s -check-prefix=CHECK-SHIFT1
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s -check-prefix=CHECK-SHIFT2
; Check NAND of a variable.
; - CHECK is for the main loop.
; - CHECK-SHIFT1 makes sure that the negated shift count used by the second
; RLL is set up correctly. The negation is independent of the NILL and L
; tested in CHECK.
; - CHECK-SHIFT2 makes sure that %b is shifted into the high part of the word
; before being used, and that the low bits are set to 1. This sequence is
; independent of the other loop prologue instructions.
define i16 @f1(i16 *%src, i16 %b) {
; CHECK-LABEL: f1:
; CHECK: sllg [[SHIFT:%r[1-9]+]], %r2, 3
; CHECK: nill %r2, 65532
; CHECK: l [[OLD:%r[0-9]+]], 0(%r2)
; CHECK: [[LABEL:\.[^:]*]]:
; CHECK: rll [[ROT:%r[0-9]+]], [[OLD]], 0([[SHIFT]])
; CHECK: nr [[ROT]], %r3
; CHECK: xilf [[ROT]], 4294901760
; CHECK: rll [[NEW:%r[0-9]+]], [[ROT]], 0({{%r[1-9]+}})
; CHECK: cs [[OLD]], [[NEW]], 0(%r2)
; CHECK: jlh [[LABEL]]
; CHECK: rll %r2, [[OLD]], 16([[SHIFT]])
; CHECK: br %r14
;
; CHECK-SHIFT1-LABEL: f1:
; CHECK-SHIFT1: sllg [[SHIFT:%r[1-9]+]], %r2, 3
; CHECK-SHIFT1: lcr [[NEGSHIFT:%r[1-9]+]], [[SHIFT]]
; CHECK-SHIFT1: rll
; CHECK-SHIFT1: rll {{%r[0-9]+}}, {{%r[0-9]+}}, 0([[NEGSHIFT]])
; CHECK-SHIFT1: rll
; CHECK-SHIFT1: br %r14
;
; CHECK-SHIFT2-LABEL: f1:
; CHECK-SHIFT2: sll %r3, 16
; CHECK-SHIFT2: oill %r3, 65535
; CHECK-SHIFT2: rll
; CHECK-SHIFT2: nr {{%r[0-9]+}}, %r3
; CHECK-SHIFT2: rll
; CHECK-SHIFT2: rll
; CHECK-SHIFT2: br %r14
%res = atomicrmw nand i16 *%src, i16 %b seq_cst
ret i16 %res
}
; Check the minimum signed value. We AND the rotated word with 0x8000ffff.
define i16 @f2(i16 *%src) {
; CHECK-LABEL: f2:
; CHECK: sllg [[SHIFT:%r[1-9]+]], %r2, 3
; CHECK: nill %r2, 65532
; CHECK: l [[OLD:%r[0-9]+]], 0(%r2)
; CHECK: [[LABEL:\.[^:]*]]:
; CHECK: rll [[ROT:%r[0-9]+]], [[OLD]], 0([[SHIFT]])
; CHECK: nilh [[ROT]], 32768
; CHECK: xilf [[ROT]], 4294901760
; CHECK: rll [[NEW:%r[0-9]+]], [[ROT]], 0([[NEGSHIFT:%r[1-9]+]])
; CHECK: cs [[OLD]], [[NEW]], 0(%r2)
; CHECK: jlh [[LABEL]]
; CHECK: rll %r2, [[OLD]], 16([[SHIFT]])
; CHECK: br %r14
;
; CHECK-SHIFT1-LABEL: f2:
; CHECK-SHIFT1: sllg [[SHIFT:%r[1-9]+]], %r2, 3
; CHECK-SHIFT1: lcr [[NEGSHIFT:%r[1-9]+]], [[SHIFT]]
; CHECK-SHIFT1: rll
; CHECK-SHIFT1: rll {{%r[0-9]+}}, {{%r[0-9]+}}, 0([[NEGSHIFT]])
; CHECK-SHIFT1: rll
; CHECK-SHIFT1: br %r14
;
; CHECK-SHIFT2-LABEL: f2:
; CHECK-SHIFT2: br %r14
%res = atomicrmw nand i16 *%src, i16 -32768 seq_cst
ret i16 %res
}
; Check NANDs of -2 (-1 isn't useful). We AND the rotated word with 0xfffeffff.
define i16 @f3(i16 *%src) {
; CHECK-LABEL: f3:
; CHECK: nilh [[ROT]], 65534
; CHECK: xilf [[ROT]], 4294901760
; CHECK: br %r14
;
; CHECK-SHIFT1-LABEL: f3:
; CHECK-SHIFT1: br %r14
; CHECK-SHIFT2-LABEL: f3:
; CHECK-SHIFT2: br %r14
%res = atomicrmw nand i16 *%src, i16 -2 seq_cst
ret i16 %res
}
; Check ANDs of 1. We AND the rotated word with 0x0001ffff.
define i16 @f4(i16 *%src) {
; CHECK-LABEL: f4:
; CHECK: nilh [[ROT]], 1
; CHECK: xilf [[ROT]], 4294901760
; CHECK: br %r14
;
; CHECK-SHIFT1-LABEL: f4:
; CHECK-SHIFT1: br %r14
; CHECK-SHIFT2-LABEL: f4:
; CHECK-SHIFT2: br %r14
%res = atomicrmw nand i16 *%src, i16 1 seq_cst
ret i16 %res
}
; Check the maximum signed value. We AND the rotated word with 0x7fffffff.
define i16 @f5(i16 *%src) {
; CHECK-LABEL: f5:
; CHECK: nilh [[ROT]], 32767
; CHECK: xilf [[ROT]], 4294901760
; CHECK: br %r14
;
; CHECK-SHIFT1-LABEL: f5:
; CHECK-SHIFT1: br %r14
; CHECK-SHIFT2-LABEL: f5:
; CHECK-SHIFT2: br %r14
%res = atomicrmw nand i16 *%src, i16 32767 seq_cst
ret i16 %res
}
; Check NANDs of a large unsigned value. We AND the rotated word with
; 0xfffdffff.
define i16 @f6(i16 *%src) {
; CHECK-LABEL: f6:
; CHECK: nilh [[ROT]], 65533
; CHECK: xilf [[ROT]], 4294901760
; CHECK: br %r14
;
; CHECK-SHIFT1-LABEL: f6:
; CHECK-SHIFT1: br %r14
; CHECK-SHIFT2-LABEL: f6:
; CHECK-SHIFT2: br %r14
%res = atomicrmw nand i16 *%src, i16 65533 seq_cst
ret i16 %res
}