1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 12:33:33 +02:00
llvm-mirror/lib/Target/BPF/BPFInstrInfo.td
Yonghong Song 25ec70611d bpf: New instruction patterns for 32-bit subregister load and store
The instruction mapping between eBPF/arm64/x86_64 are:

         eBPF              arm64        x86_64
LD1   BPF_LDX | BPF_B       ldrb        movzbl
LD2   BPF_LDX | BPF_H       ldrh        movzwl
LD4   BPF_LDX | BPF_W       ldr         movl

movzbl/movzwl/movl on x86_64 accept 32-bit sub-register, for example %eax,
the same for ldrb/ldrh on arm64 which accept 32-bit "w" register. And
actually these instructions only accept sub-registers. There is no point
to have LD1/2/4 (unsigned) for 64-bit register, because on these arches,
upper 32-bits are guaranteed to be zeroed by hardware or VM, so load into
the smallest available register class is the best choice for maintaining
type information.

For eBPF we should adopt the same philosophy, to change current
format (A):

  r = *(u8 *) (r + off) // BPF_LDX | BPF_B
  r = *(u16 *)(r + off) // BPF_LDX | BPF_H
  r = *(u32 *)(r + off) // BPF_LDX | BPF_W

  *(u8 *) (r + off) = r // BPF_STX | BPF_B
  *(u16 *)(r + off) = r // BPF_STX | BPF_H
  *(u32 *)(r + off) = r // BPF_STX | BPF_W

into B:

  w = *(u8 *) (r + off) // BPF_LDX | BPF_B
  w = *(u16 *)(r + off) // BPF_LDX | BPF_H
  w = *(u32 *)(r + off) // BPF_LDX | BPF_W

  *(u8 *) (r + off) = w // BPF_STX | BPF_B
  *(u16 *)(r + off) = w // BPF_STX | BPF_H
  *(u32 *)(r + off) = w // BPF_STX | BPF_W

There is no change on encoding nor how should they be interpreted,
everything is as it is, load the specified length, write into low bits of
the register then zeroing all remaining high bits.

The only change is their associated register class and how compiler view
them.

Format A still need to be kept, because eBPF LLVM backend doesn't support
sub-registers at default, but once 32-bit subregister is enabled, it should
use format B.

This patch implemented this together with all those necessary extended load
and truncated store patterns.

Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 325987
2018-02-23 23:49:28 +00:00

717 lines
26 KiB
TableGen

//===-- BPFInstrInfo.td - Target Description for BPF Target ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the BPF instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
include "BPFInstrFormats.td"
// Instruction Operands and Patterns
// These are target-independent nodes, but have target-specific formats.
def SDT_BPFCallSeqStart : SDCallSeqStart<[SDTCisVT<0, iPTR>,
SDTCisVT<1, iPTR>]>;
def SDT_BPFCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>;
def SDT_BPFCall : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
def SDT_BPFSetFlag : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>]>;
def SDT_BPFSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
SDTCisSameAs<0, 4>,
SDTCisSameAs<4, 5>]>;
def SDT_BPFBrCC : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>,
SDTCisVT<3, OtherVT>]>;
def SDT_BPFWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
SDTCisPtrTy<0>]>;
def BPFcall : SDNode<"BPFISD::CALL", SDT_BPFCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def BPFretflag : SDNode<"BPFISD::RET_FLAG", SDTNone,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def BPFcallseq_start: SDNode<"ISD::CALLSEQ_START", SDT_BPFCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def BPFcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_BPFCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def BPFbrcc : SDNode<"BPFISD::BR_CC", SDT_BPFBrCC,
[SDNPHasChain, SDNPOutGlue, SDNPInGlue]>;
def BPFselectcc : SDNode<"BPFISD::SELECT_CC", SDT_BPFSelectCC, [SDNPInGlue]>;
def BPFWrapper : SDNode<"BPFISD::Wrapper", SDT_BPFWrapper>;
def BPFIsLittleEndian : Predicate<"CurDAG->getDataLayout().isLittleEndian()">;
def BPFIsBigEndian : Predicate<"!CurDAG->getDataLayout().isLittleEndian()">;
def BPFHasALU32 : Predicate<"Subtarget->getHasAlu32()">;
def BPFNoALU32 : Predicate<"!Subtarget->getHasAlu32()">;
def brtarget : Operand<OtherVT> {
let PrintMethod = "printBrTargetOperand";
}
def calltarget : Operand<i64>;
def u64imm : Operand<i64> {
let PrintMethod = "printImm64Operand";
}
def i64immSExt32 : PatLeaf<(i64 imm),
[{return isInt<32>(N->getSExtValue()); }]>;
def i32immSExt32 : PatLeaf<(i32 imm),
[{return isInt<32>(N->getSExtValue()); }]>;
// Addressing modes.
def ADDRri : ComplexPattern<i64, 2, "SelectAddr", [], []>;
def FIri : ComplexPattern<i64, 2, "SelectFIAddr", [add, or], []>;
// Address operands
def MEMri : Operand<i64> {
let PrintMethod = "printMemOperand";
let EncoderMethod = "getMemoryOpValue";
let DecoderMethod = "decodeMemoryOpValue";
let MIOperandInfo = (ops GPR, i16imm);
}
// Conditional code predicates - used for pattern matching for jump instructions
def BPF_CC_EQ : PatLeaf<(i64 imm),
[{return (N->getZExtValue() == ISD::SETEQ);}]>;
def BPF_CC_NE : PatLeaf<(i64 imm),
[{return (N->getZExtValue() == ISD::SETNE);}]>;
def BPF_CC_GE : PatLeaf<(i64 imm),
[{return (N->getZExtValue() == ISD::SETGE);}]>;
def BPF_CC_GT : PatLeaf<(i64 imm),
[{return (N->getZExtValue() == ISD::SETGT);}]>;
def BPF_CC_GTU : PatLeaf<(i64 imm),
[{return (N->getZExtValue() == ISD::SETUGT);}]>;
def BPF_CC_GEU : PatLeaf<(i64 imm),
[{return (N->getZExtValue() == ISD::SETUGE);}]>;
def BPF_CC_LE : PatLeaf<(i64 imm),
[{return (N->getZExtValue() == ISD::SETLE);}]>;
def BPF_CC_LT : PatLeaf<(i64 imm),
[{return (N->getZExtValue() == ISD::SETLT);}]>;
def BPF_CC_LTU : PatLeaf<(i64 imm),
[{return (N->getZExtValue() == ISD::SETULT);}]>;
def BPF_CC_LEU : PatLeaf<(i64 imm),
[{return (N->getZExtValue() == ISD::SETULE);}]>;
// For arithmetic and jump instructions the 8-bit 'code'
// field is divided into three parts:
//
// +----------------+--------+--------------------+
// | 4 bits | 1 bit | 3 bits |
// | operation code | source | instruction class |
// +----------------+--------+--------------------+
// (MSB) (LSB)
class TYPE_ALU_JMP<bits<4> op, bits<1> srctype,
dag outs, dag ins, string asmstr, list<dag> pattern>
: InstBPF<outs, ins, asmstr, pattern> {
let Inst{63-60} = op;
let Inst{59} = srctype;
}
//For load and store instructions the 8-bit 'code' field is divided as:
//
// +--------+--------+-------------------+
// | 3 bits | 2 bits | 3 bits |
// | mode | size | instruction class |
// +--------+--------+-------------------+
// (MSB) (LSB)
class TYPE_LD_ST<bits<3> mode, bits<2> size,
dag outs, dag ins, string asmstr, list<dag> pattern>
: InstBPF<outs, ins, asmstr, pattern> {
let Inst{63-61} = mode;
let Inst{60-59} = size;
}
// jump instructions
class JMP_RR<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond>
: TYPE_ALU_JMP<Opc.Value, BPF_X.Value,
(outs),
(ins GPR:$dst, GPR:$src, brtarget:$BrDst),
"if $dst "#OpcodeStr#" $src goto $BrDst",
[(BPFbrcc i64:$dst, i64:$src, Cond, bb:$BrDst)]> {
bits<4> dst;
bits<4> src;
bits<16> BrDst;
let Inst{55-52} = src;
let Inst{51-48} = dst;
let Inst{47-32} = BrDst;
let BPFClass = BPF_JMP;
}
class JMP_RI<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond>
: TYPE_ALU_JMP<Opc.Value, BPF_K.Value,
(outs),
(ins GPR:$dst, i64imm:$imm, brtarget:$BrDst),
"if $dst "#OpcodeStr#" $imm goto $BrDst",
[(BPFbrcc i64:$dst, i64immSExt32:$imm, Cond, bb:$BrDst)]> {
bits<4> dst;
bits<16> BrDst;
bits<32> imm;
let Inst{51-48} = dst;
let Inst{47-32} = BrDst;
let Inst{31-0} = imm;
let BPFClass = BPF_JMP;
}
multiclass J<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond> {
def _rr : JMP_RR<Opc, OpcodeStr, Cond>;
def _ri : JMP_RI<Opc, OpcodeStr, Cond>;
}
let isBranch = 1, isTerminator = 1, hasDelaySlot=0 in {
// cmp+goto instructions
defm JEQ : J<BPF_JEQ, "==", BPF_CC_EQ>;
defm JUGT : J<BPF_JGT, ">", BPF_CC_GTU>;
defm JUGE : J<BPF_JGE, ">=", BPF_CC_GEU>;
defm JNE : J<BPF_JNE, "!=", BPF_CC_NE>;
defm JSGT : J<BPF_JSGT, "s>", BPF_CC_GT>;
defm JSGE : J<BPF_JSGE, "s>=", BPF_CC_GE>;
defm JULT : J<BPF_JLT, "<", BPF_CC_LTU>;
defm JULE : J<BPF_JLE, "<=", BPF_CC_LEU>;
defm JSLT : J<BPF_JSLT, "s<", BPF_CC_LT>;
defm JSLE : J<BPF_JSLE, "s<=", BPF_CC_LE>;
}
// ALU instructions
class ALU_RI<BPFOpClass Class, BPFArithOp Opc,
dag outs, dag ins, string asmstr, list<dag> pattern>
: TYPE_ALU_JMP<Opc.Value, BPF_K.Value, outs, ins, asmstr, pattern> {
bits<4> dst;
bits<32> imm;
let Inst{51-48} = dst;
let Inst{31-0} = imm;
let BPFClass = Class;
}
class ALU_RR<BPFOpClass Class, BPFArithOp Opc,
dag outs, dag ins, string asmstr, list<dag> pattern>
: TYPE_ALU_JMP<Opc.Value, BPF_X.Value, outs, ins, asmstr, pattern> {
bits<4> dst;
bits<4> src;
let Inst{55-52} = src;
let Inst{51-48} = dst;
let BPFClass = Class;
}
multiclass ALU<BPFArithOp Opc, string OpcodeStr, SDNode OpNode> {
def _rr : ALU_RR<BPF_ALU64, Opc,
(outs GPR:$dst),
(ins GPR:$src2, GPR:$src),
"$dst "#OpcodeStr#" $src",
[(set GPR:$dst, (OpNode i64:$src2, i64:$src))]>;
def _ri : ALU_RI<BPF_ALU64, Opc,
(outs GPR:$dst),
(ins GPR:$src2, i64imm:$imm),
"$dst "#OpcodeStr#" $imm",
[(set GPR:$dst, (OpNode GPR:$src2, i64immSExt32:$imm))]>;
def _rr_32 : ALU_RR<BPF_ALU, Opc,
(outs GPR32:$dst),
(ins GPR32:$src2, GPR32:$src),
"$dst "#OpcodeStr#" $src",
[(set GPR32:$dst, (OpNode i32:$src2, i32:$src))]>;
def _ri_32 : ALU_RI<BPF_ALU, Opc,
(outs GPR32:$dst),
(ins GPR32:$src2, i32imm:$imm),
"$dst "#OpcodeStr#" $imm",
[(set GPR32:$dst, (OpNode GPR32:$src2, i32immSExt32:$imm))]>;
}
let Constraints = "$dst = $src2" in {
let isAsCheapAsAMove = 1 in {
defm ADD : ALU<BPF_ADD, "+=", add>;
defm SUB : ALU<BPF_SUB, "-=", sub>;
defm OR : ALU<BPF_OR, "|=", or>;
defm AND : ALU<BPF_AND, "&=", and>;
defm SLL : ALU<BPF_LSH, "<<=", shl>;
defm SRL : ALU<BPF_RSH, ">>=", srl>;
defm XOR : ALU<BPF_XOR, "^=", xor>;
defm SRA : ALU<BPF_ARSH, "s>>=", sra>;
}
defm MUL : ALU<BPF_MUL, "*=", mul>;
defm DIV : ALU<BPF_DIV, "/=", udiv>;
}
class NEG_RR<BPFOpClass Class, BPFArithOp Opc,
dag outs, dag ins, string asmstr, list<dag> pattern>
: TYPE_ALU_JMP<Opc.Value, 0, outs, ins, asmstr, pattern> {
bits<4> dst;
let Inst{51-48} = dst;
let BPFClass = Class;
}
let Constraints = "$dst = $src", isAsCheapAsAMove = 1 in {
def NEG_64: NEG_RR<BPF_ALU64, BPF_NEG, (outs GPR:$dst), (ins GPR:$src),
"$dst = -$src",
[(set GPR:$dst, (ineg i64:$src))]>;
def NEG_32: NEG_RR<BPF_ALU, BPF_NEG, (outs GPR32:$dst), (ins GPR32:$src),
"$dst = -$src",
[(set GPR32:$dst, (ineg i32:$src))]>;
}
class LD_IMM64<bits<4> Pseudo, string OpcodeStr>
: TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
(outs GPR:$dst),
(ins u64imm:$imm),
"$dst "#OpcodeStr#" ${imm} ll",
[(set GPR:$dst, (i64 imm:$imm))]> {
bits<4> dst;
bits<64> imm;
let Inst{51-48} = dst;
let Inst{55-52} = Pseudo;
let Inst{47-32} = 0;
let Inst{31-0} = imm{31-0};
let BPFClass = BPF_LD;
}
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def LD_imm64 : LD_IMM64<0, "=">;
def MOV_rr : ALU_RR<BPF_ALU64, BPF_MOV,
(outs GPR:$dst),
(ins GPR:$src),
"$dst = $src",
[]>;
def MOV_ri : ALU_RI<BPF_ALU64, BPF_MOV,
(outs GPR:$dst),
(ins i64imm:$imm),
"$dst = $imm",
[(set GPR:$dst, (i64 i64immSExt32:$imm))]>;
def MOV_rr_32 : ALU_RR<BPF_ALU, BPF_MOV,
(outs GPR32:$dst),
(ins GPR32:$src),
"$dst = $src",
[]>;
def MOV_ri_32 : ALU_RI<BPF_ALU, BPF_MOV,
(outs GPR32:$dst),
(ins i32imm:$imm),
"$dst = $imm",
[(set GPR32:$dst, (i32 i32immSExt32:$imm))]>;
}
def FI_ri
: TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
(outs GPR:$dst),
(ins MEMri:$addr),
"lea\t$dst, $addr",
[(set i64:$dst, FIri:$addr)]> {
// This is a tentative instruction, and will be replaced
// with MOV_rr and ADD_ri in PEI phase
let Inst{51-48} = 0;
let Inst{55-52} = 2;
let Inst{47-32} = 0;
let Inst{31-0} = 0;
let BPFClass = BPF_LD;
}
def LD_pseudo
: TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
(outs GPR:$dst),
(ins i64imm:$pseudo, u64imm:$imm),
"ld_pseudo\t$dst, $pseudo, $imm",
[(set GPR:$dst, (int_bpf_pseudo imm:$pseudo, imm:$imm))]> {
bits<4> dst;
bits<64> imm;
bits<4> pseudo;
let Inst{51-48} = dst;
let Inst{55-52} = pseudo;
let Inst{47-32} = 0;
let Inst{31-0} = imm{31-0};
let BPFClass = BPF_LD;
}
// STORE instructions
class STORE<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
: TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
(outs),
(ins GPR:$src, MEMri:$addr),
"*("#OpcodeStr#" *)($addr) = $src",
Pattern> {
bits<4> src;
bits<20> addr;
let Inst{51-48} = addr{19-16}; // base reg
let Inst{55-52} = src;
let Inst{47-32} = addr{15-0}; // offset
let BPFClass = BPF_STX;
}
class STOREi64<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode>
: STORE<Opc, OpcodeStr, [(OpNode i64:$src, ADDRri:$addr)]>;
let Predicates = [BPFNoALU32] in {
def STW : STOREi64<BPF_W, "u32", truncstorei32>;
def STH : STOREi64<BPF_H, "u16", truncstorei16>;
def STB : STOREi64<BPF_B, "u8", truncstorei8>;
}
def STD : STOREi64<BPF_DW, "u64", store>;
// LOAD instructions
class LOAD<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
: TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
(outs GPR:$dst),
(ins MEMri:$addr),
"$dst = *("#OpcodeStr#" *)($addr)",
Pattern> {
bits<4> dst;
bits<20> addr;
let Inst{51-48} = dst;
let Inst{55-52} = addr{19-16};
let Inst{47-32} = addr{15-0};
let BPFClass = BPF_LDX;
}
class LOADi64<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
: LOAD<SizeOp, OpcodeStr, [(set i64:$dst, (OpNode ADDRri:$addr))]>;
let Predicates = [BPFNoALU32] in {
def LDW : LOADi64<BPF_W, "u32", zextloadi32>;
def LDH : LOADi64<BPF_H, "u16", zextloadi16>;
def LDB : LOADi64<BPF_B, "u8", zextloadi8>;
}
def LDD : LOADi64<BPF_DW, "u64", load>;
class BRANCH<BPFJumpOp Opc, string OpcodeStr, list<dag> Pattern>
: TYPE_ALU_JMP<Opc.Value, BPF_K.Value,
(outs),
(ins brtarget:$BrDst),
!strconcat(OpcodeStr, " $BrDst"),
Pattern> {
bits<16> BrDst;
let Inst{47-32} = BrDst;
let BPFClass = BPF_JMP;
}
class CALL<string OpcodeStr>
: TYPE_ALU_JMP<BPF_CALL.Value, BPF_K.Value,
(outs),
(ins calltarget:$BrDst),
!strconcat(OpcodeStr, " $BrDst"),
[]> {
bits<32> BrDst;
let Inst{31-0} = BrDst;
let BPFClass = BPF_JMP;
}
class CALLX<string OpcodeStr>
: TYPE_ALU_JMP<BPF_CALL.Value, BPF_X.Value,
(outs),
(ins calltarget:$BrDst),
!strconcat(OpcodeStr, " $BrDst"),
[]> {
bits<32> BrDst;
let Inst{31-0} = BrDst;
let BPFClass = BPF_JMP;
}
// Jump always
let isBranch = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1 in {
def JMP : BRANCH<BPF_JA, "goto", [(br bb:$BrDst)]>;
}
// Jump and link
let isCall=1, hasDelaySlot=0, Uses = [R11],
// Potentially clobbered registers
Defs = [R0, R1, R2, R3, R4, R5] in {
def JAL : CALL<"call">;
def JALX : CALLX<"callx">;
}
class NOP_I<string OpcodeStr>
: TYPE_ALU_JMP<BPF_MOV.Value, BPF_X.Value,
(outs),
(ins i32imm:$imm),
!strconcat(OpcodeStr, "\t$imm"),
[]> {
// mov r0, r0 == nop
let Inst{55-52} = 0;
let Inst{51-48} = 0;
let BPFClass = BPF_ALU64;
}
let hasSideEffects = 0 in
def NOP : NOP_I<"nop">;
class RET<string OpcodeStr>
: TYPE_ALU_JMP<BPF_EXIT.Value, BPF_K.Value,
(outs),
(ins),
!strconcat(OpcodeStr, ""),
[(BPFretflag)]> {
let Inst{31-0} = 0;
let BPFClass = BPF_JMP;
}
let isReturn = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1,
isNotDuplicable = 1 in {
def RET : RET<"exit">;
}
// ADJCALLSTACKDOWN/UP pseudo insns
let Defs = [R11], Uses = [R11], isCodeGenOnly = 1 in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
"#ADJCALLSTACKDOWN $amt1 $amt2",
[(BPFcallseq_start timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
"#ADJCALLSTACKUP $amt1 $amt2",
[(BPFcallseq_end timm:$amt1, timm:$amt2)]>;
}
let usesCustomInserter = 1, isCodeGenOnly = 1 in {
def Select : Pseudo<(outs GPR:$dst),
(ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR:$src, GPR:$src2),
"# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
[(set i64:$dst,
(BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i64:$src, i64:$src2))]>;
def Select_Ri : Pseudo<(outs GPR:$dst),
(ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR:$src, GPR:$src2),
"# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
[(set i64:$dst,
(BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i64:$src, i64:$src2))]>;
def Select_64_32 : Pseudo<(outs GPR32:$dst),
(ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2),
"# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
[(set i32:$dst,
(BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i32:$src, i32:$src2))]>;
def Select_Ri_64_32 : Pseudo<(outs GPR32:$dst),
(ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2),
"# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
[(set i32:$dst,
(BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i32:$src, i32:$src2))]>;
def Select_32 : Pseudo<(outs GPR32:$dst),
(ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2),
"# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
[(set i32:$dst,
(BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i32:$src, i32:$src2))]>;
def Select_Ri_32 : Pseudo<(outs GPR32:$dst),
(ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2),
"# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
[(set i32:$dst,
(BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i32:$src, i32:$src2))]>;
def Select_32_64 : Pseudo<(outs GPR:$dst),
(ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR:$src, GPR:$src2),
"# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
[(set i64:$dst,
(BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i64:$src, i64:$src2))]>;
def Select_Ri_32_64 : Pseudo<(outs GPR:$dst),
(ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR:$src, GPR:$src2),
"# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
[(set i64:$dst,
(BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i64:$src, i64:$src2))]>;
}
// load 64-bit global addr into register
def : Pat<(BPFWrapper tglobaladdr:$in), (LD_imm64 tglobaladdr:$in)>;
// 0xffffFFFF doesn't fit into simm32, optimize common case
def : Pat<(i64 (and (i64 GPR:$src), 0xffffFFFF)),
(SRL_ri (SLL_ri (i64 GPR:$src), 32), 32)>;
// Calls
def : Pat<(BPFcall tglobaladdr:$dst), (JAL tglobaladdr:$dst)>;
def : Pat<(BPFcall texternalsym:$dst), (JAL texternalsym:$dst)>;
def : Pat<(BPFcall imm:$dst), (JAL imm:$dst)>;
def : Pat<(BPFcall GPR:$dst), (JALX GPR:$dst)>;
// Loads
let Predicates = [BPFNoALU32] in {
def : Pat<(i64 (extloadi8 ADDRri:$src)), (i64 (LDB ADDRri:$src))>;
def : Pat<(i64 (extloadi16 ADDRri:$src)), (i64 (LDH ADDRri:$src))>;
def : Pat<(i64 (extloadi32 ADDRri:$src)), (i64 (LDW ADDRri:$src))>;
}
// Atomics
class XADD<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
: TYPE_LD_ST<BPF_XADD.Value, SizeOp.Value,
(outs GPR:$dst),
(ins MEMri:$addr, GPR:$val),
"lock *("#OpcodeStr#" *)($addr) += $val",
[(set GPR:$dst, (OpNode ADDRri:$addr, GPR:$val))]> {
bits<4> dst;
bits<20> addr;
let Inst{51-48} = addr{19-16}; // base reg
let Inst{55-52} = dst;
let Inst{47-32} = addr{15-0}; // offset
let BPFClass = BPF_STX;
}
let Constraints = "$dst = $val" in {
def XADD32 : XADD<BPF_W, "u32", atomic_load_add_32>;
def XADD64 : XADD<BPF_DW, "u64", atomic_load_add_64>;
// undefined def XADD16 : XADD<1, "xadd16", atomic_load_add_16>;
// undefined def XADD8 : XADD<2, "xadd8", atomic_load_add_8>;
}
// bswap16, bswap32, bswap64
class BSWAP<bits<32> SizeOp, string OpcodeStr, BPFSrcType SrcType, list<dag> Pattern>
: TYPE_ALU_JMP<BPF_END.Value, SrcType.Value,
(outs GPR:$dst),
(ins GPR:$src),
"$dst = "#OpcodeStr#" $src",
Pattern> {
bits<4> dst;
let Inst{51-48} = dst;
let Inst{31-0} = SizeOp;
let BPFClass = BPF_ALU;
}
let Constraints = "$dst = $src" in {
let Predicates = [BPFIsLittleEndian] in {
def BE16 : BSWAP<16, "be16", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>;
def BE32 : BSWAP<32, "be32", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>;
def BE64 : BSWAP<64, "be64", BPF_TO_BE, [(set GPR:$dst, (bswap GPR:$src))]>;
}
let Predicates = [BPFIsBigEndian] in {
def LE16 : BSWAP<16, "le16", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>;
def LE32 : BSWAP<32, "le32", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>;
def LE64 : BSWAP<64, "le64", BPF_TO_LE, [(set GPR:$dst, (bswap GPR:$src))]>;
}
}
let Defs = [R0, R1, R2, R3, R4, R5], Uses = [R6], hasSideEffects = 1,
hasExtraDefRegAllocReq = 1, hasExtraSrcRegAllocReq = 1, mayLoad = 1 in {
class LOAD_ABS<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode>
: TYPE_LD_ST<BPF_ABS.Value, SizeOp.Value,
(outs),
(ins GPR:$skb, i64imm:$imm),
"r0 = *("#OpcodeStr#" *)skb[$imm]",
[(set R0, (OpNode GPR:$skb, i64immSExt32:$imm))]> {
bits<32> imm;
let Inst{31-0} = imm;
let BPFClass = BPF_LD;
}
class LOAD_IND<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode>
: TYPE_LD_ST<BPF_IND.Value, SizeOp.Value,
(outs),
(ins GPR:$skb, GPR:$val),
"r0 = *("#OpcodeStr#" *)skb[$val]",
[(set R0, (OpNode GPR:$skb, GPR:$val))]> {
bits<4> val;
let Inst{55-52} = val;
let BPFClass = BPF_LD;
}
}
def LD_ABS_B : LOAD_ABS<BPF_B, "u8", int_bpf_load_byte>;
def LD_ABS_H : LOAD_ABS<BPF_H, "u16", int_bpf_load_half>;
def LD_ABS_W : LOAD_ABS<BPF_W, "u32", int_bpf_load_word>;
def LD_IND_B : LOAD_IND<BPF_B, "u8", int_bpf_load_byte>;
def LD_IND_H : LOAD_IND<BPF_H, "u16", int_bpf_load_half>;
def LD_IND_W : LOAD_IND<BPF_W, "u32", int_bpf_load_word>;
let isCodeGenOnly = 1 in {
def MOV_32_64 : ALU_RR<BPF_ALU, BPF_MOV,
(outs GPR:$dst), (ins GPR32:$src),
"$dst = $src", []>;
}
def : Pat<(i64 (sext GPR32:$src)),
(SRA_ri (SLL_ri (MOV_32_64 GPR32:$src), 32), 32)>;
def : Pat<(i64 (zext GPR32:$src)),
(SRL_ri (SLL_ri (MOV_32_64 GPR32:$src), 32), 32)>;
// For i64 -> i32 truncation, use the 32-bit subregister directly.
def : Pat<(i32 (trunc GPR:$src)),
(i32 (EXTRACT_SUBREG GPR:$src, sub_32))>;
// For i32 -> i64 anyext, we don't care about the high bits.
def : Pat<(i64 (anyext GPR32:$src)),
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
class STORE32<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
: TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
(outs),
(ins GPR32:$src, MEMri:$addr),
"*("#OpcodeStr#" *)($addr) = $src",
Pattern> {
bits<4> src;
bits<20> addr;
let Inst{51-48} = addr{19-16}; // base reg
let Inst{55-52} = src;
let Inst{47-32} = addr{15-0}; // offset
let BPFClass = BPF_STX;
}
class STOREi32<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode>
: STORE32<Opc, OpcodeStr, [(OpNode i32:$src, ADDRri:$addr)]>;
let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in {
def STW32 : STOREi32<BPF_W, "u32", store>;
def STH32 : STOREi32<BPF_H, "u16", truncstorei16>;
def STB32 : STOREi32<BPF_B, "u8", truncstorei8>;
}
class LOAD32<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
: TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
(outs GPR32:$dst),
(ins MEMri:$addr),
"$dst = *("#OpcodeStr#" *)($addr)",
Pattern> {
bits<4> dst;
bits<20> addr;
let Inst{51-48} = dst;
let Inst{55-52} = addr{19-16};
let Inst{47-32} = addr{15-0};
let BPFClass = BPF_LDX;
}
class LOADi32<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
: LOAD32<SizeOp, OpcodeStr, [(set i32:$dst, (OpNode ADDRri:$addr))]>;
let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in {
def LDW32 : LOADi32<BPF_W, "u32", load>;
def LDH32 : LOADi32<BPF_H, "u16", zextloadi16>;
def LDB32 : LOADi32<BPF_B, "u8", zextloadi8>;
}
let Predicates = [BPFHasALU32] in {
def : Pat<(truncstorei8 GPR:$src, ADDRri:$dst),
(STB32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
def : Pat<(truncstorei16 GPR:$src, ADDRri:$dst),
(STH32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
def : Pat<(truncstorei32 GPR:$src, ADDRri:$dst),
(STW32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
def : Pat<(i32 (extloadi8 ADDRri:$src)), (i32 (LDB32 ADDRri:$src))>;
def : Pat<(i32 (extloadi16 ADDRri:$src)), (i32 (LDH32 ADDRri:$src))>;
def : Pat<(i64 (zextloadi8 ADDRri:$src)),
(SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>;
def : Pat<(i64 (zextloadi16 ADDRri:$src)),
(SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>;
def : Pat<(i64 (zextloadi32 ADDRri:$src)),
(SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>;
def : Pat<(i64 (extloadi8 ADDRri:$src)),
(SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>;
def : Pat<(i64 (extloadi16 ADDRri:$src)),
(SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>;
def : Pat<(i64 (extloadi32 ADDRri:$src)),
(SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>;
}