1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/include/llvm/ADT/SCCIterator.h
Reid Spencer c4abcbefb1 Changes For Bug 352
Move include/Config and include/Support into include/llvm/Config,
include/llvm/ADT and include/llvm/Support. From here on out, all LLVM
public header files must be under include/llvm/.

llvm-svn: 16137
2004-09-01 22:55:40 +00:00

200 lines
7.1 KiB
C++

//===-- Support/SCCIterator.h - Strongly Connected Comp. Iter. --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This builds on the llvm/ADT/GraphTraits.h file to find the strongly connected
// components (SCCs) of a graph in O(N+E) time using Tarjan's DFS algorithm.
//
// The SCC iterator has the important property that if a node in SCC S1 has an
// edge to a node in SCC S2, then it visits S1 *after* S2.
//
// To visit S1 *before* S2, use the scc_iterator on the Inverse graph.
// (NOTE: This requires some simple wrappers and is not supported yet.)
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_SCCITERATOR_H
#define LLVM_ADT_SCCITERATOR_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/iterator"
#include <vector>
#include <map>
namespace llvm {
//===----------------------------------------------------------------------===//
///
/// scc_iterator - Enumerate the SCCs of a directed graph, in
/// reverse topological order of the SCC DAG.
///
template<class GraphT, class GT = GraphTraits<GraphT> >
class scc_iterator
: public forward_iterator<std::vector<typename GT::NodeType>, ptrdiff_t> {
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
typedef std::vector<NodeType*> SccTy;
typedef forward_iterator<SccTy, ptrdiff_t> super;
typedef typename super::reference reference;
typedef typename super::pointer pointer;
// The visit counters used to detect when a complete SCC is on the stack.
// visitNum is the global counter.
// nodeVisitNumbers are per-node visit numbers, also used as DFS flags.
unsigned visitNum;
std::map<NodeType *, unsigned> nodeVisitNumbers;
// SCCNodeStack - Stack holding nodes of the SCC.
std::vector<NodeType *> SCCNodeStack;
// CurrentSCC - The current SCC, retrieved using operator*().
SccTy CurrentSCC;
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
// MinVistNumStack - Stack holding the "min" values for each node in the DFS.
// This is used to track the minimum uplink values for all children of
// the corresponding node on the VisitStack.
std::vector<unsigned> MinVisitNumStack;
// A single "visit" within the non-recursive DFS traversal.
void DFSVisitOne(NodeType* N) {
++visitNum; // Global counter for the visit order
nodeVisitNumbers[N] = visitNum;
SCCNodeStack.push_back(N);
MinVisitNumStack.push_back(visitNum);
VisitStack.push_back(std::make_pair(N, GT::child_begin(N)));
//DEBUG(std::cerr << "TarjanSCC: Node " << N <<
// " : visitNum = " << visitNum << "\n");
}
// The stack-based DFS traversal; defined below.
void DFSVisitChildren() {
assert(!VisitStack.empty());
while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
// TOS has at least one more child so continue DFS
NodeType *childN = *VisitStack.back().second++;
if (!nodeVisitNumbers.count(childN)) {
// this node has never been seen
DFSVisitOne(childN);
} else {
unsigned childNum = nodeVisitNumbers[childN];
if (MinVisitNumStack.back() > childNum)
MinVisitNumStack.back() = childNum;
}
}
}
// Compute the next SCC using the DFS traversal.
void GetNextSCC() {
assert(VisitStack.size() == MinVisitNumStack.size());
CurrentSCC.clear(); // Prepare to compute the next SCC
while (!VisitStack.empty()) {
DFSVisitChildren();
assert(VisitStack.back().second ==GT::child_end(VisitStack.back().first));
NodeType* visitingN = VisitStack.back().first;
unsigned minVisitNum = MinVisitNumStack.back();
VisitStack.pop_back();
MinVisitNumStack.pop_back();
if (!MinVisitNumStack.empty() && MinVisitNumStack.back() > minVisitNum)
MinVisitNumStack.back() = minVisitNum;
//DEBUG(std::cerr << "TarjanSCC: Popped node " << visitingN <<
// " : minVisitNum = " << minVisitNum << "; Node visit num = " <<
// nodeVisitNumbers[visitingN] << "\n");
if (minVisitNum == nodeVisitNumbers[visitingN]) {
// A full SCC is on the SCCNodeStack! It includes all nodes below
// visitingN on the stack. Copy those nodes to CurrentSCC,
// reset their minVisit values, and return (this suspends
// the DFS traversal till the next ++).
do {
CurrentSCC.push_back(SCCNodeStack.back());
SCCNodeStack.pop_back();
nodeVisitNumbers[CurrentSCC.back()] = ~0UL;
} while (CurrentSCC.back() != visitingN);
return;
}
}
}
inline scc_iterator(NodeType *entryN) : visitNum(0) {
DFSVisitOne(entryN);
GetNextSCC();
}
inline scc_iterator() { /* End is when DFS stack is empty */ }
public:
typedef scc_iterator<GraphT, GT> _Self;
// Provide static "constructors"...
static inline _Self begin(GraphT& G) { return _Self(GT::getEntryNode(G)); }
static inline _Self end (GraphT& G) { return _Self(); }
// Direct loop termination test (I.fini() is more efficient than I == end())
inline bool fini() const {
assert(!CurrentSCC.empty() || VisitStack.empty());
return CurrentSCC.empty();
}
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
// Iterator traversal: forward iteration only
inline _Self& operator++() { // Preincrement
GetNextSCC();
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
// Retrieve a reference to the current SCC
inline const SccTy &operator*() const {
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
return CurrentSCC;
}
inline SccTy &operator*() {
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
return CurrentSCC;
}
// hasLoop() -- Test if the current SCC has a loop. If it has more than one
// node, this is trivially true. If not, it may still contain a loop if the
// node has an edge back to itself.
bool hasLoop() const {
assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!");
if (CurrentSCC.size() > 1) return true;
NodeType *N = CurrentSCC.front();
for (ChildItTy CI = GT::child_begin(N), CE=GT::child_end(N); CI != CE; ++CI)
if (*CI == N)
return true;
return false;
}
};
// Global constructor for the SCC iterator.
template <class T>
scc_iterator<T> scc_begin(T G) {
return scc_iterator<T>::begin(G);
}
template <class T>
scc_iterator<T> scc_end(T G) {
return scc_iterator<T>::end(G);
}
} // End llvm namespace
#endif