1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/CodeGen/MachineOperand.cpp
Guillaume Chatelet 4a32ea01b3 [Alignment][NFC] Finish transition for Loads
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Reviewers: courbet

Subscribers: hiraditya, asbirlea, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D69253

llvm-svn: 375419
2019-10-21 15:10:26 +00:00

1184 lines
40 KiB
C++

//===- lib/CodeGen/MachineOperand.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Methods common to all machine operands.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/MIRPrinter.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
static cl::opt<int>
PrintRegMaskNumRegs("print-regmask-num-regs",
cl::desc("Number of registers to limit to when "
"printing regmask operands in IR dumps. "
"unlimited = -1"),
cl::init(32), cl::Hidden);
static const MachineFunction *getMFIfAvailable(const MachineOperand &MO) {
if (const MachineInstr *MI = MO.getParent())
if (const MachineBasicBlock *MBB = MI->getParent())
if (const MachineFunction *MF = MBB->getParent())
return MF;
return nullptr;
}
static MachineFunction *getMFIfAvailable(MachineOperand &MO) {
return const_cast<MachineFunction *>(
getMFIfAvailable(const_cast<const MachineOperand &>(MO)));
}
void MachineOperand::setReg(Register Reg) {
if (getReg() == Reg)
return; // No change.
// Clear the IsRenamable bit to keep it conservatively correct.
IsRenamable = false;
// Otherwise, we have to change the register. If this operand is embedded
// into a machine function, we need to update the old and new register's
// use/def lists.
if (MachineFunction *MF = getMFIfAvailable(*this)) {
MachineRegisterInfo &MRI = MF->getRegInfo();
MRI.removeRegOperandFromUseList(this);
SmallContents.RegNo = Reg;
MRI.addRegOperandToUseList(this);
return;
}
// Otherwise, just change the register, no problem. :)
SmallContents.RegNo = Reg;
}
void MachineOperand::substVirtReg(Register Reg, unsigned SubIdx,
const TargetRegisterInfo &TRI) {
assert(Reg.isVirtual());
if (SubIdx && getSubReg())
SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
setReg(Reg);
if (SubIdx)
setSubReg(SubIdx);
}
void MachineOperand::substPhysReg(MCRegister Reg, const TargetRegisterInfo &TRI) {
assert(Reg.isPhysical());
if (getSubReg()) {
Reg = TRI.getSubReg(Reg, getSubReg());
// Note that getSubReg() may return 0 if the sub-register doesn't exist.
// That won't happen in legal code.
setSubReg(0);
if (isDef())
setIsUndef(false);
}
setReg(Reg);
}
/// Change a def to a use, or a use to a def.
void MachineOperand::setIsDef(bool Val) {
assert(isReg() && "Wrong MachineOperand accessor");
assert((!Val || !isDebug()) && "Marking a debug operation as def");
if (IsDef == Val)
return;
assert(!IsDeadOrKill && "Changing def/use with dead/kill set not supported");
// MRI may keep uses and defs in different list positions.
if (MachineFunction *MF = getMFIfAvailable(*this)) {
MachineRegisterInfo &MRI = MF->getRegInfo();
MRI.removeRegOperandFromUseList(this);
IsDef = Val;
MRI.addRegOperandToUseList(this);
return;
}
IsDef = Val;
}
bool MachineOperand::isRenamable() const {
assert(isReg() && "Wrong MachineOperand accessor");
assert(Register::isPhysicalRegister(getReg()) &&
"isRenamable should only be checked on physical registers");
if (!IsRenamable)
return false;
const MachineInstr *MI = getParent();
if (!MI)
return true;
if (isDef())
return !MI->hasExtraDefRegAllocReq(MachineInstr::IgnoreBundle);
assert(isUse() && "Reg is not def or use");
return !MI->hasExtraSrcRegAllocReq(MachineInstr::IgnoreBundle);
}
void MachineOperand::setIsRenamable(bool Val) {
assert(isReg() && "Wrong MachineOperand accessor");
assert(Register::isPhysicalRegister(getReg()) &&
"setIsRenamable should only be called on physical registers");
IsRenamable = Val;
}
// If this operand is currently a register operand, and if this is in a
// function, deregister the operand from the register's use/def list.
void MachineOperand::removeRegFromUses() {
if (!isReg() || !isOnRegUseList())
return;
if (MachineFunction *MF = getMFIfAvailable(*this))
MF->getRegInfo().removeRegOperandFromUseList(this);
}
/// ChangeToImmediate - Replace this operand with a new immediate operand of
/// the specified value. If an operand is known to be an immediate already,
/// the setImm method should be used.
void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
removeRegFromUses();
OpKind = MO_Immediate;
Contents.ImmVal = ImmVal;
}
void MachineOperand::ChangeToFPImmediate(const ConstantFP *FPImm) {
assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
removeRegFromUses();
OpKind = MO_FPImmediate;
Contents.CFP = FPImm;
}
void MachineOperand::ChangeToES(const char *SymName,
unsigned TargetFlags) {
assert((!isReg() || !isTied()) &&
"Cannot change a tied operand into an external symbol");
removeRegFromUses();
OpKind = MO_ExternalSymbol;
Contents.OffsetedInfo.Val.SymbolName = SymName;
setOffset(0); // Offset is always 0.
setTargetFlags(TargetFlags);
}
void MachineOperand::ChangeToGA(const GlobalValue *GV, int64_t Offset,
unsigned TargetFlags) {
assert((!isReg() || !isTied()) &&
"Cannot change a tied operand into a global address");
removeRegFromUses();
OpKind = MO_GlobalAddress;
Contents.OffsetedInfo.Val.GV = GV;
setOffset(Offset);
setTargetFlags(TargetFlags);
}
void MachineOperand::ChangeToMCSymbol(MCSymbol *Sym) {
assert((!isReg() || !isTied()) &&
"Cannot change a tied operand into an MCSymbol");
removeRegFromUses();
OpKind = MO_MCSymbol;
Contents.Sym = Sym;
}
void MachineOperand::ChangeToFrameIndex(int Idx) {
assert((!isReg() || !isTied()) &&
"Cannot change a tied operand into a FrameIndex");
removeRegFromUses();
OpKind = MO_FrameIndex;
setIndex(Idx);
}
void MachineOperand::ChangeToTargetIndex(unsigned Idx, int64_t Offset,
unsigned TargetFlags) {
assert((!isReg() || !isTied()) &&
"Cannot change a tied operand into a FrameIndex");
removeRegFromUses();
OpKind = MO_TargetIndex;
setIndex(Idx);
setOffset(Offset);
setTargetFlags(TargetFlags);
}
/// ChangeToRegister - Replace this operand with a new register operand of
/// the specified value. If an operand is known to be an register already,
/// the setReg method should be used.
void MachineOperand::ChangeToRegister(Register Reg, bool isDef, bool isImp,
bool isKill, bool isDead, bool isUndef,
bool isDebug) {
MachineRegisterInfo *RegInfo = nullptr;
if (MachineFunction *MF = getMFIfAvailable(*this))
RegInfo = &MF->getRegInfo();
// If this operand is already a register operand, remove it from the
// register's use/def lists.
bool WasReg = isReg();
if (RegInfo && WasReg)
RegInfo->removeRegOperandFromUseList(this);
// Change this to a register and set the reg#.
assert(!(isDead && !isDef) && "Dead flag on non-def");
assert(!(isKill && isDef) && "Kill flag on def");
OpKind = MO_Register;
SmallContents.RegNo = Reg;
SubReg_TargetFlags = 0;
IsDef = isDef;
IsImp = isImp;
IsDeadOrKill = isKill | isDead;
IsRenamable = false;
IsUndef = isUndef;
IsInternalRead = false;
IsEarlyClobber = false;
IsDebug = isDebug;
// Ensure isOnRegUseList() returns false.
Contents.Reg.Prev = nullptr;
// Preserve the tie when the operand was already a register.
if (!WasReg)
TiedTo = 0;
// If this operand is embedded in a function, add the operand to the
// register's use/def list.
if (RegInfo)
RegInfo->addRegOperandToUseList(this);
}
/// isIdenticalTo - Return true if this operand is identical to the specified
/// operand. Note that this should stay in sync with the hash_value overload
/// below.
bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
if (getType() != Other.getType() ||
getTargetFlags() != Other.getTargetFlags())
return false;
switch (getType()) {
case MachineOperand::MO_Register:
return getReg() == Other.getReg() && isDef() == Other.isDef() &&
getSubReg() == Other.getSubReg();
case MachineOperand::MO_Immediate:
return getImm() == Other.getImm();
case MachineOperand::MO_CImmediate:
return getCImm() == Other.getCImm();
case MachineOperand::MO_FPImmediate:
return getFPImm() == Other.getFPImm();
case MachineOperand::MO_MachineBasicBlock:
return getMBB() == Other.getMBB();
case MachineOperand::MO_FrameIndex:
return getIndex() == Other.getIndex();
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_TargetIndex:
return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
case MachineOperand::MO_JumpTableIndex:
return getIndex() == Other.getIndex();
case MachineOperand::MO_GlobalAddress:
return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
case MachineOperand::MO_ExternalSymbol:
return strcmp(getSymbolName(), Other.getSymbolName()) == 0 &&
getOffset() == Other.getOffset();
case MachineOperand::MO_BlockAddress:
return getBlockAddress() == Other.getBlockAddress() &&
getOffset() == Other.getOffset();
case MachineOperand::MO_RegisterMask:
case MachineOperand::MO_RegisterLiveOut: {
// Shallow compare of the two RegMasks
const uint32_t *RegMask = getRegMask();
const uint32_t *OtherRegMask = Other.getRegMask();
if (RegMask == OtherRegMask)
return true;
if (const MachineFunction *MF = getMFIfAvailable(*this)) {
// Calculate the size of the RegMask
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
unsigned RegMaskSize = (TRI->getNumRegs() + 31) / 32;
// Deep compare of the two RegMasks
return std::equal(RegMask, RegMask + RegMaskSize, OtherRegMask);
}
// We don't know the size of the RegMask, so we can't deep compare the two
// reg masks.
return false;
}
case MachineOperand::MO_MCSymbol:
return getMCSymbol() == Other.getMCSymbol();
case MachineOperand::MO_CFIIndex:
return getCFIIndex() == Other.getCFIIndex();
case MachineOperand::MO_Metadata:
return getMetadata() == Other.getMetadata();
case MachineOperand::MO_IntrinsicID:
return getIntrinsicID() == Other.getIntrinsicID();
case MachineOperand::MO_Predicate:
return getPredicate() == Other.getPredicate();
case MachineOperand::MO_ShuffleMask:
return getShuffleMask() == Other.getShuffleMask();
}
llvm_unreachable("Invalid machine operand type");
}
// Note: this must stay exactly in sync with isIdenticalTo above.
hash_code llvm::hash_value(const MachineOperand &MO) {
switch (MO.getType()) {
case MachineOperand::MO_Register:
// Register operands don't have target flags.
return hash_combine(MO.getType(), (unsigned)MO.getReg(), MO.getSubReg(), MO.isDef());
case MachineOperand::MO_Immediate:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
case MachineOperand::MO_CImmediate:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
case MachineOperand::MO_FPImmediate:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
case MachineOperand::MO_MachineBasicBlock:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
case MachineOperand::MO_FrameIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_TargetIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
MO.getOffset());
case MachineOperand::MO_JumpTableIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
case MachineOperand::MO_ExternalSymbol:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
StringRef(MO.getSymbolName()));
case MachineOperand::MO_GlobalAddress:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
MO.getOffset());
case MachineOperand::MO_BlockAddress:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getBlockAddress(),
MO.getOffset());
case MachineOperand::MO_RegisterMask:
case MachineOperand::MO_RegisterLiveOut:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
case MachineOperand::MO_Metadata:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
case MachineOperand::MO_MCSymbol:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
case MachineOperand::MO_CFIIndex:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
case MachineOperand::MO_IntrinsicID:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIntrinsicID());
case MachineOperand::MO_Predicate:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getPredicate());
case MachineOperand::MO_ShuffleMask:
return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getShuffleMask());
}
llvm_unreachable("Invalid machine operand type");
}
// Try to crawl up to the machine function and get TRI and IntrinsicInfo from
// it.
static void tryToGetTargetInfo(const MachineOperand &MO,
const TargetRegisterInfo *&TRI,
const TargetIntrinsicInfo *&IntrinsicInfo) {
if (const MachineFunction *MF = getMFIfAvailable(MO)) {
TRI = MF->getSubtarget().getRegisterInfo();
IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
}
}
static const char *getTargetIndexName(const MachineFunction &MF, int Index) {
const auto *TII = MF.getSubtarget().getInstrInfo();
assert(TII && "expected instruction info");
auto Indices = TII->getSerializableTargetIndices();
auto Found = find_if(Indices, [&](const std::pair<int, const char *> &I) {
return I.first == Index;
});
if (Found != Indices.end())
return Found->second;
return nullptr;
}
static const char *getTargetFlagName(const TargetInstrInfo *TII, unsigned TF) {
auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
for (const auto &I : Flags) {
if (I.first == TF) {
return I.second;
}
}
return nullptr;
}
static void printCFIRegister(unsigned DwarfReg, raw_ostream &OS,
const TargetRegisterInfo *TRI) {
if (!TRI) {
OS << "%dwarfreg." << DwarfReg;
return;
}
if (Optional<unsigned> Reg = TRI->getLLVMRegNum(DwarfReg, true))
OS << printReg(*Reg, TRI);
else
OS << "<badreg>";
}
static void printIRBlockReference(raw_ostream &OS, const BasicBlock &BB,
ModuleSlotTracker &MST) {
OS << "%ir-block.";
if (BB.hasName()) {
printLLVMNameWithoutPrefix(OS, BB.getName());
return;
}
Optional<int> Slot;
if (const Function *F = BB.getParent()) {
if (F == MST.getCurrentFunction()) {
Slot = MST.getLocalSlot(&BB);
} else if (const Module *M = F->getParent()) {
ModuleSlotTracker CustomMST(M, /*ShouldInitializeAllMetadata=*/false);
CustomMST.incorporateFunction(*F);
Slot = CustomMST.getLocalSlot(&BB);
}
}
if (Slot)
MachineOperand::printIRSlotNumber(OS, *Slot);
else
OS << "<unknown>";
}
static void printIRValueReference(raw_ostream &OS, const Value &V,
ModuleSlotTracker &MST) {
if (isa<GlobalValue>(V)) {
V.printAsOperand(OS, /*PrintType=*/false, MST);
return;
}
if (isa<Constant>(V)) {
// Machine memory operands can load/store to/from constant value pointers.
OS << '`';
V.printAsOperand(OS, /*PrintType=*/true, MST);
OS << '`';
return;
}
OS << "%ir.";
if (V.hasName()) {
printLLVMNameWithoutPrefix(OS, V.getName());
return;
}
int Slot = MST.getCurrentFunction() ? MST.getLocalSlot(&V) : -1;
MachineOperand::printIRSlotNumber(OS, Slot);
}
static void printSyncScope(raw_ostream &OS, const LLVMContext &Context,
SyncScope::ID SSID,
SmallVectorImpl<StringRef> &SSNs) {
switch (SSID) {
case SyncScope::System:
break;
default:
if (SSNs.empty())
Context.getSyncScopeNames(SSNs);
OS << "syncscope(\"";
printEscapedString(SSNs[SSID], OS);
OS << "\") ";
break;
}
}
static const char *getTargetMMOFlagName(const TargetInstrInfo &TII,
unsigned TMMOFlag) {
auto Flags = TII.getSerializableMachineMemOperandTargetFlags();
for (const auto &I : Flags) {
if (I.first == TMMOFlag) {
return I.second;
}
}
return nullptr;
}
static void printFrameIndex(raw_ostream& OS, int FrameIndex, bool IsFixed,
const MachineFrameInfo *MFI) {
StringRef Name;
if (MFI) {
IsFixed = MFI->isFixedObjectIndex(FrameIndex);
if (const AllocaInst *Alloca = MFI->getObjectAllocation(FrameIndex))
if (Alloca->hasName())
Name = Alloca->getName();
if (IsFixed)
FrameIndex -= MFI->getObjectIndexBegin();
}
MachineOperand::printStackObjectReference(OS, FrameIndex, IsFixed, Name);
}
void MachineOperand::printSubRegIdx(raw_ostream &OS, uint64_t Index,
const TargetRegisterInfo *TRI) {
OS << "%subreg.";
if (TRI)
OS << TRI->getSubRegIndexName(Index);
else
OS << Index;
}
void MachineOperand::printTargetFlags(raw_ostream &OS,
const MachineOperand &Op) {
if (!Op.getTargetFlags())
return;
const MachineFunction *MF = getMFIfAvailable(Op);
if (!MF)
return;
const auto *TII = MF->getSubtarget().getInstrInfo();
assert(TII && "expected instruction info");
auto Flags = TII->decomposeMachineOperandsTargetFlags(Op.getTargetFlags());
OS << "target-flags(";
const bool HasDirectFlags = Flags.first;
const bool HasBitmaskFlags = Flags.second;
if (!HasDirectFlags && !HasBitmaskFlags) {
OS << "<unknown>) ";
return;
}
if (HasDirectFlags) {
if (const auto *Name = getTargetFlagName(TII, Flags.first))
OS << Name;
else
OS << "<unknown target flag>";
}
if (!HasBitmaskFlags) {
OS << ") ";
return;
}
bool IsCommaNeeded = HasDirectFlags;
unsigned BitMask = Flags.second;
auto BitMasks = TII->getSerializableBitmaskMachineOperandTargetFlags();
for (const auto &Mask : BitMasks) {
// Check if the flag's bitmask has the bits of the current mask set.
if ((BitMask & Mask.first) == Mask.first) {
if (IsCommaNeeded)
OS << ", ";
IsCommaNeeded = true;
OS << Mask.second;
// Clear the bits which were serialized from the flag's bitmask.
BitMask &= ~(Mask.first);
}
}
if (BitMask) {
// When the resulting flag's bitmask isn't zero, we know that we didn't
// serialize all of the bit flags.
if (IsCommaNeeded)
OS << ", ";
OS << "<unknown bitmask target flag>";
}
OS << ") ";
}
void MachineOperand::printSymbol(raw_ostream &OS, MCSymbol &Sym) {
OS << "<mcsymbol " << Sym << ">";
}
void MachineOperand::printStackObjectReference(raw_ostream &OS,
unsigned FrameIndex,
bool IsFixed, StringRef Name) {
if (IsFixed) {
OS << "%fixed-stack." << FrameIndex;
return;
}
OS << "%stack." << FrameIndex;
if (!Name.empty())
OS << '.' << Name;
}
void MachineOperand::printOperandOffset(raw_ostream &OS, int64_t Offset) {
if (Offset == 0)
return;
if (Offset < 0) {
OS << " - " << -Offset;
return;
}
OS << " + " << Offset;
}
void MachineOperand::printIRSlotNumber(raw_ostream &OS, int Slot) {
if (Slot == -1)
OS << "<badref>";
else
OS << Slot;
}
static void printCFI(raw_ostream &OS, const MCCFIInstruction &CFI,
const TargetRegisterInfo *TRI) {
switch (CFI.getOperation()) {
case MCCFIInstruction::OpSameValue:
OS << "same_value ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
printCFIRegister(CFI.getRegister(), OS, TRI);
break;
case MCCFIInstruction::OpRememberState:
OS << "remember_state ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
break;
case MCCFIInstruction::OpRestoreState:
OS << "restore_state ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
break;
case MCCFIInstruction::OpOffset:
OS << "offset ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
printCFIRegister(CFI.getRegister(), OS, TRI);
OS << ", " << CFI.getOffset();
break;
case MCCFIInstruction::OpDefCfaRegister:
OS << "def_cfa_register ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
printCFIRegister(CFI.getRegister(), OS, TRI);
break;
case MCCFIInstruction::OpDefCfaOffset:
OS << "def_cfa_offset ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
OS << CFI.getOffset();
break;
case MCCFIInstruction::OpDefCfa:
OS << "def_cfa ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
printCFIRegister(CFI.getRegister(), OS, TRI);
OS << ", " << CFI.getOffset();
break;
case MCCFIInstruction::OpRelOffset:
OS << "rel_offset ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
printCFIRegister(CFI.getRegister(), OS, TRI);
OS << ", " << CFI.getOffset();
break;
case MCCFIInstruction::OpAdjustCfaOffset:
OS << "adjust_cfa_offset ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
OS << CFI.getOffset();
break;
case MCCFIInstruction::OpRestore:
OS << "restore ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
printCFIRegister(CFI.getRegister(), OS, TRI);
break;
case MCCFIInstruction::OpEscape: {
OS << "escape ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
if (!CFI.getValues().empty()) {
size_t e = CFI.getValues().size() - 1;
for (size_t i = 0; i < e; ++i)
OS << format("0x%02x", uint8_t(CFI.getValues()[i])) << ", ";
OS << format("0x%02x", uint8_t(CFI.getValues()[e])) << ", ";
}
break;
}
case MCCFIInstruction::OpUndefined:
OS << "undefined ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
printCFIRegister(CFI.getRegister(), OS, TRI);
break;
case MCCFIInstruction::OpRegister:
OS << "register ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
printCFIRegister(CFI.getRegister(), OS, TRI);
OS << ", ";
printCFIRegister(CFI.getRegister2(), OS, TRI);
break;
case MCCFIInstruction::OpWindowSave:
OS << "window_save ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
break;
case MCCFIInstruction::OpNegateRAState:
OS << "negate_ra_sign_state ";
if (MCSymbol *Label = CFI.getLabel())
MachineOperand::printSymbol(OS, *Label);
break;
default:
// TODO: Print the other CFI Operations.
OS << "<unserializable cfi directive>";
break;
}
}
void MachineOperand::print(raw_ostream &OS, const TargetRegisterInfo *TRI,
const TargetIntrinsicInfo *IntrinsicInfo) const {
print(OS, LLT{}, TRI, IntrinsicInfo);
}
void MachineOperand::print(raw_ostream &OS, LLT TypeToPrint,
const TargetRegisterInfo *TRI,
const TargetIntrinsicInfo *IntrinsicInfo) const {
tryToGetTargetInfo(*this, TRI, IntrinsicInfo);
ModuleSlotTracker DummyMST(nullptr);
print(OS, DummyMST, TypeToPrint, /*PrintDef=*/false, /*IsStandalone=*/true,
/*ShouldPrintRegisterTies=*/true,
/*TiedOperandIdx=*/0, TRI, IntrinsicInfo);
}
void MachineOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
LLT TypeToPrint, bool PrintDef, bool IsStandalone,
bool ShouldPrintRegisterTies,
unsigned TiedOperandIdx,
const TargetRegisterInfo *TRI,
const TargetIntrinsicInfo *IntrinsicInfo) const {
printTargetFlags(OS, *this);
switch (getType()) {
case MachineOperand::MO_Register: {
Register Reg = getReg();
if (isImplicit())
OS << (isDef() ? "implicit-def " : "implicit ");
else if (PrintDef && isDef())
// Print the 'def' flag only when the operand is defined after '='.
OS << "def ";
if (isInternalRead())
OS << "internal ";
if (isDead())
OS << "dead ";
if (isKill())
OS << "killed ";
if (isUndef())
OS << "undef ";
if (isEarlyClobber())
OS << "early-clobber ";
if (Register::isPhysicalRegister(getReg()) && isRenamable())
OS << "renamable ";
// isDebug() is exactly true for register operands of a DBG_VALUE. So we
// simply infer it when parsing and do not need to print it.
const MachineRegisterInfo *MRI = nullptr;
if (Register::isVirtualRegister(Reg)) {
if (const MachineFunction *MF = getMFIfAvailable(*this)) {
MRI = &MF->getRegInfo();
}
}
OS << printReg(Reg, TRI, 0, MRI);
// Print the sub register.
if (unsigned SubReg = getSubReg()) {
if (TRI)
OS << '.' << TRI->getSubRegIndexName(SubReg);
else
OS << ".subreg" << SubReg;
}
// Print the register class / bank.
if (Register::isVirtualRegister(Reg)) {
if (const MachineFunction *MF = getMFIfAvailable(*this)) {
const MachineRegisterInfo &MRI = MF->getRegInfo();
if (IsStandalone || !PrintDef || MRI.def_empty(Reg)) {
OS << ':';
OS << printRegClassOrBank(Reg, MRI, TRI);
}
}
}
// Print ties.
if (ShouldPrintRegisterTies && isTied() && !isDef())
OS << "(tied-def " << TiedOperandIdx << ")";
// Print types.
if (TypeToPrint.isValid())
OS << '(' << TypeToPrint << ')';
break;
}
case MachineOperand::MO_Immediate:
OS << getImm();
break;
case MachineOperand::MO_CImmediate:
getCImm()->printAsOperand(OS, /*PrintType=*/true, MST);
break;
case MachineOperand::MO_FPImmediate:
getFPImm()->printAsOperand(OS, /*PrintType=*/true, MST);
break;
case MachineOperand::MO_MachineBasicBlock:
OS << printMBBReference(*getMBB());
break;
case MachineOperand::MO_FrameIndex: {
int FrameIndex = getIndex();
bool IsFixed = false;
const MachineFrameInfo *MFI = nullptr;
if (const MachineFunction *MF = getMFIfAvailable(*this))
MFI = &MF->getFrameInfo();
printFrameIndex(OS, FrameIndex, IsFixed, MFI);
break;
}
case MachineOperand::MO_ConstantPoolIndex:
OS << "%const." << getIndex();
printOperandOffset(OS, getOffset());
break;
case MachineOperand::MO_TargetIndex: {
OS << "target-index(";
const char *Name = "<unknown>";
if (const MachineFunction *MF = getMFIfAvailable(*this))
if (const auto *TargetIndexName = getTargetIndexName(*MF, getIndex()))
Name = TargetIndexName;
OS << Name << ')';
printOperandOffset(OS, getOffset());
break;
}
case MachineOperand::MO_JumpTableIndex:
OS << printJumpTableEntryReference(getIndex());
break;
case MachineOperand::MO_GlobalAddress:
getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
printOperandOffset(OS, getOffset());
break;
case MachineOperand::MO_ExternalSymbol: {
StringRef Name = getSymbolName();
OS << '&';
if (Name.empty()) {
OS << "\"\"";
} else {
printLLVMNameWithoutPrefix(OS, Name);
}
printOperandOffset(OS, getOffset());
break;
}
case MachineOperand::MO_BlockAddress: {
OS << "blockaddress(";
getBlockAddress()->getFunction()->printAsOperand(OS, /*PrintType=*/false,
MST);
OS << ", ";
printIRBlockReference(OS, *getBlockAddress()->getBasicBlock(), MST);
OS << ')';
MachineOperand::printOperandOffset(OS, getOffset());
break;
}
case MachineOperand::MO_RegisterMask: {
OS << "<regmask";
if (TRI) {
unsigned NumRegsInMask = 0;
unsigned NumRegsEmitted = 0;
for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
unsigned MaskWord = i / 32;
unsigned MaskBit = i % 32;
if (getRegMask()[MaskWord] & (1 << MaskBit)) {
if (PrintRegMaskNumRegs < 0 ||
NumRegsEmitted <= static_cast<unsigned>(PrintRegMaskNumRegs)) {
OS << " " << printReg(i, TRI);
NumRegsEmitted++;
}
NumRegsInMask++;
}
}
if (NumRegsEmitted != NumRegsInMask)
OS << " and " << (NumRegsInMask - NumRegsEmitted) << " more...";
} else {
OS << " ...";
}
OS << ">";
break;
}
case MachineOperand::MO_RegisterLiveOut: {
const uint32_t *RegMask = getRegLiveOut();
OS << "liveout(";
if (!TRI) {
OS << "<unknown>";
} else {
bool IsCommaNeeded = false;
for (unsigned Reg = 0, E = TRI->getNumRegs(); Reg < E; ++Reg) {
if (RegMask[Reg / 32] & (1U << (Reg % 32))) {
if (IsCommaNeeded)
OS << ", ";
OS << printReg(Reg, TRI);
IsCommaNeeded = true;
}
}
}
OS << ")";
break;
}
case MachineOperand::MO_Metadata:
getMetadata()->printAsOperand(OS, MST);
break;
case MachineOperand::MO_MCSymbol:
printSymbol(OS, *getMCSymbol());
break;
case MachineOperand::MO_CFIIndex: {
if (const MachineFunction *MF = getMFIfAvailable(*this))
printCFI(OS, MF->getFrameInstructions()[getCFIIndex()], TRI);
else
OS << "<cfi directive>";
break;
}
case MachineOperand::MO_IntrinsicID: {
Intrinsic::ID ID = getIntrinsicID();
if (ID < Intrinsic::num_intrinsics)
OS << "intrinsic(@" << Intrinsic::getName(ID, None) << ')';
else if (IntrinsicInfo)
OS << "intrinsic(@" << IntrinsicInfo->getName(ID) << ')';
else
OS << "intrinsic(" << ID << ')';
break;
}
case MachineOperand::MO_Predicate: {
auto Pred = static_cast<CmpInst::Predicate>(getPredicate());
OS << (CmpInst::isIntPredicate(Pred) ? "int" : "float") << "pred("
<< CmpInst::getPredicateName(Pred) << ')';
break;
}
case MachineOperand::MO_ShuffleMask:
OS << "shufflemask(";
const Constant* C = getShuffleMask();
const int NumElts = C->getType()->getVectorNumElements();
StringRef Separator;
for (int I = 0; I != NumElts; ++I) {
OS << Separator;
C->getAggregateElement(I)->printAsOperand(OS, false, MST);
Separator = ", ";
}
OS << ')';
break;
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineOperand::dump() const { dbgs() << *this << '\n'; }
#endif
//===----------------------------------------------------------------------===//
// MachineMemOperand Implementation
//===----------------------------------------------------------------------===//
/// getAddrSpace - Return the LLVM IR address space number that this pointer
/// points into.
unsigned MachinePointerInfo::getAddrSpace() const { return AddrSpace; }
/// isDereferenceable - Return true if V is always dereferenceable for
/// Offset + Size byte.
bool MachinePointerInfo::isDereferenceable(unsigned Size, LLVMContext &C,
const DataLayout &DL) const {
if (!V.is<const Value *>())
return false;
const Value *BasePtr = V.get<const Value *>();
if (BasePtr == nullptr)
return false;
return isDereferenceableAndAlignedPointer(
BasePtr, Align::None(), APInt(DL.getPointerSizeInBits(), Offset + Size),
DL);
}
/// getConstantPool - Return a MachinePointerInfo record that refers to the
/// constant pool.
MachinePointerInfo MachinePointerInfo::getConstantPool(MachineFunction &MF) {
return MachinePointerInfo(MF.getPSVManager().getConstantPool());
}
/// getFixedStack - Return a MachinePointerInfo record that refers to the
/// the specified FrameIndex.
MachinePointerInfo MachinePointerInfo::getFixedStack(MachineFunction &MF,
int FI, int64_t Offset) {
return MachinePointerInfo(MF.getPSVManager().getFixedStack(FI), Offset);
}
MachinePointerInfo MachinePointerInfo::getJumpTable(MachineFunction &MF) {
return MachinePointerInfo(MF.getPSVManager().getJumpTable());
}
MachinePointerInfo MachinePointerInfo::getGOT(MachineFunction &MF) {
return MachinePointerInfo(MF.getPSVManager().getGOT());
}
MachinePointerInfo MachinePointerInfo::getStack(MachineFunction &MF,
int64_t Offset, uint8_t ID) {
return MachinePointerInfo(MF.getPSVManager().getStack(), Offset, ID);
}
MachinePointerInfo MachinePointerInfo::getUnknownStack(MachineFunction &MF) {
return MachinePointerInfo(MF.getDataLayout().getAllocaAddrSpace());
}
MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, Flags f,
uint64_t s, uint64_t a,
const AAMDNodes &AAInfo,
const MDNode *Ranges, SyncScope::ID SSID,
AtomicOrdering Ordering,
AtomicOrdering FailureOrdering)
: PtrInfo(ptrinfo), Size(s), FlagVals(f), BaseAlignLog2(Log2_32(a) + 1),
AAInfo(AAInfo), Ranges(Ranges) {
assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue *>() ||
isa<PointerType>(PtrInfo.V.get<const Value *>()->getType())) &&
"invalid pointer value");
assert(getBaseAlignment() == a && a != 0 && "Alignment is not a power of 2!");
assert((isLoad() || isStore()) && "Not a load/store!");
AtomicInfo.SSID = static_cast<unsigned>(SSID);
assert(getSyncScopeID() == SSID && "Value truncated");
AtomicInfo.Ordering = static_cast<unsigned>(Ordering);
assert(getOrdering() == Ordering && "Value truncated");
AtomicInfo.FailureOrdering = static_cast<unsigned>(FailureOrdering);
assert(getFailureOrdering() == FailureOrdering && "Value truncated");
}
/// Profile - Gather unique data for the object.
///
void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
ID.AddInteger(getOffset());
ID.AddInteger(Size);
ID.AddPointer(getOpaqueValue());
ID.AddInteger(getFlags());
ID.AddInteger(getBaseAlignment());
}
void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
// The Value and Offset may differ due to CSE. But the flags and size
// should be the same.
assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
assert(MMO->getSize() == getSize() && "Size mismatch!");
if (MMO->getBaseAlignment() >= getBaseAlignment()) {
// Update the alignment value.
BaseAlignLog2 = Log2_32(MMO->getBaseAlignment()) + 1;
// Also update the base and offset, because the new alignment may
// not be applicable with the old ones.
PtrInfo = MMO->PtrInfo;
}
}
/// getAlignment - Return the minimum known alignment in bytes of the
/// actual memory reference.
uint64_t MachineMemOperand::getAlignment() const {
return MinAlign(getBaseAlignment(), getOffset());
}
void MachineMemOperand::print(raw_ostream &OS, ModuleSlotTracker &MST,
SmallVectorImpl<StringRef> &SSNs,
const LLVMContext &Context,
const MachineFrameInfo *MFI,
const TargetInstrInfo *TII) const {
OS << '(';
if (isVolatile())
OS << "volatile ";
if (isNonTemporal())
OS << "non-temporal ";
if (isDereferenceable())
OS << "dereferenceable ";
if (isInvariant())
OS << "invariant ";
if (getFlags() & MachineMemOperand::MOTargetFlag1)
OS << '"' << getTargetMMOFlagName(*TII, MachineMemOperand::MOTargetFlag1)
<< "\" ";
if (getFlags() & MachineMemOperand::MOTargetFlag2)
OS << '"' << getTargetMMOFlagName(*TII, MachineMemOperand::MOTargetFlag2)
<< "\" ";
if (getFlags() & MachineMemOperand::MOTargetFlag3)
OS << '"' << getTargetMMOFlagName(*TII, MachineMemOperand::MOTargetFlag3)
<< "\" ";
assert((isLoad() || isStore()) &&
"machine memory operand must be a load or store (or both)");
if (isLoad())
OS << "load ";
if (isStore())
OS << "store ";
printSyncScope(OS, Context, getSyncScopeID(), SSNs);
if (getOrdering() != AtomicOrdering::NotAtomic)
OS << toIRString(getOrdering()) << ' ';
if (getFailureOrdering() != AtomicOrdering::NotAtomic)
OS << toIRString(getFailureOrdering()) << ' ';
if (getSize() == MemoryLocation::UnknownSize)
OS << "unknown-size";
else
OS << getSize();
if (const Value *Val = getValue()) {
OS << ((isLoad() && isStore()) ? " on " : isLoad() ? " from " : " into ");
printIRValueReference(OS, *Val, MST);
} else if (const PseudoSourceValue *PVal = getPseudoValue()) {
OS << ((isLoad() && isStore()) ? " on " : isLoad() ? " from " : " into ");
assert(PVal && "Expected a pseudo source value");
switch (PVal->kind()) {
case PseudoSourceValue::Stack:
OS << "stack";
break;
case PseudoSourceValue::GOT:
OS << "got";
break;
case PseudoSourceValue::JumpTable:
OS << "jump-table";
break;
case PseudoSourceValue::ConstantPool:
OS << "constant-pool";
break;
case PseudoSourceValue::FixedStack: {
int FrameIndex = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
bool IsFixed = true;
printFrameIndex(OS, FrameIndex, IsFixed, MFI);
break;
}
case PseudoSourceValue::GlobalValueCallEntry:
OS << "call-entry ";
cast<GlobalValuePseudoSourceValue>(PVal)->getValue()->printAsOperand(
OS, /*PrintType=*/false, MST);
break;
case PseudoSourceValue::ExternalSymbolCallEntry:
OS << "call-entry &";
printLLVMNameWithoutPrefix(
OS, cast<ExternalSymbolPseudoSourceValue>(PVal)->getSymbol());
break;
default:
// FIXME: This is not necessarily the correct MIR serialization format for
// a custom pseudo source value, but at least it allows
// -print-machineinstrs to work on a target with custom pseudo source
// values.
OS << "custom ";
PVal->printCustom(OS);
break;
}
}
MachineOperand::printOperandOffset(OS, getOffset());
if (getBaseAlignment() != getSize())
OS << ", align " << getBaseAlignment();
auto AAInfo = getAAInfo();
if (AAInfo.TBAA) {
OS << ", !tbaa ";
AAInfo.TBAA->printAsOperand(OS, MST);
}
if (AAInfo.Scope) {
OS << ", !alias.scope ";
AAInfo.Scope->printAsOperand(OS, MST);
}
if (AAInfo.NoAlias) {
OS << ", !noalias ";
AAInfo.NoAlias->printAsOperand(OS, MST);
}
if (getRanges()) {
OS << ", !range ";
getRanges()->printAsOperand(OS, MST);
}
// FIXME: Implement addrspace printing/parsing in MIR.
// For now, print this even though parsing it is not available in MIR.
if (unsigned AS = getAddrSpace())
OS << ", addrspace " << AS;
OS << ')';
}