1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/include/llvm/ProfileData/InstrProf.h
Wei Mi d6d534e85a [SampleFDO] Do not scale the magic number NOMORE_ICP_MAGICNUM in value profile
during profile update.

When we inline a function and update the profile, the value profiles of the
indirect call in the inliner and inlinee will be scaled. In
https://reviews.llvm.org/D96806 and https://reviews.llvm.org/D97350, we start
using the magic number NOMORE_ICP_MAGICNUM (-1) to mark targets which have
been promoted. The magic number shouldn't be scaled during the profile update.

Although the problem has been suppressed by https://reviews.llvm.org/D98187
for SampleFDO, which stops profile update for inlining in sampleFDO, the patch
is still wanted since it will be more consistent to handle the magic number
properly in profile update.

Differential Revision: https://reviews.llvm.org/D99394
2021-03-29 09:34:37 -07:00

1156 lines
41 KiB
C++

//===- InstrProf.h - Instrumented profiling format support ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Instrumentation-based profiling data is generated by instrumented
// binaries through library functions in compiler-rt, and read by the clang
// frontend to feed PGO.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PROFILEDATA_INSTRPROF_H
#define LLVM_PROFILEDATA_INSTRPROF_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProfData.inc"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <list>
#include <memory>
#include <string>
#include <system_error>
#include <utility>
#include <vector>
namespace llvm {
class Function;
class GlobalVariable;
struct InstrProfRecord;
class InstrProfSymtab;
class Instruction;
class MDNode;
class Module;
enum InstrProfSectKind {
#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) Kind,
#include "llvm/ProfileData/InstrProfData.inc"
};
/// Return the name of the profile section corresponding to \p IPSK.
///
/// The name of the section depends on the object format type \p OF. If
/// \p AddSegmentInfo is true, a segment prefix and additional linker hints may
/// be added to the section name (this is the default).
std::string getInstrProfSectionName(InstrProfSectKind IPSK,
Triple::ObjectFormatType OF,
bool AddSegmentInfo = true);
/// Return the name profile runtime entry point to do value profiling
/// for a given site.
inline StringRef getInstrProfValueProfFuncName() {
return INSTR_PROF_VALUE_PROF_FUNC_STR;
}
/// Return the name profile runtime entry point to do memop size value
/// profiling.
inline StringRef getInstrProfValueProfMemOpFuncName() {
return INSTR_PROF_VALUE_PROF_MEMOP_FUNC_STR;
}
/// Return the name prefix of variables containing instrumented function names.
inline StringRef getInstrProfNameVarPrefix() { return "__profn_"; }
/// Return the name prefix of variables containing per-function control data.
inline StringRef getInstrProfDataVarPrefix() { return "__profd_"; }
/// Return the name prefix of profile counter variables.
inline StringRef getInstrProfCountersVarPrefix() { return "__profc_"; }
/// Return the name prefix of value profile variables.
inline StringRef getInstrProfValuesVarPrefix() { return "__profvp_"; }
/// Return the name of value profile node array variables:
inline StringRef getInstrProfVNodesVarName() { return "__llvm_prf_vnodes"; }
/// Return the name of the variable holding the strings (possibly compressed)
/// of all function's PGO names.
inline StringRef getInstrProfNamesVarName() {
return "__llvm_prf_nm";
}
/// Return the name of a covarage mapping variable (internal linkage)
/// for each instrumented source module. Such variables are allocated
/// in the __llvm_covmap section.
inline StringRef getCoverageMappingVarName() {
return "__llvm_coverage_mapping";
}
/// Return the name of the internal variable recording the array
/// of PGO name vars referenced by the coverage mapping. The owning
/// functions of those names are not emitted by FE (e.g, unused inline
/// functions.)
inline StringRef getCoverageUnusedNamesVarName() {
return "__llvm_coverage_names";
}
/// Return the name of function that registers all the per-function control
/// data at program startup time by calling __llvm_register_function. This
/// function has internal linkage and is called by __llvm_profile_init
/// runtime method. This function is not generated for these platforms:
/// Darwin, Linux, and FreeBSD.
inline StringRef getInstrProfRegFuncsName() {
return "__llvm_profile_register_functions";
}
/// Return the name of the runtime interface that registers per-function control
/// data for one instrumented function.
inline StringRef getInstrProfRegFuncName() {
return "__llvm_profile_register_function";
}
/// Return the name of the runtime interface that registers the PGO name strings.
inline StringRef getInstrProfNamesRegFuncName() {
return "__llvm_profile_register_names_function";
}
/// Return the name of the runtime initialization method that is generated by
/// the compiler. The function calls __llvm_profile_register_functions and
/// __llvm_profile_override_default_filename functions if needed. This function
/// has internal linkage and invoked at startup time via init_array.
inline StringRef getInstrProfInitFuncName() { return "__llvm_profile_init"; }
/// Return the name of the hook variable defined in profile runtime library.
/// A reference to the variable causes the linker to link in the runtime
/// initialization module (which defines the hook variable).
inline StringRef getInstrProfRuntimeHookVarName() {
return INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_RUNTIME_VAR);
}
/// Return the name of the compiler generated function that references the
/// runtime hook variable. The function is a weak global.
inline StringRef getInstrProfRuntimeHookVarUseFuncName() {
return "__llvm_profile_runtime_user";
}
inline StringRef getInstrProfCounterBiasVarName() {
return "__llvm_profile_counter_bias";
}
/// Return the marker used to separate PGO names during serialization.
inline StringRef getInstrProfNameSeparator() { return "\01"; }
/// Return the modified name for function \c F suitable to be
/// used the key for profile lookup. Variable \c InLTO indicates if this
/// is called in LTO optimization passes.
std::string getPGOFuncName(const Function &F, bool InLTO = false,
uint64_t Version = INSTR_PROF_INDEX_VERSION);
/// Return the modified name for a function suitable to be
/// used the key for profile lookup. The function's original
/// name is \c RawFuncName and has linkage of type \c Linkage.
/// The function is defined in module \c FileName.
std::string getPGOFuncName(StringRef RawFuncName,
GlobalValue::LinkageTypes Linkage,
StringRef FileName,
uint64_t Version = INSTR_PROF_INDEX_VERSION);
/// Return the name of the global variable used to store a function
/// name in PGO instrumentation. \c FuncName is the name of the function
/// returned by the \c getPGOFuncName call.
std::string getPGOFuncNameVarName(StringRef FuncName,
GlobalValue::LinkageTypes Linkage);
/// Create and return the global variable for function name used in PGO
/// instrumentation. \c FuncName is the name of the function returned
/// by \c getPGOFuncName call.
GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName);
/// Create and return the global variable for function name used in PGO
/// instrumentation. /// \c FuncName is the name of the function
/// returned by \c getPGOFuncName call, \c M is the owning module,
/// and \c Linkage is the linkage of the instrumented function.
GlobalVariable *createPGOFuncNameVar(Module &M,
GlobalValue::LinkageTypes Linkage,
StringRef PGOFuncName);
/// Return the initializer in string of the PGO name var \c NameVar.
StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar);
/// Given a PGO function name, remove the filename prefix and return
/// the original (static) function name.
StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName,
StringRef FileName = "<unknown>");
/// Given a vector of strings (function PGO names) \c NameStrs, the
/// method generates a combined string \c Result thatis ready to be
/// serialized. The \c Result string is comprised of three fields:
/// The first field is the legnth of the uncompressed strings, and the
/// the second field is the length of the zlib-compressed string.
/// Both fields are encoded in ULEB128. If \c doCompress is false, the
/// third field is the uncompressed strings; otherwise it is the
/// compressed string. When the string compression is off, the
/// second field will have value zero.
Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
bool doCompression, std::string &Result);
/// Produce \c Result string with the same format described above. The input
/// is vector of PGO function name variables that are referenced.
Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
std::string &Result, bool doCompression = true);
/// \c NameStrings is a string composed of one of more sub-strings encoded in
/// the format described above. The substrings are separated by 0 or more zero
/// bytes. This method decodes the string and populates the \c Symtab.
Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab);
/// Check if INSTR_PROF_RAW_VERSION_VAR is defined. This global is only being
/// set in IR PGO compilation.
bool isIRPGOFlagSet(const Module *M);
/// Check if we can safely rename this Comdat function. Instances of the same
/// comdat function may have different control flows thus can not share the
/// same counter variable.
bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken = false);
enum InstrProfValueKind : uint32_t {
#define VALUE_PROF_KIND(Enumerator, Value, Descr) Enumerator = Value,
#include "llvm/ProfileData/InstrProfData.inc"
};
/// Get the value profile data for value site \p SiteIdx from \p InstrProfR
/// and annotate the instruction \p Inst with the value profile meta data.
/// Annotate up to \p MaxMDCount (default 3) number of records per value site.
void annotateValueSite(Module &M, Instruction &Inst,
const InstrProfRecord &InstrProfR,
InstrProfValueKind ValueKind, uint32_t SiteIndx,
uint32_t MaxMDCount = 3);
/// Same as the above interface but using an ArrayRef, as well as \p Sum.
void annotateValueSite(Module &M, Instruction &Inst,
ArrayRef<InstrProfValueData> VDs, uint64_t Sum,
InstrProfValueKind ValueKind, uint32_t MaxMDCount);
/// Extract the value profile data from \p Inst which is annotated with
/// value profile meta data. Return false if there is no value data annotated,
/// otherwise return true.
bool getValueProfDataFromInst(const Instruction &Inst,
InstrProfValueKind ValueKind,
uint32_t MaxNumValueData,
InstrProfValueData ValueData[],
uint32_t &ActualNumValueData, uint64_t &TotalC,
bool GetNoICPValue = false);
inline StringRef getPGOFuncNameMetadataName() { return "PGOFuncName"; }
/// Return the PGOFuncName meta data associated with a function.
MDNode *getPGOFuncNameMetadata(const Function &F);
/// Create the PGOFuncName meta data if PGOFuncName is different from
/// function's raw name. This should only apply to internal linkage functions
/// declared by users only.
void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName);
/// Check if we can use Comdat for profile variables. This will eliminate
/// the duplicated profile variables for Comdat functions.
bool needsComdatForCounter(const Function &F, const Module &M);
const std::error_category &instrprof_category();
enum class instrprof_error {
success = 0,
eof,
unrecognized_format,
bad_magic,
bad_header,
unsupported_version,
unsupported_hash_type,
too_large,
truncated,
malformed,
unknown_function,
invalid_prof,
hash_mismatch,
count_mismatch,
counter_overflow,
value_site_count_mismatch,
compress_failed,
uncompress_failed,
empty_raw_profile,
zlib_unavailable
};
inline std::error_code make_error_code(instrprof_error E) {
return std::error_code(static_cast<int>(E), instrprof_category());
}
class InstrProfError : public ErrorInfo<InstrProfError> {
public:
InstrProfError(instrprof_error Err) : Err(Err) {
assert(Err != instrprof_error::success && "Not an error");
}
std::string message() const override;
void log(raw_ostream &OS) const override { OS << message(); }
std::error_code convertToErrorCode() const override {
return make_error_code(Err);
}
instrprof_error get() const { return Err; }
/// Consume an Error and return the raw enum value contained within it. The
/// Error must either be a success value, or contain a single InstrProfError.
static instrprof_error take(Error E) {
auto Err = instrprof_error::success;
handleAllErrors(std::move(E), [&Err](const InstrProfError &IPE) {
assert(Err == instrprof_error::success && "Multiple errors encountered");
Err = IPE.get();
});
return Err;
}
static char ID;
private:
instrprof_error Err;
};
class SoftInstrProfErrors {
/// Count the number of soft instrprof_errors encountered and keep track of
/// the first such error for reporting purposes.
/// The first soft error encountered.
instrprof_error FirstError = instrprof_error::success;
/// The number of hash mismatches.
unsigned NumHashMismatches = 0;
/// The number of count mismatches.
unsigned NumCountMismatches = 0;
/// The number of counter overflows.
unsigned NumCounterOverflows = 0;
/// The number of value site count mismatches.
unsigned NumValueSiteCountMismatches = 0;
public:
SoftInstrProfErrors() = default;
~SoftInstrProfErrors() {
assert(FirstError == instrprof_error::success &&
"Unchecked soft error encountered");
}
/// Track a soft error (\p IE) and increment its associated counter.
void addError(instrprof_error IE);
/// Get the number of hash mismatches.
unsigned getNumHashMismatches() const { return NumHashMismatches; }
/// Get the number of count mismatches.
unsigned getNumCountMismatches() const { return NumCountMismatches; }
/// Get the number of counter overflows.
unsigned getNumCounterOverflows() const { return NumCounterOverflows; }
/// Get the number of value site count mismatches.
unsigned getNumValueSiteCountMismatches() const {
return NumValueSiteCountMismatches;
}
/// Return the first encountered error and reset FirstError to a success
/// value.
Error takeError() {
if (FirstError == instrprof_error::success)
return Error::success();
auto E = make_error<InstrProfError>(FirstError);
FirstError = instrprof_error::success;
return E;
}
};
namespace object {
class SectionRef;
} // end namespace object
namespace IndexedInstrProf {
uint64_t ComputeHash(StringRef K);
} // end namespace IndexedInstrProf
/// A symbol table used for function PGO name look-up with keys
/// (such as pointers, md5hash values) to the function. A function's
/// PGO name or name's md5hash are used in retrieving the profile
/// data of the function. See \c getPGOFuncName() method for details
/// on how PGO name is formed.
class InstrProfSymtab {
public:
using AddrHashMap = std::vector<std::pair<uint64_t, uint64_t>>;
private:
StringRef Data;
uint64_t Address = 0;
// Unique name strings.
StringSet<> NameTab;
// A map from MD5 keys to function name strings.
std::vector<std::pair<uint64_t, StringRef>> MD5NameMap;
// A map from MD5 keys to function define. We only populate this map
// when build the Symtab from a Module.
std::vector<std::pair<uint64_t, Function *>> MD5FuncMap;
// A map from function runtime address to function name MD5 hash.
// This map is only populated and used by raw instr profile reader.
AddrHashMap AddrToMD5Map;
bool Sorted = false;
static StringRef getExternalSymbol() {
return "** External Symbol **";
}
// If the symtab is created by a series of calls to \c addFuncName, \c
// finalizeSymtab needs to be called before looking up function names.
// This is required because the underlying map is a vector (for space
// efficiency) which needs to be sorted.
inline void finalizeSymtab();
public:
InstrProfSymtab() = default;
/// Create InstrProfSymtab from an object file section which
/// contains function PGO names. When section may contain raw
/// string data or string data in compressed form. This method
/// only initialize the symtab with reference to the data and
/// the section base address. The decompression will be delayed
/// until before it is used. See also \c create(StringRef) method.
Error create(object::SectionRef &Section);
/// This interface is used by reader of CoverageMapping test
/// format.
inline Error create(StringRef D, uint64_t BaseAddr);
/// \c NameStrings is a string composed of one of more sub-strings
/// encoded in the format described in \c collectPGOFuncNameStrings.
/// This method is a wrapper to \c readPGOFuncNameStrings method.
inline Error create(StringRef NameStrings);
/// A wrapper interface to populate the PGO symtab with functions
/// decls from module \c M. This interface is used by transformation
/// passes such as indirect function call promotion. Variable \c InLTO
/// indicates if this is called from LTO optimization passes.
Error create(Module &M, bool InLTO = false);
/// Create InstrProfSymtab from a set of names iteratable from
/// \p IterRange. This interface is used by IndexedProfReader.
template <typename NameIterRange> Error create(const NameIterRange &IterRange);
/// Update the symtab by adding \p FuncName to the table. This interface
/// is used by the raw and text profile readers.
Error addFuncName(StringRef FuncName) {
if (FuncName.empty())
return make_error<InstrProfError>(instrprof_error::malformed);
auto Ins = NameTab.insert(FuncName);
if (Ins.second) {
MD5NameMap.push_back(std::make_pair(
IndexedInstrProf::ComputeHash(FuncName), Ins.first->getKey()));
Sorted = false;
}
return Error::success();
}
/// Map a function address to its name's MD5 hash. This interface
/// is only used by the raw profiler reader.
void mapAddress(uint64_t Addr, uint64_t MD5Val) {
AddrToMD5Map.push_back(std::make_pair(Addr, MD5Val));
}
/// Return a function's hash, or 0, if the function isn't in this SymTab.
uint64_t getFunctionHashFromAddress(uint64_t Address);
/// Return function's PGO name from the function name's symbol
/// address in the object file. If an error occurs, return
/// an empty string.
StringRef getFuncName(uint64_t FuncNameAddress, size_t NameSize);
/// Return function's PGO name from the name's md5 hash value.
/// If not found, return an empty string.
inline StringRef getFuncName(uint64_t FuncMD5Hash);
/// Just like getFuncName, except that it will return a non-empty StringRef
/// if the function is external to this symbol table. All such cases
/// will be represented using the same StringRef value.
inline StringRef getFuncNameOrExternalSymbol(uint64_t FuncMD5Hash);
/// True if Symbol is the value used to represent external symbols.
static bool isExternalSymbol(const StringRef &Symbol) {
return Symbol == InstrProfSymtab::getExternalSymbol();
}
/// Return function from the name's md5 hash. Return nullptr if not found.
inline Function *getFunction(uint64_t FuncMD5Hash);
/// Return the function's original assembly name by stripping off
/// the prefix attached (to symbols with priviate linkage). For
/// global functions, it returns the same string as getFuncName.
inline StringRef getOrigFuncName(uint64_t FuncMD5Hash);
/// Return the name section data.
inline StringRef getNameData() const { return Data; }
};
Error InstrProfSymtab::create(StringRef D, uint64_t BaseAddr) {
Data = D;
Address = BaseAddr;
return Error::success();
}
Error InstrProfSymtab::create(StringRef NameStrings) {
return readPGOFuncNameStrings(NameStrings, *this);
}
template <typename NameIterRange>
Error InstrProfSymtab::create(const NameIterRange &IterRange) {
for (auto Name : IterRange)
if (Error E = addFuncName(Name))
return E;
finalizeSymtab();
return Error::success();
}
void InstrProfSymtab::finalizeSymtab() {
if (Sorted)
return;
llvm::sort(MD5NameMap, less_first());
llvm::sort(MD5FuncMap, less_first());
llvm::sort(AddrToMD5Map, less_first());
AddrToMD5Map.erase(std::unique(AddrToMD5Map.begin(), AddrToMD5Map.end()),
AddrToMD5Map.end());
Sorted = true;
}
StringRef InstrProfSymtab::getFuncNameOrExternalSymbol(uint64_t FuncMD5Hash) {
StringRef ret = getFuncName(FuncMD5Hash);
if (ret.empty())
return InstrProfSymtab::getExternalSymbol();
return ret;
}
StringRef InstrProfSymtab::getFuncName(uint64_t FuncMD5Hash) {
finalizeSymtab();
auto Result = llvm::lower_bound(MD5NameMap, FuncMD5Hash,
[](const std::pair<uint64_t, StringRef> &LHS,
uint64_t RHS) { return LHS.first < RHS; });
if (Result != MD5NameMap.end() && Result->first == FuncMD5Hash)
return Result->second;
return StringRef();
}
Function* InstrProfSymtab::getFunction(uint64_t FuncMD5Hash) {
finalizeSymtab();
auto Result = llvm::lower_bound(MD5FuncMap, FuncMD5Hash,
[](const std::pair<uint64_t, Function *> &LHS,
uint64_t RHS) { return LHS.first < RHS; });
if (Result != MD5FuncMap.end() && Result->first == FuncMD5Hash)
return Result->second;
return nullptr;
}
// See also getPGOFuncName implementation. These two need to be
// matched.
StringRef InstrProfSymtab::getOrigFuncName(uint64_t FuncMD5Hash) {
StringRef PGOName = getFuncName(FuncMD5Hash);
size_t S = PGOName.find_first_of(':');
if (S == StringRef::npos)
return PGOName;
return PGOName.drop_front(S + 1);
}
// To store the sums of profile count values, or the percentage of
// the sums of the total count values.
struct CountSumOrPercent {
uint64_t NumEntries;
double CountSum;
double ValueCounts[IPVK_Last - IPVK_First + 1];
CountSumOrPercent() : NumEntries(0), CountSum(0.0f), ValueCounts() {}
void reset() {
NumEntries = 0;
CountSum = 0.0f;
for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++)
ValueCounts[I] = 0.0f;
}
};
// Function level or program level overlap information.
struct OverlapStats {
enum OverlapStatsLevel { ProgramLevel, FunctionLevel };
// Sum of the total count values for the base profile.
CountSumOrPercent Base;
// Sum of the total count values for the test profile.
CountSumOrPercent Test;
// Overlap lap score. Should be in range of [0.0f to 1.0f].
CountSumOrPercent Overlap;
CountSumOrPercent Mismatch;
CountSumOrPercent Unique;
OverlapStatsLevel Level;
const std::string *BaseFilename;
const std::string *TestFilename;
StringRef FuncName;
uint64_t FuncHash;
bool Valid;
OverlapStats(OverlapStatsLevel L = ProgramLevel)
: Level(L), BaseFilename(nullptr), TestFilename(nullptr), FuncHash(0),
Valid(false) {}
void dump(raw_fd_ostream &OS) const;
void setFuncInfo(StringRef Name, uint64_t Hash) {
FuncName = Name;
FuncHash = Hash;
}
Error accumulateCounts(const std::string &BaseFilename,
const std::string &TestFilename, bool IsCS);
void addOneMismatch(const CountSumOrPercent &MismatchFunc);
void addOneUnique(const CountSumOrPercent &UniqueFunc);
static inline double score(uint64_t Val1, uint64_t Val2, double Sum1,
double Sum2) {
if (Sum1 < 1.0f || Sum2 < 1.0f)
return 0.0f;
return std::min(Val1 / Sum1, Val2 / Sum2);
}
};
// This is used to filter the functions whose overlap information
// to be output.
struct OverlapFuncFilters {
uint64_t ValueCutoff;
const std::string NameFilter;
};
struct InstrProfValueSiteRecord {
/// Value profiling data pairs at a given value site.
std::list<InstrProfValueData> ValueData;
InstrProfValueSiteRecord() { ValueData.clear(); }
template <class InputIterator>
InstrProfValueSiteRecord(InputIterator F, InputIterator L)
: ValueData(F, L) {}
/// Sort ValueData ascending by Value
void sortByTargetValues() {
ValueData.sort(
[](const InstrProfValueData &left, const InstrProfValueData &right) {
return left.Value < right.Value;
});
}
/// Sort ValueData Descending by Count
inline void sortByCount();
/// Merge data from another InstrProfValueSiteRecord
/// Optionally scale merged counts by \p Weight.
void merge(InstrProfValueSiteRecord &Input, uint64_t Weight,
function_ref<void(instrprof_error)> Warn);
/// Scale up value profile data counts by N (Numerator) / D (Denominator).
void scale(uint64_t N, uint64_t D, function_ref<void(instrprof_error)> Warn);
/// Compute the overlap b/w this record and Input record.
void overlap(InstrProfValueSiteRecord &Input, uint32_t ValueKind,
OverlapStats &Overlap, OverlapStats &FuncLevelOverlap);
};
/// Profiling information for a single function.
struct InstrProfRecord {
std::vector<uint64_t> Counts;
InstrProfRecord() = default;
InstrProfRecord(std::vector<uint64_t> Counts) : Counts(std::move(Counts)) {}
InstrProfRecord(InstrProfRecord &&) = default;
InstrProfRecord(const InstrProfRecord &RHS)
: Counts(RHS.Counts),
ValueData(RHS.ValueData
? std::make_unique<ValueProfData>(*RHS.ValueData)
: nullptr) {}
InstrProfRecord &operator=(InstrProfRecord &&) = default;
InstrProfRecord &operator=(const InstrProfRecord &RHS) {
Counts = RHS.Counts;
if (!RHS.ValueData) {
ValueData = nullptr;
return *this;
}
if (!ValueData)
ValueData = std::make_unique<ValueProfData>(*RHS.ValueData);
else
*ValueData = *RHS.ValueData;
return *this;
}
/// Return the number of value profile kinds with non-zero number
/// of profile sites.
inline uint32_t getNumValueKinds() const;
/// Return the number of instrumented sites for ValueKind.
inline uint32_t getNumValueSites(uint32_t ValueKind) const;
/// Return the total number of ValueData for ValueKind.
inline uint32_t getNumValueData(uint32_t ValueKind) const;
/// Return the number of value data collected for ValueKind at profiling
/// site: Site.
inline uint32_t getNumValueDataForSite(uint32_t ValueKind,
uint32_t Site) const;
/// Return the array of profiled values at \p Site. If \p TotalC
/// is not null, the total count of all target values at this site
/// will be stored in \c *TotalC.
inline std::unique_ptr<InstrProfValueData[]>
getValueForSite(uint32_t ValueKind, uint32_t Site,
uint64_t *TotalC = nullptr) const;
/// Get the target value/counts of kind \p ValueKind collected at site
/// \p Site and store the result in array \p Dest. Return the total
/// counts of all target values at this site.
inline uint64_t getValueForSite(InstrProfValueData Dest[], uint32_t ValueKind,
uint32_t Site) const;
/// Reserve space for NumValueSites sites.
inline void reserveSites(uint32_t ValueKind, uint32_t NumValueSites);
/// Add ValueData for ValueKind at value Site.
void addValueData(uint32_t ValueKind, uint32_t Site,
InstrProfValueData *VData, uint32_t N,
InstrProfSymtab *SymTab);
/// Merge the counts in \p Other into this one.
/// Optionally scale merged counts by \p Weight.
void merge(InstrProfRecord &Other, uint64_t Weight,
function_ref<void(instrprof_error)> Warn);
/// Scale up profile counts (including value profile data) by
/// a factor of (N / D).
void scale(uint64_t N, uint64_t D, function_ref<void(instrprof_error)> Warn);
/// Sort value profile data (per site) by count.
void sortValueData() {
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
for (auto &SR : getValueSitesForKind(Kind))
SR.sortByCount();
}
/// Clear value data entries and edge counters.
void Clear() {
Counts.clear();
clearValueData();
}
/// Clear value data entries
void clearValueData() { ValueData = nullptr; }
/// Compute the sums of all counts and store in Sum.
void accumulateCounts(CountSumOrPercent &Sum) const;
/// Compute the overlap b/w this IntrprofRecord and Other.
void overlap(InstrProfRecord &Other, OverlapStats &Overlap,
OverlapStats &FuncLevelOverlap, uint64_t ValueCutoff);
/// Compute the overlap of value profile counts.
void overlapValueProfData(uint32_t ValueKind, InstrProfRecord &Src,
OverlapStats &Overlap,
OverlapStats &FuncLevelOverlap);
private:
struct ValueProfData {
std::vector<InstrProfValueSiteRecord> IndirectCallSites;
std::vector<InstrProfValueSiteRecord> MemOPSizes;
};
std::unique_ptr<ValueProfData> ValueData;
MutableArrayRef<InstrProfValueSiteRecord>
getValueSitesForKind(uint32_t ValueKind) {
// Cast to /add/ const (should be an implicit_cast, ideally, if that's ever
// implemented in LLVM) to call the const overload of this function, then
// cast away the constness from the result.
auto AR = const_cast<const InstrProfRecord *>(this)->getValueSitesForKind(
ValueKind);
return makeMutableArrayRef(
const_cast<InstrProfValueSiteRecord *>(AR.data()), AR.size());
}
ArrayRef<InstrProfValueSiteRecord>
getValueSitesForKind(uint32_t ValueKind) const {
if (!ValueData)
return None;
switch (ValueKind) {
case IPVK_IndirectCallTarget:
return ValueData->IndirectCallSites;
case IPVK_MemOPSize:
return ValueData->MemOPSizes;
default:
llvm_unreachable("Unknown value kind!");
}
}
std::vector<InstrProfValueSiteRecord> &
getOrCreateValueSitesForKind(uint32_t ValueKind) {
if (!ValueData)
ValueData = std::make_unique<ValueProfData>();
switch (ValueKind) {
case IPVK_IndirectCallTarget:
return ValueData->IndirectCallSites;
case IPVK_MemOPSize:
return ValueData->MemOPSizes;
default:
llvm_unreachable("Unknown value kind!");
}
}
// Map indirect call target name hash to name string.
uint64_t remapValue(uint64_t Value, uint32_t ValueKind,
InstrProfSymtab *SymTab);
// Merge Value Profile data from Src record to this record for ValueKind.
// Scale merged value counts by \p Weight.
void mergeValueProfData(uint32_t ValkeKind, InstrProfRecord &Src,
uint64_t Weight,
function_ref<void(instrprof_error)> Warn);
// Scale up value profile data count by N (Numerator) / D (Denominator).
void scaleValueProfData(uint32_t ValueKind, uint64_t N, uint64_t D,
function_ref<void(instrprof_error)> Warn);
};
struct NamedInstrProfRecord : InstrProfRecord {
StringRef Name;
uint64_t Hash;
// We reserve this bit as the flag for context sensitive profile record.
static const int CS_FLAG_IN_FUNC_HASH = 60;
NamedInstrProfRecord() = default;
NamedInstrProfRecord(StringRef Name, uint64_t Hash,
std::vector<uint64_t> Counts)
: InstrProfRecord(std::move(Counts)), Name(Name), Hash(Hash) {}
static bool hasCSFlagInHash(uint64_t FuncHash) {
return ((FuncHash >> CS_FLAG_IN_FUNC_HASH) & 1);
}
static void setCSFlagInHash(uint64_t &FuncHash) {
FuncHash |= ((uint64_t)1 << CS_FLAG_IN_FUNC_HASH);
}
};
uint32_t InstrProfRecord::getNumValueKinds() const {
uint32_t NumValueKinds = 0;
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
NumValueKinds += !(getValueSitesForKind(Kind).empty());
return NumValueKinds;
}
uint32_t InstrProfRecord::getNumValueData(uint32_t ValueKind) const {
uint32_t N = 0;
for (auto &SR : getValueSitesForKind(ValueKind))
N += SR.ValueData.size();
return N;
}
uint32_t InstrProfRecord::getNumValueSites(uint32_t ValueKind) const {
return getValueSitesForKind(ValueKind).size();
}
uint32_t InstrProfRecord::getNumValueDataForSite(uint32_t ValueKind,
uint32_t Site) const {
return getValueSitesForKind(ValueKind)[Site].ValueData.size();
}
std::unique_ptr<InstrProfValueData[]>
InstrProfRecord::getValueForSite(uint32_t ValueKind, uint32_t Site,
uint64_t *TotalC) const {
uint64_t Dummy = 0;
uint64_t &TotalCount = (TotalC == nullptr ? Dummy : *TotalC);
uint32_t N = getNumValueDataForSite(ValueKind, Site);
if (N == 0) {
TotalCount = 0;
return std::unique_ptr<InstrProfValueData[]>(nullptr);
}
auto VD = std::make_unique<InstrProfValueData[]>(N);
TotalCount = getValueForSite(VD.get(), ValueKind, Site);
return VD;
}
uint64_t InstrProfRecord::getValueForSite(InstrProfValueData Dest[],
uint32_t ValueKind,
uint32_t Site) const {
uint32_t I = 0;
uint64_t TotalCount = 0;
for (auto V : getValueSitesForKind(ValueKind)[Site].ValueData) {
Dest[I].Value = V.Value;
Dest[I].Count = V.Count;
TotalCount = SaturatingAdd(TotalCount, V.Count);
I++;
}
return TotalCount;
}
void InstrProfRecord::reserveSites(uint32_t ValueKind, uint32_t NumValueSites) {
if (!NumValueSites)
return;
getOrCreateValueSitesForKind(ValueKind).reserve(NumValueSites);
}
inline support::endianness getHostEndianness() {
return sys::IsLittleEndianHost ? support::little : support::big;
}
// Include definitions for value profile data
#define INSTR_PROF_VALUE_PROF_DATA
#include "llvm/ProfileData/InstrProfData.inc"
void InstrProfValueSiteRecord::sortByCount() {
ValueData.sort(
[](const InstrProfValueData &left, const InstrProfValueData &right) {
return left.Count > right.Count;
});
// Now truncate
size_t max_s = INSTR_PROF_MAX_NUM_VAL_PER_SITE;
if (ValueData.size() > max_s)
ValueData.resize(max_s);
}
namespace IndexedInstrProf {
enum class HashT : uint32_t {
MD5,
Last = MD5
};
inline uint64_t ComputeHash(HashT Type, StringRef K) {
switch (Type) {
case HashT::MD5:
return MD5Hash(K);
}
llvm_unreachable("Unhandled hash type");
}
const uint64_t Magic = 0x8169666f72706cff; // "\xfflprofi\x81"
enum ProfVersion {
// Version 1 is the first version. In this version, the value of
// a key/value pair can only include profile data of a single function.
// Due to this restriction, the number of block counters for a given
// function is not recorded but derived from the length of the value.
Version1 = 1,
// The version 2 format supports recording profile data of multiple
// functions which share the same key in one value field. To support this,
// the number block counters is recorded as an uint64_t field right after the
// function structural hash.
Version2 = 2,
// Version 3 supports value profile data. The value profile data is expected
// to follow the block counter profile data.
Version3 = 3,
// In this version, profile summary data \c IndexedInstrProf::Summary is
// stored after the profile header.
Version4 = 4,
// In this version, the frontend PGO stable hash algorithm defaults to V2.
Version5 = 5,
// In this version, the frontend PGO stable hash algorithm got fixed and
// may produce hashes different from Version5.
Version6 = 6,
// An additional counter is added around logical operators.
Version7 = 7,
// The current version is 7.
CurrentVersion = INSTR_PROF_INDEX_VERSION
};
const uint64_t Version = ProfVersion::CurrentVersion;
const HashT HashType = HashT::MD5;
inline uint64_t ComputeHash(StringRef K) { return ComputeHash(HashType, K); }
// This structure defines the file header of the LLVM profile
// data file in indexed-format.
struct Header {
uint64_t Magic;
uint64_t Version;
uint64_t Unused; // Becomes unused since version 4
uint64_t HashType;
uint64_t HashOffset;
};
// Profile summary data recorded in the profile data file in indexed
// format. It is introduced in version 4. The summary data follows
// right after the profile file header.
struct Summary {
struct Entry {
uint64_t Cutoff; ///< The required percentile of total execution count.
uint64_t
MinBlockCount; ///< The minimum execution count for this percentile.
uint64_t NumBlocks; ///< Number of blocks >= the minumum execution count.
};
// The field kind enumerator to assigned value mapping should remain
// unchanged when a new kind is added or an old kind gets deleted in
// the future.
enum SummaryFieldKind {
/// The total number of functions instrumented.
TotalNumFunctions = 0,
/// Total number of instrumented blocks/edges.
TotalNumBlocks = 1,
/// The maximal execution count among all functions.
/// This field does not exist for profile data from IR based
/// instrumentation.
MaxFunctionCount = 2,
/// Max block count of the program.
MaxBlockCount = 3,
/// Max internal block count of the program (excluding entry blocks).
MaxInternalBlockCount = 4,
/// The sum of all instrumented block counts.
TotalBlockCount = 5,
NumKinds = TotalBlockCount + 1
};
// The number of summmary fields following the summary header.
uint64_t NumSummaryFields;
// The number of Cutoff Entries (Summary::Entry) following summary fields.
uint64_t NumCutoffEntries;
Summary() = delete;
Summary(uint32_t Size) { memset(this, 0, Size); }
void operator delete(void *ptr) { ::operator delete(ptr); }
static uint32_t getSize(uint32_t NumSumFields, uint32_t NumCutoffEntries) {
return sizeof(Summary) + NumCutoffEntries * sizeof(Entry) +
NumSumFields * sizeof(uint64_t);
}
const uint64_t *getSummaryDataBase() const {
return reinterpret_cast<const uint64_t *>(this + 1);
}
uint64_t *getSummaryDataBase() {
return reinterpret_cast<uint64_t *>(this + 1);
}
const Entry *getCutoffEntryBase() const {
return reinterpret_cast<const Entry *>(
&getSummaryDataBase()[NumSummaryFields]);
}
Entry *getCutoffEntryBase() {
return reinterpret_cast<Entry *>(&getSummaryDataBase()[NumSummaryFields]);
}
uint64_t get(SummaryFieldKind K) const {
return getSummaryDataBase()[K];
}
void set(SummaryFieldKind K, uint64_t V) {
getSummaryDataBase()[K] = V;
}
const Entry &getEntry(uint32_t I) const { return getCutoffEntryBase()[I]; }
void setEntry(uint32_t I, const ProfileSummaryEntry &E) {
Entry &ER = getCutoffEntryBase()[I];
ER.Cutoff = E.Cutoff;
ER.MinBlockCount = E.MinCount;
ER.NumBlocks = E.NumCounts;
}
};
inline std::unique_ptr<Summary> allocSummary(uint32_t TotalSize) {
return std::unique_ptr<Summary>(new (::operator new(TotalSize))
Summary(TotalSize));
}
} // end namespace IndexedInstrProf
namespace RawInstrProf {
// Version 1: First version
// Version 2: Added value profile data section. Per-function control data
// struct has more fields to describe value profile information.
// Version 3: Compressed name section support. Function PGO name reference
// from control data struct is changed from raw pointer to Name's MD5 value.
// Version 4: ValueDataBegin and ValueDataSizes fields are removed from the
// raw header.
// Version 5: Bit 60 of FuncHash is reserved for the flag for the context
// sensitive records.
const uint64_t Version = INSTR_PROF_RAW_VERSION;
template <class IntPtrT> inline uint64_t getMagic();
template <> inline uint64_t getMagic<uint64_t>() {
return INSTR_PROF_RAW_MAGIC_64;
}
template <> inline uint64_t getMagic<uint32_t>() {
return INSTR_PROF_RAW_MAGIC_32;
}
// Per-function profile data header/control structure.
// The definition should match the structure defined in
// compiler-rt/lib/profile/InstrProfiling.h.
// It should also match the synthesized type in
// Transforms/Instrumentation/InstrProfiling.cpp:getOrCreateRegionCounters.
template <class IntPtrT> struct alignas(8) ProfileData {
#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Type Name;
#include "llvm/ProfileData/InstrProfData.inc"
};
// File header structure of the LLVM profile data in raw format.
// The definition should match the header referenced in
// compiler-rt/lib/profile/InstrProfilingFile.c and
// InstrProfilingBuffer.c.
struct Header {
#define INSTR_PROF_RAW_HEADER(Type, Name, Init) const Type Name;
#include "llvm/ProfileData/InstrProfData.inc"
};
} // end namespace RawInstrProf
// Parse MemOP Size range option.
void getMemOPSizeRangeFromOption(StringRef Str, int64_t &RangeStart,
int64_t &RangeLast);
// Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
// aware this is an ir_level profile so it can set the version flag.
void createIRLevelProfileFlagVar(Module &M, bool IsCS,
bool InstrEntryBBEnabled);
// Create the variable for the profile file name.
void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput);
// Whether to compress function names in profile records, and filenames in
// code coverage mappings. Used by the Instrumentation library and unit tests.
extern cl::opt<bool> DoInstrProfNameCompression;
} // end namespace llvm
#endif // LLVM_PROFILEDATA_INSTRPROF_H