1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00
llvm-mirror/lib/Target/RISCV/RISCVISelLowering.cpp
Shiva Chen 351fbaf236 [RISCV] Expand function call to "call" pseudoinstruction
To do this:
1. Change GlobalAddress SDNode to TargetGlobalAddress to avoid legalizer
   split the symbol.

2. Change ExternalSymbol SDNode to TargetExternalSymbol to avoid legalizer
   split the symbol.

3. Let PseudoCALL match direct call with target operand TargetGlobalAddress
   and TargetExternalSymbol.

Differential Revision: https://reviews.llvm.org/D44885

llvm-svn: 330827
2018-04-25 14:19:12 +00:00

1376 lines
52 KiB
C++

//===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that RISCV uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "RISCVISelLowering.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVRegisterInfo.h"
#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "riscv-lower"
RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
const RISCVSubtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
MVT XLenVT = Subtarget.getXLenVT();
// Set up the register classes.
addRegisterClass(XLenVT, &RISCV::GPRRegClass);
if (Subtarget.hasStdExtF())
addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
if (Subtarget.hasStdExtD())
addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
// Compute derived properties from the register classes.
computeRegisterProperties(STI.getRegisterInfo());
setStackPointerRegisterToSaveRestore(RISCV::X2);
for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
setLoadExtAction(N, XLenVT, MVT::i1, Promote);
// TODO: add all necessary setOperationAction calls.
setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, XLenVT, Expand);
setOperationAction(ISD::SELECT, XLenVT, Custom);
setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
setOperationAction(ISD::ADDC, XLenVT, Expand);
setOperationAction(ISD::ADDE, XLenVT, Expand);
setOperationAction(ISD::SUBC, XLenVT, Expand);
setOperationAction(ISD::SUBE, XLenVT, Expand);
if (!Subtarget.hasStdExtM()) {
setOperationAction(ISD::MUL, XLenVT, Expand);
setOperationAction(ISD::MULHS, XLenVT, Expand);
setOperationAction(ISD::MULHU, XLenVT, Expand);
setOperationAction(ISD::SDIV, XLenVT, Expand);
setOperationAction(ISD::UDIV, XLenVT, Expand);
setOperationAction(ISD::SREM, XLenVT, Expand);
setOperationAction(ISD::UREM, XLenVT, Expand);
}
setOperationAction(ISD::SDIVREM, XLenVT, Expand);
setOperationAction(ISD::UDIVREM, XLenVT, Expand);
setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
setOperationAction(ISD::SHL_PARTS, XLenVT, Expand);
setOperationAction(ISD::SRL_PARTS, XLenVT, Expand);
setOperationAction(ISD::SRA_PARTS, XLenVT, Expand);
setOperationAction(ISD::ROTL, XLenVT, Expand);
setOperationAction(ISD::ROTR, XLenVT, Expand);
setOperationAction(ISD::BSWAP, XLenVT, Expand);
setOperationAction(ISD::CTTZ, XLenVT, Expand);
setOperationAction(ISD::CTLZ, XLenVT, Expand);
setOperationAction(ISD::CTPOP, XLenVT, Expand);
ISD::CondCode FPCCToExtend[] = {
ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETO, ISD::SETUEQ,
ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE,
ISD::SETGT, ISD::SETGE, ISD::SETNE};
if (Subtarget.hasStdExtF()) {
setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
for (auto CC : FPCCToExtend)
setCondCodeAction(CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
}
if (Subtarget.hasStdExtD()) {
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
for (auto CC : FPCCToExtend)
setCondCodeAction(CC, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
}
setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
setOperationAction(ISD::BlockAddress, XLenVT, Custom);
setOperationAction(ISD::ConstantPool, XLenVT, Custom);
setBooleanContents(ZeroOrOneBooleanContent);
// Function alignments (log2).
unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2;
setMinFunctionAlignment(FunctionAlignment);
setPrefFunctionAlignment(FunctionAlignment);
// Effectively disable jump table generation.
setMinimumJumpTableEntries(INT_MAX);
}
EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
EVT VT) const {
if (!VT.isVector())
return getPointerTy(DL);
return VT.changeVectorElementTypeToInteger();
}
// Changes the condition code and swaps operands if necessary, so the SetCC
// operation matches one of the comparisons supported directly in the RISC-V
// ISA.
static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
switch (CC) {
default:
break;
case ISD::SETGT:
case ISD::SETLE:
case ISD::SETUGT:
case ISD::SETULE:
CC = ISD::getSetCCSwappedOperands(CC);
std::swap(LHS, RHS);
break;
}
}
// Return the RISC-V branch opcode that matches the given DAG integer
// condition code. The CondCode must be one of those supported by the RISC-V
// ISA (see normaliseSetCC).
static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
switch (CC) {
default:
llvm_unreachable("Unsupported CondCode");
case ISD::SETEQ:
return RISCV::BEQ;
case ISD::SETNE:
return RISCV::BNE;
case ISD::SETLT:
return RISCV::BLT;
case ISD::SETGE:
return RISCV::BGE;
case ISD::SETULT:
return RISCV::BLTU;
case ISD::SETUGE:
return RISCV::BGEU;
}
}
SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default:
report_fatal_error("unimplemented operand");
case ISD::GlobalAddress:
return lowerGlobalAddress(Op, DAG);
case ISD::BlockAddress:
return lowerBlockAddress(Op, DAG);
case ISD::ConstantPool:
return lowerConstantPool(Op, DAG);
case ISD::SELECT:
return lowerSELECT(Op, DAG);
case ISD::VASTART:
return lowerVASTART(Op, DAG);
case ISD::FRAMEADDR:
return LowerFRAMEADDR(Op, DAG);
case ISD::RETURNADDR:
return LowerRETURNADDR(Op, DAG);
}
}
SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getValueType();
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = N->getGlobal();
int64_t Offset = N->getOffset();
if (isPositionIndependent() || Subtarget.is64Bit())
report_fatal_error("Unable to lowerGlobalAddress");
SDValue GAHi =
DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_HI);
SDValue GALo =
DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_LO);
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
SDValue MNLo =
SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
return MNLo;
}
SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getValueType();
BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
const BlockAddress *BA = N->getBlockAddress();
int64_t Offset = N->getOffset();
if (isPositionIndependent() || Subtarget.is64Bit())
report_fatal_error("Unable to lowerBlockAddress");
SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI);
SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO);
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0);
SDValue MNLo =
SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0);
return MNLo;
}
SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getValueType();
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
const Constant *CPA = N->getConstVal();
int64_t Offset = N->getOffset();
unsigned Alignment = N->getAlignment();
if (!isPositionIndependent()) {
SDValue CPAHi =
DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_HI);
SDValue CPALo =
DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_LO);
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, CPAHi), 0);
SDValue MNLo =
SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, CPALo), 0);
return MNLo;
} else {
report_fatal_error("Unable to lowerConstantPool");
}
}
SDValue RISCVTargetLowering::lowerExternalSymbol(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT Ty = Op.getValueType();
ExternalSymbolSDNode *N = cast<ExternalSymbolSDNode>(Op);
const char *Sym = N->getSymbol();
// TODO: should also handle gp-relative loads.
if (isPositionIndependent() || Subtarget.is64Bit())
report_fatal_error("Unable to lowerExternalSymbol");
SDValue GAHi = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_HI);
SDValue GALo = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_LO);
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
SDValue MNLo =
SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
return MNLo;
}
SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue CondV = Op.getOperand(0);
SDValue TrueV = Op.getOperand(1);
SDValue FalseV = Op.getOperand(2);
SDLoc DL(Op);
MVT XLenVT = Subtarget.getXLenVT();
// If the result type is XLenVT and CondV is the output of a SETCC node
// which also operated on XLenVT inputs, then merge the SETCC node into the
// lowered RISCVISD::SELECT_CC to take advantage of the integer
// compare+branch instructions. i.e.:
// (select (setcc lhs, rhs, cc), truev, falsev)
// -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
CondV.getOperand(0).getSimpleValueType() == XLenVT) {
SDValue LHS = CondV.getOperand(0);
SDValue RHS = CondV.getOperand(1);
auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
ISD::CondCode CCVal = CC->get();
normaliseSetCC(LHS, RHS, CCVal);
SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
}
// Otherwise:
// (select condv, truev, falsev)
// -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
}
SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
SDLoc DL(Op);
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
getPointerTy(MF.getDataLayout()));
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue RISCVTargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setFrameAddressIsTaken(true);
unsigned FrameReg = RI.getFrameRegister(MF);
int XLenInBytes = Subtarget.getXLen() / 8;
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
while (Depth--) {
int Offset = -(XLenInBytes * 2);
SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
DAG.getIntPtrConstant(Offset, DL));
FrameAddr =
DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
}
return FrameAddr;
}
SDValue RISCVTargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setReturnAddressIsTaken(true);
MVT XLenVT = Subtarget.getXLenVT();
int XLenInBytes = Subtarget.getXLen() / 8;
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
if (Depth) {
int Off = -XLenInBytes;
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset = DAG.getConstant(Off, DL, VT);
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
MachinePointerInfo());
}
// Return the value of the return address register, marking it an implicit
// live-in.
unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
}
static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
MachineBasicBlock *BB) {
assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
MachineFunction &MF = *BB->getParent();
DebugLoc DL = MI.getDebugLoc();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
unsigned LoReg = MI.getOperand(0).getReg();
unsigned HiReg = MI.getOperand(1).getReg();
unsigned SrcReg = MI.getOperand(2).getReg();
const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
RI);
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
MachineMemOperand::MOLoad, 8, 8);
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
.addFrameIndex(FI)
.addImm(0)
.addMemOperand(MMO);
BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(MMO);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
MachineBasicBlock *BB) {
assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
"Unexpected instruction");
MachineFunction &MF = *BB->getParent();
DebugLoc DL = MI.getDebugLoc();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
unsigned DstReg = MI.getOperand(0).getReg();
unsigned LoReg = MI.getOperand(1).getReg();
unsigned HiReg = MI.getOperand(2).getReg();
const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
MachineMemOperand::MOStore, 8, 8);
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
.addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
.addFrameIndex(FI)
.addImm(0)
.addMemOperand(MMO);
BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
.addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
.addFrameIndex(FI)
.addImm(4)
.addMemOperand(MMO);
TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *
RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected instr type to insert");
case RISCV::Select_GPR_Using_CC_GPR:
case RISCV::Select_FPR32_Using_CC_GPR:
case RISCV::Select_FPR64_Using_CC_GPR:
break;
case RISCV::BuildPairF64Pseudo:
return emitBuildPairF64Pseudo(MI, BB);
case RISCV::SplitF64Pseudo:
return emitSplitF64Pseudo(MI, BB);
}
// To "insert" a SELECT instruction, we actually have to insert the triangle
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and the condcode to use to select the appropriate branch.
//
// We produce the following control flow:
// HeadMBB
// | \
// | IfFalseMBB
// | /
// TailMBB
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
DebugLoc DL = MI.getDebugLoc();
MachineFunction::iterator I = ++BB->getIterator();
MachineBasicBlock *HeadMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(I, IfFalseMBB);
F->insert(I, TailMBB);
// Move all remaining instructions to TailMBB.
TailMBB->splice(TailMBB->begin(), HeadMBB,
std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end());
// Update machine-CFG edges by transferring all successors of the current
// block to the new block which will contain the Phi node for the select.
TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
// Set the successors for HeadMBB.
HeadMBB->addSuccessor(IfFalseMBB);
HeadMBB->addSuccessor(TailMBB);
// Insert appropriate branch.
unsigned LHS = MI.getOperand(1).getReg();
unsigned RHS = MI.getOperand(2).getReg();
auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
BuildMI(HeadMBB, DL, TII.get(Opcode))
.addReg(LHS)
.addReg(RHS)
.addMBB(TailMBB);
// IfFalseMBB just falls through to TailMBB.
IfFalseMBB->addSuccessor(TailMBB);
// %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI),
MI.getOperand(0).getReg())
.addReg(MI.getOperand(4).getReg())
.addMBB(HeadMBB)
.addReg(MI.getOperand(5).getReg())
.addMBB(IfFalseMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return TailMBB;
}
// Calling Convention Implementation.
// The expectations for frontend ABI lowering vary from target to target.
// Ideally, an LLVM frontend would be able to avoid worrying about many ABI
// details, but this is a longer term goal. For now, we simply try to keep the
// role of the frontend as simple and well-defined as possible. The rules can
// be summarised as:
// * Never split up large scalar arguments. We handle them here.
// * If a hardfloat calling convention is being used, and the struct may be
// passed in a pair of registers (fp+fp, int+fp), and both registers are
// available, then pass as two separate arguments. If either the GPRs or FPRs
// are exhausted, then pass according to the rule below.
// * If a struct could never be passed in registers or directly in a stack
// slot (as it is larger than 2*XLEN and the floating point rules don't
// apply), then pass it using a pointer with the byval attribute.
// * If a struct is less than 2*XLEN, then coerce to either a two-element
// word-sized array or a 2*XLEN scalar (depending on alignment).
// * The frontend can determine whether a struct is returned by reference or
// not based on its size and fields. If it will be returned by reference, the
// frontend must modify the prototype so a pointer with the sret annotation is
// passed as the first argument. This is not necessary for large scalar
// returns.
// * Struct return values and varargs should be coerced to structs containing
// register-size fields in the same situations they would be for fixed
// arguments.
static const MCPhysReg ArgGPRs[] = {
RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
};
// Pass a 2*XLEN argument that has been split into two XLEN values through
// registers or the stack as necessary.
static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
MVT ValVT2, MVT LocVT2,
ISD::ArgFlagsTy ArgFlags2) {
unsigned XLenInBytes = XLen / 8;
if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
// At least one half can be passed via register.
State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
VA1.getLocVT(), CCValAssign::Full));
} else {
// Both halves must be passed on the stack, with proper alignment.
unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
State.addLoc(
CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
State.AllocateStack(XLenInBytes, StackAlign),
VA1.getLocVT(), CCValAssign::Full));
State.addLoc(CCValAssign::getMem(
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
CCValAssign::Full));
return false;
}
if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
// The second half can also be passed via register.
State.addLoc(
CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
} else {
// The second half is passed via the stack, without additional alignment.
State.addLoc(CCValAssign::getMem(
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
CCValAssign::Full));
}
return false;
}
// Implements the RISC-V calling convention. Returns true upon failure.
static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
CCState &State, bool IsFixed, bool IsRet, Type *OrigTy) {
unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
assert(XLen == 32 || XLen == 64);
MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
if (ValVT == MVT::f32) {
LocVT = MVT::i32;
LocInfo = CCValAssign::BCvt;
}
// Any return value split in to more than two values can't be returned
// directly.
if (IsRet && ValNo > 1)
return true;
// If this is a variadic argument, the RISC-V calling convention requires
// that it is assigned an 'even' or 'aligned' register if it has 8-byte
// alignment (RV32) or 16-byte alignment (RV64). An aligned register should
// be used regardless of whether the original argument was split during
// legalisation or not. The argument will not be passed by registers if the
// original type is larger than 2*XLEN, so the register alignment rule does
// not apply.
unsigned TwoXLenInBytes = (2 * XLen) / 8;
if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
// Skip 'odd' register if necessary.
if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
State.AllocateReg(ArgGPRs);
}
SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
State.getPendingArgFlags();
assert(PendingLocs.size() == PendingArgFlags.size() &&
"PendingLocs and PendingArgFlags out of sync");
// Handle passing f64 on RV32D with a soft float ABI.
if (XLen == 32 && ValVT == MVT::f64) {
assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
"Can't lower f64 if it is split");
// Depending on available argument GPRS, f64 may be passed in a pair of
// GPRs, split between a GPR and the stack, or passed completely on the
// stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
// cases.
unsigned Reg = State.AllocateReg(ArgGPRs);
LocVT = MVT::i32;
if (!Reg) {
unsigned StackOffset = State.AllocateStack(8, 8);
State.addLoc(
CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
return false;
}
if (!State.AllocateReg(ArgGPRs))
State.AllocateStack(4, 4);
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
// Split arguments might be passed indirectly, so keep track of the pending
// values.
if (ArgFlags.isSplit() || !PendingLocs.empty()) {
LocVT = XLenVT;
LocInfo = CCValAssign::Indirect;
PendingLocs.push_back(
CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
PendingArgFlags.push_back(ArgFlags);
if (!ArgFlags.isSplitEnd()) {
return false;
}
}
// If the split argument only had two elements, it should be passed directly
// in registers or on the stack.
if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
// Apply the normal calling convention rules to the first half of the
// split argument.
CCValAssign VA = PendingLocs[0];
ISD::ArgFlagsTy AF = PendingArgFlags[0];
PendingLocs.clear();
PendingArgFlags.clear();
return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
ArgFlags);
}
// Allocate to a register if possible, or else a stack slot.
unsigned Reg = State.AllocateReg(ArgGPRs);
unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
// If we reach this point and PendingLocs is non-empty, we must be at the
// end of a split argument that must be passed indirectly.
if (!PendingLocs.empty()) {
assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
for (auto &It : PendingLocs) {
if (Reg)
It.convertToReg(Reg);
else
It.convertToMem(StackOffset);
State.addLoc(It);
}
PendingLocs.clear();
PendingArgFlags.clear();
return false;
}
assert(LocVT == XLenVT && "Expected an XLenVT at this stage");
if (Reg) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
} else {
State.addLoc(
CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
}
return false;
}
void RISCVTargetLowering::analyzeInputArgs(
MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
unsigned NumArgs = Ins.size();
FunctionType *FType = MF.getFunction().getFunctionType();
for (unsigned i = 0; i != NumArgs; ++i) {
MVT ArgVT = Ins[i].VT;
ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
Type *ArgTy = nullptr;
if (IsRet)
ArgTy = FType->getReturnType();
else if (Ins[i].isOrigArg())
ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
<< EVT(ArgVT).getEVTString() << '\n');
llvm_unreachable(nullptr);
}
}
}
void RISCVTargetLowering::analyzeOutputArgs(
MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
CallLoweringInfo *CLI) const {
unsigned NumArgs = Outs.size();
for (unsigned i = 0; i != NumArgs; i++) {
MVT ArgVT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
<< EVT(ArgVT).getEVTString() << "\n");
llvm_unreachable(nullptr);
}
}
}
// The caller is responsible for loading the full value if the argument is
// passed with CCValAssign::Indirect.
static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
const CCValAssign &VA, const SDLoc &DL) {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
EVT LocVT = VA.getLocVT();
EVT ValVT = VA.getValVT();
SDValue Val;
unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
case CCValAssign::Indirect:
break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
break;
}
return Val;
}
// The caller is responsible for loading the full value if the argument is
// passed with CCValAssign::Indirect.
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
const CCValAssign &VA, const SDLoc &DL) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
EVT LocVT = VA.getLocVT();
EVT ValVT = VA.getValVT();
EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
VA.getLocMemOffset(), /*Immutable=*/true);
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
SDValue Val;
ISD::LoadExtType ExtType;
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
case CCValAssign::Indirect:
ExtType = ISD::NON_EXTLOAD;
break;
}
Val = DAG.getExtLoad(
ExtType, DL, LocVT, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
return Val;
}
static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
const CCValAssign &VA, const SDLoc &DL) {
assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
"Unexpected VA");
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
if (VA.isMemLoc()) {
// f64 is passed on the stack.
int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
return DAG.getLoad(MVT::f64, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(MF, FI));
}
assert(VA.isRegLoc() && "Expected register VA assignment");
unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
SDValue Hi;
if (VA.getLocReg() == RISCV::X17) {
// Second half of f64 is passed on the stack.
int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(MF, FI));
} else {
// Second half of f64 is passed in another GPR.
unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
}
return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
}
// Transform physical registers into virtual registers.
SDValue RISCVTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
switch (CallConv) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
break;
}
MachineFunction &MF = DAG.getMachineFunction();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
MVT XLenVT = Subtarget.getXLenVT();
unsigned XLenInBytes = Subtarget.getXLen() / 8;
// Used with vargs to acumulate store chains.
std::vector<SDValue> OutChains;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
assert(VA.getLocVT() == XLenVT && "Unhandled argument type");
SDValue ArgValue;
// Passing f64 on RV32D with a soft float ABI must be handled as a special
// case.
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
else if (VA.isRegLoc())
ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
else
ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
if (VA.getLocInfo() == CCValAssign::Indirect) {
// If the original argument was split and passed by reference (e.g. i128
// on RV32), we need to load all parts of it here (using the same
// address).
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
MachinePointerInfo()));
unsigned ArgIndex = Ins[i].OrigArgIndex;
assert(Ins[i].PartOffset == 0);
while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
CCValAssign &PartVA = ArgLocs[i + 1];
unsigned PartOffset = Ins[i + 1].PartOffset;
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
DAG.getIntPtrConstant(PartOffset, DL));
InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
MachinePointerInfo()));
++i;
}
continue;
}
InVals.push_back(ArgValue);
}
if (IsVarArg) {
ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Offset of the first variable argument from stack pointer, and size of
// the vararg save area. For now, the varargs save area is either zero or
// large enough to hold a0-a7.
int VaArgOffset, VarArgsSaveSize;
// If all registers are allocated, then all varargs must be passed on the
// stack and we don't need to save any argregs.
if (ArgRegs.size() == Idx) {
VaArgOffset = CCInfo.getNextStackOffset();
VarArgsSaveSize = 0;
} else {
VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
VaArgOffset = -VarArgsSaveSize;
}
// Record the frame index of the first variable argument
// which is a value necessary to VASTART.
int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
RVFI->setVarArgsFrameIndex(FI);
// If saving an odd number of registers then create an extra stack slot to
// ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
// offsets to even-numbered registered remain 2*XLEN-aligned.
if (Idx % 2) {
FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes,
true);
VarArgsSaveSize += XLenInBytes;
}
// Copy the integer registers that may have been used for passing varargs
// to the vararg save area.
for (unsigned I = Idx; I < ArgRegs.size();
++I, VaArgOffset += XLenInBytes) {
const unsigned Reg = RegInfo.createVirtualRegister(RC);
RegInfo.addLiveIn(ArgRegs[I], Reg);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
MachinePointerInfo::getFixedStack(MF, FI));
cast<StoreSDNode>(Store.getNode())
->getMemOperand()
->setValue((Value *)nullptr);
OutChains.push_back(Store);
}
RVFI->setVarArgsSaveSize(VarArgsSaveSize);
}
// All stores are grouped in one node to allow the matching between
// the size of Ins and InVals. This only happens for vararg functions.
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
}
return Chain;
}
// Lower a call to a callseq_start + CALL + callseq_end chain, and add input
// and output parameter nodes.
SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &DL = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
CLI.IsTailCall = false;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
EVT PtrVT = getPointerTy(DAG.getDataLayout());
MVT XLenVT = Subtarget.getXLenVT();
MachineFunction &MF = DAG.getMachineFunction();
// Analyze the operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = ArgCCInfo.getNextStackOffset();
// Create local copies for byval args
SmallVector<SDValue, 8> ByValArgs;
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (!Flags.isByVal())
continue;
SDValue Arg = OutVals[i];
unsigned Size = Flags.getByValSize();
unsigned Align = Flags.getByValAlign();
int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
/*IsVolatile=*/false,
/*AlwaysInline=*/false,
/*isTailCall=*/false, MachinePointerInfo(),
MachinePointerInfo());
ByValArgs.push_back(FIPtr);
}
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
// Copy argument values to their designated locations.
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue ArgValue = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// Handle passing f64 on RV32D with a soft float ABI as a special case.
bool IsF64OnRV32DSoftABI =
VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
SDValue SplitF64 = DAG.getNode(
RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
SDValue Lo = SplitF64.getValue(0);
SDValue Hi = SplitF64.getValue(1);
unsigned RegLo = VA.getLocReg();
RegsToPass.push_back(std::make_pair(RegLo, Lo));
if (RegLo == RISCV::X17) {
// Second half of f64 is passed on the stack.
// Work out the address of the stack slot.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
// Emit the store.
MemOpChains.push_back(
DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
} else {
// Second half of f64 is passed in another GPR.
unsigned RegHigh = RegLo + 1;
RegsToPass.push_back(std::make_pair(RegHigh, Hi));
}
continue;
}
// IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
// as any other MemLoc.
// Promote the value if needed.
// For now, only handle fully promoted and indirect arguments.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), ArgValue);
break;
case CCValAssign::Indirect: {
// Store the argument in a stack slot and pass its address.
SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, SpillSlot,
MachinePointerInfo::getFixedStack(MF, FI)));
// If the original argument was split (e.g. i128), we need
// to store all parts of it here (and pass just one address).
unsigned ArgIndex = Outs[i].OrigArgIndex;
assert(Outs[i].PartOffset == 0);
while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
SDValue PartValue = OutVals[i + 1];
unsigned PartOffset = Outs[i + 1].PartOffset;
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
DAG.getIntPtrConstant(PartOffset, DL));
MemOpChains.push_back(
DAG.getStore(Chain, DL, PartValue, Address,
MachinePointerInfo::getFixedStack(MF, FI)));
++i;
}
ArgValue = SpillSlot;
break;
}
default:
llvm_unreachable("Unknown loc info!");
}
// Use local copy if it is a byval arg.
if (Flags.isByVal())
ArgValue = ByValArgs[j++];
if (VA.isRegLoc()) {
// Queue up the argument copies and emit them at the end.
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
} else {
assert(VA.isMemLoc() && "Argument not register or memory");
// Work out the address of the stack slot.
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
SDValue Address =
DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
// Emit the store.
MemOpChains.push_back(
DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
}
}
// Join the stores, which are independent of one another.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
SDValue Glue;
// Build a sequence of copy-to-reg nodes, chained and glued together.
for (auto &Reg : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
Glue = Chain.getValue(1);
}
// If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
// TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
// split it and then direct call can be matched by PseudoCALL.
if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, 0);
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, 0);
}
// The first call operand is the chain and the second is the target address.
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (auto &Reg : RegsToPass)
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
// Glue the call to the argument copies, if any.
if (Glue.getNode())
Ops.push_back(Glue);
// Emit the call.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
Glue = Chain.getValue(1);
// Mark the end of the call, which is glued to the call itself.
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getConstant(NumBytes, DL, PtrVT, true),
DAG.getConstant(0, DL, PtrVT, true),
Glue, DL);
Glue = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
// Copy all of the result registers out of their specified physreg.
for (auto &VA : RVLocs) {
// Copy the value out
SDValue RetValue =
DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
// Glue the RetValue to the end of the call sequence
Chain = RetValue.getValue(1);
Glue = RetValue.getValue(2);
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
SDValue RetValue2 =
DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
Chain = RetValue2.getValue(1);
Glue = RetValue2.getValue(2);
RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
RetValue2);
}
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
RetValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), RetValue);
break;
}
InVals.push_back(RetValue);
}
return Chain;
}
bool RISCVTargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
MVT VT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags,
CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
return false;
}
return true;
}
static SDValue packIntoRegLoc(SelectionDAG &DAG, SDValue Val,
const CCValAssign &VA, const SDLoc &DL) {
EVT LocVT = VA.getLocVT();
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unexpected CCValAssign::LocInfo");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
break;
}
return Val;
}
SDValue
RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
// Stores the assignment of the return value to a location.
SmallVector<CCValAssign, 16> RVLocs;
// Info about the registers and stack slot.
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
nullptr);
SDValue Glue;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
SDValue Val = OutVals[i];
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
// Handle returning f64 on RV32D with a soft float ABI.
assert(VA.isRegLoc() && "Expected return via registers");
SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
DAG.getVTList(MVT::i32, MVT::i32), Val);
SDValue Lo = SplitF64.getValue(0);
SDValue Hi = SplitF64.getValue(1);
unsigned RegLo = VA.getLocReg();
unsigned RegHi = RegLo + 1;
Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
} else {
// Handle a 'normal' return.
Val = packIntoRegLoc(DAG, Val, VA, DL);
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
// Guarantee that all emitted copies are stuck together.
Glue = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
}
RetOps[0] = Chain; // Update chain.
// Add the glue node if we have it.
if (Glue.getNode()) {
RetOps.push_back(Glue);
}
return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
}
const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((RISCVISD::NodeType)Opcode) {
case RISCVISD::FIRST_NUMBER:
break;
case RISCVISD::RET_FLAG:
return "RISCVISD::RET_FLAG";
case RISCVISD::CALL:
return "RISCVISD::CALL";
case RISCVISD::SELECT_CC:
return "RISCVISD::SELECT_CC";
case RISCVISD::BuildPairF64:
return "RISCVISD::BuildPairF64";
case RISCVISD::SplitF64:
return "RISCVISD::SplitF64";
}
return nullptr;
}
std::pair<unsigned, const TargetRegisterClass *>
RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
// First, see if this is a constraint that directly corresponds to a
// RISCV register class.
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return std::make_pair(0U, &RISCV::GPRRegClass);
default:
break;
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}