1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/lib/Target/AArch64/AArch64ExpandPseudoInsts.cpp
Matthias Braun 98e3c40489 Insert IMPLICIT_DEFS for undef uses in tail merging
Tail merging can convert an undef use into a normal one when creating a
common tail. Doing so can make the register live out from a block which
previously contained the undef use. To keep the liveness up-to-date,
insert IMPLICIT_DEFs in such blocks when necessary.

To enable this patch the computeLiveIns() function which used to
compute live-ins for a block and set them immediately is split into new
functions:
- computeLiveIns() just computes the live-ins in a LivePhysRegs set.
- addLiveIns() applies the live-ins to a block live-in list.
- computeAndAddLiveIns() is a convenience function combining the other
  two functions and behaving like computeLiveIns() before this patch.

Based on a patch by Krzysztof Parzyszek <kparzysz@codeaurora.org>

Differential Revision: https://reviews.llvm.org/D37034

llvm-svn: 312668
2017-09-06 20:45:24 +00:00

1011 lines
37 KiB
C++

//===- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that expands pseudo instructions into target
// instructions to allow proper scheduling and other late optimizations. This
// pass should be run after register allocation but before the post-regalloc
// scheduling pass.
//
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
#include "AArch64Subtarget.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <utility>
using namespace llvm;
#define AARCH64_EXPAND_PSEUDO_NAME "AArch64 pseudo instruction expansion pass"
namespace {
class AArch64ExpandPseudo : public MachineFunctionPass {
public:
const AArch64InstrInfo *TII;
static char ID;
AArch64ExpandPseudo() : MachineFunctionPass(ID) {
initializeAArch64ExpandPseudoPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &Fn) override;
StringRef getPassName() const override { return AARCH64_EXPAND_PSEUDO_NAME; }
private:
bool expandMBB(MachineBasicBlock &MBB);
bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI);
bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
unsigned BitSize);
bool expandCMP_SWAP(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
unsigned LdarOp, unsigned StlrOp, unsigned CmpOp,
unsigned ExtendImm, unsigned ZeroReg,
MachineBasicBlock::iterator &NextMBBI);
bool expandCMP_SWAP_128(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI);
};
} // end anonymous namespace
char AArch64ExpandPseudo::ID = 0;
INITIALIZE_PASS(AArch64ExpandPseudo, "aarch64-expand-pseudo",
AARCH64_EXPAND_PSEUDO_NAME, false, false)
/// \brief Transfer implicit operands on the pseudo instruction to the
/// instructions created from the expansion.
static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
MachineInstrBuilder &DefMI) {
const MCInstrDesc &Desc = OldMI.getDesc();
for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
++i) {
const MachineOperand &MO = OldMI.getOperand(i);
assert(MO.isReg() && MO.getReg());
if (MO.isUse())
UseMI.add(MO);
else
DefMI.add(MO);
}
}
/// \brief Helper function which extracts the specified 16-bit chunk from a
/// 64-bit value.
static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
assert(ChunkIdx < 4 && "Out of range chunk index specified!");
return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
}
/// \brief Helper function which replicates a 16-bit chunk within a 64-bit
/// value. Indices correspond to element numbers in a v4i16.
static uint64_t replicateChunk(uint64_t Imm, unsigned FromIdx, unsigned ToIdx) {
assert((FromIdx < 4) && (ToIdx < 4) && "Out of range chunk index specified!");
const unsigned ShiftAmt = ToIdx * 16;
// Replicate the source chunk to the destination position.
const uint64_t Chunk = getChunk(Imm, FromIdx) << ShiftAmt;
// Clear the destination chunk.
Imm &= ~(0xFFFFLL << ShiftAmt);
// Insert the replicated chunk.
return Imm | Chunk;
}
/// \brief Helper function which tries to materialize a 64-bit value with an
/// ORR + MOVK instruction sequence.
static bool tryOrrMovk(uint64_t UImm, uint64_t OrrImm, MachineInstr &MI,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
const AArch64InstrInfo *TII, unsigned ChunkIdx) {
assert(ChunkIdx < 4 && "Out of range chunk index specified!");
const unsigned ShiftAmt = ChunkIdx * 16;
uint64_t Encoding;
if (AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding)) {
// Create the ORR-immediate instruction.
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
.add(MI.getOperand(0))
.addReg(AArch64::XZR)
.addImm(Encoding);
// Create the MOVK instruction.
const unsigned Imm16 = getChunk(UImm, ChunkIdx);
const unsigned DstReg = MI.getOperand(0).getReg();
const bool DstIsDead = MI.getOperand(0).isDead();
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg)
.addImm(Imm16)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
transferImpOps(MI, MIB, MIB1);
MI.eraseFromParent();
return true;
}
return false;
}
/// \brief Check whether the given 16-bit chunk replicated to full 64-bit width
/// can be materialized with an ORR instruction.
static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
}
/// \brief Check for identical 16-bit chunks within the constant and if so
/// materialize them with a single ORR instruction. The remaining one or two
/// 16-bit chunks will be materialized with MOVK instructions.
///
/// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
/// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
/// an ORR instruction.
static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
const AArch64InstrInfo *TII) {
using CountMap = DenseMap<uint64_t, unsigned>;
CountMap Counts;
// Scan the constant and count how often every chunk occurs.
for (unsigned Idx = 0; Idx < 4; ++Idx)
++Counts[getChunk(UImm, Idx)];
// Traverse the chunks to find one which occurs more than once.
for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
Chunk != End; ++Chunk) {
const uint64_t ChunkVal = Chunk->first;
const unsigned Count = Chunk->second;
uint64_t Encoding = 0;
// We are looking for chunks which have two or three instances and can be
// materialized with an ORR instruction.
if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
continue;
const bool CountThree = Count == 3;
// Create the ORR-immediate instruction.
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
.add(MI.getOperand(0))
.addReg(AArch64::XZR)
.addImm(Encoding);
const unsigned DstReg = MI.getOperand(0).getReg();
const bool DstIsDead = MI.getOperand(0).isDead();
unsigned ShiftAmt = 0;
uint64_t Imm16 = 0;
// Find the first chunk not materialized with the ORR instruction.
for (; ShiftAmt < 64; ShiftAmt += 16) {
Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
if (Imm16 != ChunkVal)
break;
}
// Create the first MOVK instruction.
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
.addReg(DstReg,
RegState::Define | getDeadRegState(DstIsDead && CountThree))
.addReg(DstReg)
.addImm(Imm16)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
// In case we have three instances the whole constant is now materialized
// and we can exit.
if (CountThree) {
transferImpOps(MI, MIB, MIB1);
MI.eraseFromParent();
return true;
}
// Find the remaining chunk which needs to be materialized.
for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
if (Imm16 != ChunkVal)
break;
}
// Create the second MOVK instruction.
MachineInstrBuilder MIB2 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg)
.addImm(Imm16)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
transferImpOps(MI, MIB, MIB2);
MI.eraseFromParent();
return true;
}
return false;
}
/// \brief Check whether this chunk matches the pattern '1...0...'. This pattern
/// starts a contiguous sequence of ones if we look at the bits from the LSB
/// towards the MSB.
static bool isStartChunk(uint64_t Chunk) {
if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
return false;
return isMask_64(~Chunk);
}
/// \brief Check whether this chunk matches the pattern '0...1...' This pattern
/// ends a contiguous sequence of ones if we look at the bits from the LSB
/// towards the MSB.
static bool isEndChunk(uint64_t Chunk) {
if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
return false;
return isMask_64(Chunk);
}
/// \brief Clear or set all bits in the chunk at the given index.
static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
const uint64_t Mask = 0xFFFF;
if (Clear)
// Clear chunk in the immediate.
Imm &= ~(Mask << (Idx * 16));
else
// Set all bits in the immediate for the particular chunk.
Imm |= Mask << (Idx * 16);
return Imm;
}
/// \brief Check whether the constant contains a sequence of contiguous ones,
/// which might be interrupted by one or two chunks. If so, materialize the
/// sequence of contiguous ones with an ORR instruction.
/// Materialize the chunks which are either interrupting the sequence or outside
/// of the sequence with a MOVK instruction.
///
/// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
/// which ends the sequence (0...1...). Then we are looking for constants which
/// contain at least one S and E chunk.
/// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
///
/// We are also looking for constants like |S|A|B|E| where the contiguous
/// sequence of ones wraps around the MSB into the LSB.
static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI,
const AArch64InstrInfo *TII) {
const int NotSet = -1;
const uint64_t Mask = 0xFFFF;
int StartIdx = NotSet;
int EndIdx = NotSet;
// Try to find the chunks which start/end a contiguous sequence of ones.
for (int Idx = 0; Idx < 4; ++Idx) {
int64_t Chunk = getChunk(UImm, Idx);
// Sign extend the 16-bit chunk to 64-bit.
Chunk = (Chunk << 48) >> 48;
if (isStartChunk(Chunk))
StartIdx = Idx;
else if (isEndChunk(Chunk))
EndIdx = Idx;
}
// Early exit in case we can't find a start/end chunk.
if (StartIdx == NotSet || EndIdx == NotSet)
return false;
// Outside of the contiguous sequence of ones everything needs to be zero.
uint64_t Outside = 0;
// Chunks between the start and end chunk need to have all their bits set.
uint64_t Inside = Mask;
// If our contiguous sequence of ones wraps around from the MSB into the LSB,
// just swap indices and pretend we are materializing a contiguous sequence
// of zeros surrounded by a contiguous sequence of ones.
if (StartIdx > EndIdx) {
std::swap(StartIdx, EndIdx);
std::swap(Outside, Inside);
}
uint64_t OrrImm = UImm;
int FirstMovkIdx = NotSet;
int SecondMovkIdx = NotSet;
// Find out which chunks we need to patch up to obtain a contiguous sequence
// of ones.
for (int Idx = 0; Idx < 4; ++Idx) {
const uint64_t Chunk = getChunk(UImm, Idx);
// Check whether we are looking at a chunk which is not part of the
// contiguous sequence of ones.
if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
OrrImm = updateImm(OrrImm, Idx, Outside == 0);
// Remember the index we need to patch.
if (FirstMovkIdx == NotSet)
FirstMovkIdx = Idx;
else
SecondMovkIdx = Idx;
// Check whether we are looking a chunk which is part of the contiguous
// sequence of ones.
} else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
// Remember the index we need to patch.
if (FirstMovkIdx == NotSet)
FirstMovkIdx = Idx;
else
SecondMovkIdx = Idx;
}
}
assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
// Create the ORR-immediate instruction.
uint64_t Encoding = 0;
AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
.add(MI.getOperand(0))
.addReg(AArch64::XZR)
.addImm(Encoding);
const unsigned DstReg = MI.getOperand(0).getReg();
const bool DstIsDead = MI.getOperand(0).isDead();
const bool SingleMovk = SecondMovkIdx == NotSet;
// Create the first MOVK instruction.
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
.addReg(DstReg,
RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
.addReg(DstReg)
.addImm(getChunk(UImm, FirstMovkIdx))
.addImm(
AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
// Early exit in case we only need to emit a single MOVK instruction.
if (SingleMovk) {
transferImpOps(MI, MIB, MIB1);
MI.eraseFromParent();
return true;
}
// Create the second MOVK instruction.
MachineInstrBuilder MIB2 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg)
.addImm(getChunk(UImm, SecondMovkIdx))
.addImm(
AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
transferImpOps(MI, MIB, MIB2);
MI.eraseFromParent();
return true;
}
/// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
/// real move-immediate instructions to synthesize the immediate.
bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned BitSize) {
MachineInstr &MI = *MBBI;
unsigned DstReg = MI.getOperand(0).getReg();
uint64_t Imm = MI.getOperand(1).getImm();
const unsigned Mask = 0xFFFF;
if (DstReg == AArch64::XZR || DstReg == AArch64::WZR) {
// Useless def, and we don't want to risk creating an invalid ORR (which
// would really write to sp).
MI.eraseFromParent();
return true;
}
// Try a MOVI instruction (aka ORR-immediate with the zero register).
uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
uint64_t Encoding;
if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
.add(MI.getOperand(0))
.addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
.addImm(Encoding);
transferImpOps(MI, MIB, MIB);
MI.eraseFromParent();
return true;
}
// Scan the immediate and count the number of 16-bit chunks which are either
// all ones or all zeros.
unsigned OneChunks = 0;
unsigned ZeroChunks = 0;
for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
const unsigned Chunk = (Imm >> Shift) & Mask;
if (Chunk == Mask)
OneChunks++;
else if (Chunk == 0)
ZeroChunks++;
}
// Since we can't materialize the constant with a single ORR instruction,
// let's see whether we can materialize 3/4 of the constant with an ORR
// instruction and use an additional MOVK instruction to materialize the
// remaining 1/4.
//
// We are looking for constants with a pattern like: |A|X|B|X| or |X|A|X|B|.
//
// E.g. assuming |A|X|A|X| is a pattern which can be materialized with ORR,
// we would create the following instruction sequence:
//
// ORR x0, xzr, |A|X|A|X|
// MOVK x0, |B|, LSL #16
//
// Only look at 64-bit constants which can't be materialized with a single
// instruction e.g. which have less than either three all zero or all one
// chunks.
//
// Ignore 32-bit constants here, they always can be materialized with a
// MOVZ/MOVN + MOVK pair. Since the 32-bit constant can't be materialized
// with a single ORR, the best sequence we can achieve is a ORR + MOVK pair.
// Thus we fall back to the default code below which in the best case creates
// a single MOVZ/MOVN instruction (in case one chunk is all zero or all one).
//
if (BitSize == 64 && OneChunks < 3 && ZeroChunks < 3) {
// If we interpret the 64-bit constant as a v4i16, are elements 0 and 2
// identical?
if (getChunk(UImm, 0) == getChunk(UImm, 2)) {
// See if we can come up with a constant which can be materialized with
// ORR-immediate by replicating element 3 into element 1.
uint64_t OrrImm = replicateChunk(UImm, 3, 1);
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 1))
return true;
// See if we can come up with a constant which can be materialized with
// ORR-immediate by replicating element 1 into element 3.
OrrImm = replicateChunk(UImm, 1, 3);
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 3))
return true;
// If we interpret the 64-bit constant as a v4i16, are elements 1 and 3
// identical?
} else if (getChunk(UImm, 1) == getChunk(UImm, 3)) {
// See if we can come up with a constant which can be materialized with
// ORR-immediate by replicating element 2 into element 0.
uint64_t OrrImm = replicateChunk(UImm, 2, 0);
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 0))
return true;
// See if we can come up with a constant which can be materialized with
// ORR-immediate by replicating element 1 into element 3.
OrrImm = replicateChunk(UImm, 0, 2);
if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 2))
return true;
}
}
// Check for identical 16-bit chunks within the constant and if so materialize
// them with a single ORR instruction. The remaining one or two 16-bit chunks
// will be materialized with MOVK instructions.
if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
return true;
// Check whether the constant contains a sequence of contiguous ones, which
// might be interrupted by one or two chunks. If so, materialize the sequence
// of contiguous ones with an ORR instruction. Materialize the chunks which
// are either interrupting the sequence or outside of the sequence with a
// MOVK instruction.
if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
return true;
// Use a MOVZ or MOVN instruction to set the high bits, followed by one or
// more MOVK instructions to insert additional 16-bit portions into the
// lower bits.
bool isNeg = false;
// Use MOVN to materialize the high bits if we have more all one chunks
// than all zero chunks.
if (OneChunks > ZeroChunks) {
isNeg = true;
Imm = ~Imm;
}
unsigned FirstOpc;
if (BitSize == 32) {
Imm &= (1LL << 32) - 1;
FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
} else {
FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
}
unsigned Shift = 0; // LSL amount for high bits with MOVZ/MOVN
unsigned LastShift = 0; // LSL amount for last MOVK
if (Imm != 0) {
unsigned LZ = countLeadingZeros(Imm);
unsigned TZ = countTrailingZeros(Imm);
Shift = (TZ / 16) * 16;
LastShift = ((63 - LZ) / 16) * 16;
}
unsigned Imm16 = (Imm >> Shift) & Mask;
bool DstIsDead = MI.getOperand(0).isDead();
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
.addReg(DstReg, RegState::Define |
getDeadRegState(DstIsDead && Shift == LastShift))
.addImm(Imm16)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
// If a MOVN was used for the high bits of a negative value, flip the rest
// of the bits back for use with MOVK.
if (isNeg)
Imm = ~Imm;
if (Shift == LastShift) {
transferImpOps(MI, MIB1, MIB1);
MI.eraseFromParent();
return true;
}
MachineInstrBuilder MIB2;
unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
while (Shift < LastShift) {
Shift += 16;
Imm16 = (Imm >> Shift) & Mask;
if (Imm16 == (isNeg ? Mask : 0))
continue; // This 16-bit portion is already set correctly.
MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
.addReg(DstReg,
RegState::Define |
getDeadRegState(DstIsDead && Shift == LastShift))
.addReg(DstReg)
.addImm(Imm16)
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
}
transferImpOps(MI, MIB1, MIB2);
MI.eraseFromParent();
return true;
}
bool AArch64ExpandPseudo::expandCMP_SWAP(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned LdarOp,
unsigned StlrOp, unsigned CmpOp, unsigned ExtendImm, unsigned ZeroReg,
MachineBasicBlock::iterator &NextMBBI) {
MachineInstr &MI = *MBBI;
DebugLoc DL = MI.getDebugLoc();
const MachineOperand &Dest = MI.getOperand(0);
unsigned StatusReg = MI.getOperand(1).getReg();
bool StatusDead = MI.getOperand(1).isDead();
// Duplicating undef operands into 2 instructions does not guarantee the same
// value on both; However undef should be replaced by xzr anyway.
assert(!MI.getOperand(2).isUndef() && "cannot handle undef");
unsigned AddrReg = MI.getOperand(2).getReg();
unsigned DesiredReg = MI.getOperand(3).getReg();
unsigned NewReg = MI.getOperand(4).getReg();
MachineFunction *MF = MBB.getParent();
auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
MF->insert(++MBB.getIterator(), LoadCmpBB);
MF->insert(++LoadCmpBB->getIterator(), StoreBB);
MF->insert(++StoreBB->getIterator(), DoneBB);
// .Lloadcmp:
// mov wStatus, 0
// ldaxr xDest, [xAddr]
// cmp xDest, xDesired
// b.ne .Ldone
if (!StatusDead)
BuildMI(LoadCmpBB, DL, TII->get(AArch64::MOVZWi), StatusReg)
.addImm(0).addImm(0);
BuildMI(LoadCmpBB, DL, TII->get(LdarOp), Dest.getReg())
.addReg(AddrReg);
BuildMI(LoadCmpBB, DL, TII->get(CmpOp), ZeroReg)
.addReg(Dest.getReg(), getKillRegState(Dest.isDead()))
.addReg(DesiredReg)
.addImm(ExtendImm);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::Bcc))
.addImm(AArch64CC::NE)
.addMBB(DoneBB)
.addReg(AArch64::NZCV, RegState::Implicit | RegState::Kill);
LoadCmpBB->addSuccessor(DoneBB);
LoadCmpBB->addSuccessor(StoreBB);
// .Lstore:
// stlxr wStatus, xNew, [xAddr]
// cbnz wStatus, .Lloadcmp
BuildMI(StoreBB, DL, TII->get(StlrOp), StatusReg)
.addReg(NewReg)
.addReg(AddrReg);
BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
.addReg(StatusReg, getKillRegState(StatusDead))
.addMBB(LoadCmpBB);
StoreBB->addSuccessor(LoadCmpBB);
StoreBB->addSuccessor(DoneBB);
DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
DoneBB->transferSuccessors(&MBB);
MBB.addSuccessor(LoadCmpBB);
NextMBBI = MBB.end();
MI.eraseFromParent();
// Recompute livein lists.
LivePhysRegs LiveRegs;
computeAndAddLiveIns(LiveRegs, *DoneBB);
computeAndAddLiveIns(LiveRegs, *StoreBB);
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
// Do an extra pass around the loop to get loop carried registers right.
StoreBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *StoreBB);
LoadCmpBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
return true;
}
bool AArch64ExpandPseudo::expandCMP_SWAP_128(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI) {
MachineInstr &MI = *MBBI;
DebugLoc DL = MI.getDebugLoc();
MachineOperand &DestLo = MI.getOperand(0);
MachineOperand &DestHi = MI.getOperand(1);
unsigned StatusReg = MI.getOperand(2).getReg();
bool StatusDead = MI.getOperand(2).isDead();
// Duplicating undef operands into 2 instructions does not guarantee the same
// value on both; However undef should be replaced by xzr anyway.
assert(!MI.getOperand(3).isUndef() && "cannot handle undef");
unsigned AddrReg = MI.getOperand(3).getReg();
unsigned DesiredLoReg = MI.getOperand(4).getReg();
unsigned DesiredHiReg = MI.getOperand(5).getReg();
unsigned NewLoReg = MI.getOperand(6).getReg();
unsigned NewHiReg = MI.getOperand(7).getReg();
MachineFunction *MF = MBB.getParent();
auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
MF->insert(++MBB.getIterator(), LoadCmpBB);
MF->insert(++LoadCmpBB->getIterator(), StoreBB);
MF->insert(++StoreBB->getIterator(), DoneBB);
// .Lloadcmp:
// ldaxp xDestLo, xDestHi, [xAddr]
// cmp xDestLo, xDesiredLo
// sbcs xDestHi, xDesiredHi
// b.ne .Ldone
BuildMI(LoadCmpBB, DL, TII->get(AArch64::LDAXPX))
.addReg(DestLo.getReg(), RegState::Define)
.addReg(DestHi.getReg(), RegState::Define)
.addReg(AddrReg);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
.addReg(DestLo.getReg(), getKillRegState(DestLo.isDead()))
.addReg(DesiredLoReg)
.addImm(0);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
.addUse(AArch64::WZR)
.addUse(AArch64::WZR)
.addImm(AArch64CC::EQ);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
.addReg(DestHi.getReg(), getKillRegState(DestHi.isDead()))
.addReg(DesiredHiReg)
.addImm(0);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::CSINCWr), StatusReg)
.addUse(StatusReg, RegState::Kill)
.addUse(StatusReg, RegState::Kill)
.addImm(AArch64CC::EQ);
BuildMI(LoadCmpBB, DL, TII->get(AArch64::CBNZW))
.addUse(StatusReg, getKillRegState(StatusDead))
.addMBB(DoneBB);
LoadCmpBB->addSuccessor(DoneBB);
LoadCmpBB->addSuccessor(StoreBB);
// .Lstore:
// stlxp wStatus, xNewLo, xNewHi, [xAddr]
// cbnz wStatus, .Lloadcmp
BuildMI(StoreBB, DL, TII->get(AArch64::STLXPX), StatusReg)
.addReg(NewLoReg)
.addReg(NewHiReg)
.addReg(AddrReg);
BuildMI(StoreBB, DL, TII->get(AArch64::CBNZW))
.addReg(StatusReg, getKillRegState(StatusDead))
.addMBB(LoadCmpBB);
StoreBB->addSuccessor(LoadCmpBB);
StoreBB->addSuccessor(DoneBB);
DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
DoneBB->transferSuccessors(&MBB);
MBB.addSuccessor(LoadCmpBB);
NextMBBI = MBB.end();
MI.eraseFromParent();
// Recompute liveness bottom up.
LivePhysRegs LiveRegs;
computeAndAddLiveIns(LiveRegs, *DoneBB);
computeAndAddLiveIns(LiveRegs, *StoreBB);
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
// Do an extra pass in the loop to get the loop carried dependencies right.
StoreBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *StoreBB);
LoadCmpBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
return true;
}
/// \brief If MBBI references a pseudo instruction that should be expanded here,
/// do the expansion and return true. Otherwise return false.
bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
switch (Opcode) {
default:
break;
case AArch64::ADDWrr:
case AArch64::SUBWrr:
case AArch64::ADDXrr:
case AArch64::SUBXrr:
case AArch64::ADDSWrr:
case AArch64::SUBSWrr:
case AArch64::ADDSXrr:
case AArch64::SUBSXrr:
case AArch64::ANDWrr:
case AArch64::ANDXrr:
case AArch64::BICWrr:
case AArch64::BICXrr:
case AArch64::ANDSWrr:
case AArch64::ANDSXrr:
case AArch64::BICSWrr:
case AArch64::BICSXrr:
case AArch64::EONWrr:
case AArch64::EONXrr:
case AArch64::EORWrr:
case AArch64::EORXrr:
case AArch64::ORNWrr:
case AArch64::ORNXrr:
case AArch64::ORRWrr:
case AArch64::ORRXrr: {
unsigned Opcode;
switch (MI.getOpcode()) {
default:
return false;
case AArch64::ADDWrr: Opcode = AArch64::ADDWrs; break;
case AArch64::SUBWrr: Opcode = AArch64::SUBWrs; break;
case AArch64::ADDXrr: Opcode = AArch64::ADDXrs; break;
case AArch64::SUBXrr: Opcode = AArch64::SUBXrs; break;
case AArch64::ADDSWrr: Opcode = AArch64::ADDSWrs; break;
case AArch64::SUBSWrr: Opcode = AArch64::SUBSWrs; break;
case AArch64::ADDSXrr: Opcode = AArch64::ADDSXrs; break;
case AArch64::SUBSXrr: Opcode = AArch64::SUBSXrs; break;
case AArch64::ANDWrr: Opcode = AArch64::ANDWrs; break;
case AArch64::ANDXrr: Opcode = AArch64::ANDXrs; break;
case AArch64::BICWrr: Opcode = AArch64::BICWrs; break;
case AArch64::BICXrr: Opcode = AArch64::BICXrs; break;
case AArch64::ANDSWrr: Opcode = AArch64::ANDSWrs; break;
case AArch64::ANDSXrr: Opcode = AArch64::ANDSXrs; break;
case AArch64::BICSWrr: Opcode = AArch64::BICSWrs; break;
case AArch64::BICSXrr: Opcode = AArch64::BICSXrs; break;
case AArch64::EONWrr: Opcode = AArch64::EONWrs; break;
case AArch64::EONXrr: Opcode = AArch64::EONXrs; break;
case AArch64::EORWrr: Opcode = AArch64::EORWrs; break;
case AArch64::EORXrr: Opcode = AArch64::EORXrs; break;
case AArch64::ORNWrr: Opcode = AArch64::ORNWrs; break;
case AArch64::ORNXrr: Opcode = AArch64::ORNXrs; break;
case AArch64::ORRWrr: Opcode = AArch64::ORRWrs; break;
case AArch64::ORRXrr: Opcode = AArch64::ORRXrs; break;
}
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
MI.getOperand(0).getReg())
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
transferImpOps(MI, MIB1, MIB1);
MI.eraseFromParent();
return true;
}
case AArch64::LOADgot: {
// Expand into ADRP + LDR.
unsigned DstReg = MI.getOperand(0).getReg();
const MachineOperand &MO1 = MI.getOperand(1);
unsigned Flags = MO1.getTargetFlags();
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
MachineInstrBuilder MIB2 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
.add(MI.getOperand(0))
.addReg(DstReg);
if (MO1.isGlobal()) {
MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
MIB2.addGlobalAddress(MO1.getGlobal(), 0,
Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
} else if (MO1.isSymbol()) {
MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
MIB2.addExternalSymbol(MO1.getSymbolName(),
Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
} else {
assert(MO1.isCPI() &&
"Only expect globals, externalsymbols, or constant pools");
MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
Flags | AArch64II::MO_PAGE);
MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
Flags | AArch64II::MO_PAGEOFF |
AArch64II::MO_NC);
}
transferImpOps(MI, MIB1, MIB2);
MI.eraseFromParent();
return true;
}
case AArch64::MOVaddr:
case AArch64::MOVaddrJT:
case AArch64::MOVaddrCP:
case AArch64::MOVaddrBA:
case AArch64::MOVaddrTLS:
case AArch64::MOVaddrEXT: {
// Expand into ADRP + ADD.
unsigned DstReg = MI.getOperand(0).getReg();
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
.add(MI.getOperand(1));
MachineInstrBuilder MIB2 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
.add(MI.getOperand(0))
.addReg(DstReg)
.add(MI.getOperand(2))
.addImm(0);
transferImpOps(MI, MIB1, MIB2);
MI.eraseFromParent();
return true;
}
case AArch64::MOVbaseTLS: {
unsigned DstReg = MI.getOperand(0).getReg();
auto SysReg = AArch64SysReg::TPIDR_EL0;
MachineFunction *MF = MBB.getParent();
if (MF->getTarget().getTargetTriple().isOSFuchsia() &&
MF->getTarget().getCodeModel() == CodeModel::Kernel)
SysReg = AArch64SysReg::TPIDR_EL1;
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MRS), DstReg)
.addImm(SysReg);
MI.eraseFromParent();
return true;
}
case AArch64::MOVi32imm:
return expandMOVImm(MBB, MBBI, 32);
case AArch64::MOVi64imm:
return expandMOVImm(MBB, MBBI, 64);
case AArch64::RET_ReallyLR: {
// Hiding the LR use with RET_ReallyLR may lead to extra kills in the
// function and missing live-ins. We are fine in practice because callee
// saved register handling ensures the register value is restored before
// RET, but we need the undef flag here to appease the MachineVerifier
// liveness checks.
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
.addReg(AArch64::LR, RegState::Undef);
transferImpOps(MI, MIB, MIB);
MI.eraseFromParent();
return true;
}
case AArch64::CMP_SWAP_8:
return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRB, AArch64::STLXRB,
AArch64::SUBSWrx,
AArch64_AM::getArithExtendImm(AArch64_AM::UXTB, 0),
AArch64::WZR, NextMBBI);
case AArch64::CMP_SWAP_16:
return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRH, AArch64::STLXRH,
AArch64::SUBSWrx,
AArch64_AM::getArithExtendImm(AArch64_AM::UXTH, 0),
AArch64::WZR, NextMBBI);
case AArch64::CMP_SWAP_32:
return expandCMP_SWAP(MBB, MBBI, AArch64::LDAXRW, AArch64::STLXRW,
AArch64::SUBSWrs,
AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
AArch64::WZR, NextMBBI);
case AArch64::CMP_SWAP_64:
return expandCMP_SWAP(MBB, MBBI,
AArch64::LDAXRX, AArch64::STLXRX, AArch64::SUBSXrs,
AArch64_AM::getShifterImm(AArch64_AM::LSL, 0),
AArch64::XZR, NextMBBI);
case AArch64::CMP_SWAP_128:
return expandCMP_SWAP_128(MBB, MBBI, NextMBBI);
case AArch64::AESMCrrTied:
case AArch64::AESIMCrrTied: {
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(Opcode == AArch64::AESMCrrTied ? AArch64::AESMCrr :
AArch64::AESIMCrr))
.add(MI.getOperand(0))
.add(MI.getOperand(1));
transferImpOps(MI, MIB, MIB);
MI.eraseFromParent();
return true;
}
}
return false;
}
/// \brief Iterate over the instructions in basic block MBB and expand any
/// pseudo instructions. Return true if anything was modified.
bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
bool Modified = false;
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
while (MBBI != E) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
Modified |= expandMI(MBB, MBBI, NMBBI);
MBBI = NMBBI;
}
return Modified;
}
bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
bool Modified = false;
for (auto &MBB : MF)
Modified |= expandMBB(MBB);
return Modified;
}
/// \brief Returns an instance of the pseudo instruction expansion pass.
FunctionPass *llvm::createAArch64ExpandPseudoPass() {
return new AArch64ExpandPseudo();
}