1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/lib/Target/SystemZ/SystemZInstrDFP.td
Ulrich Weigand 9c1b28edc2 [SystemZ] Add decimal floating-point instructions
This adds assembler / disassembler support for the decimal
floating-point instructions.  Since LLVM does not yet have
support for decimal float types, these cannot be used for
codegen at this point.

llvm-svn: 304203
2017-05-30 10:15:16 +00:00

232 lines
8.9 KiB
TableGen

//==- SystemZInstrDFP.td - Floating-point SystemZ instructions -*- tblgen-*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The instructions in this file implement SystemZ decimal floating-point
// arithmetic. These instructions are inot currently used for code generation,
// are provided for use with the assembler and disassembler only. If LLVM
// ever supports decimal floating-point types (_Decimal64 etc.), they can
// also be used for code generation for those types.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//
// Load and test.
let Defs = [CC] in {
def LTDTR : UnaryRRE<"ltdtr", 0xB3D6, null_frag, FP64, FP64>;
def LTXTR : UnaryRRE<"ltxtr", 0xB3DE, null_frag, FP128, FP128>;
}
//===----------------------------------------------------------------------===//
// Conversion instructions
//===----------------------------------------------------------------------===//
// Convert floating-point values to narrower representations. The destination
// of LDXTR is a 128-bit value, but only the first register of the pair is used.
def LEDTR : TernaryRRFe<"ledtr", 0xB3D5, FP32, FP64>;
def LDXTR : TernaryRRFe<"ldxtr", 0xB3DD, FP128, FP128>;
// Extend floating-point values to wider representations.
def LDETR : BinaryRRFd<"ldetr", 0xB3D4, FP64, FP32>;
def LXDTR : BinaryRRFd<"lxdtr", 0xB3DC, FP128, FP64>;
// Convert a signed integer value to a floating-point one.
def CDGTR : UnaryRRE<"cdgtr", 0xB3F1, null_frag, FP64, GR64>;
def CXGTR : UnaryRRE<"cxgtr", 0xB3F9, null_frag, FP128, GR64>;
let Predicates = [FeatureFPExtension] in {
def CDGTRA : TernaryRRFe<"cdgtra", 0xB3F1, FP64, GR64>;
def CXGTRA : TernaryRRFe<"cxgtra", 0xB3F9, FP128, GR64>;
def CDFTR : TernaryRRFe<"cdftr", 0xB951, FP64, GR32>;
def CXFTR : TernaryRRFe<"cxftr", 0xB959, FP128, GR32>;
}
// Convert an unsigned integer value to a floating-point one.
let Predicates = [FeatureFPExtension] in {
def CDLGTR : TernaryRRFe<"cdlgtr", 0xB952, FP64, GR64>;
def CXLGTR : TernaryRRFe<"cxlgtr", 0xB95A, FP128, GR64>;
def CDLFTR : TernaryRRFe<"cdlftr", 0xB953, FP64, GR32>;
def CXLFTR : TernaryRRFe<"cxlftr", 0xB95B, FP128, GR32>;
}
// Convert a floating-point value to a signed integer value.
let Defs = [CC] in {
def CGDTR : BinaryRRFe<"cgdtr", 0xB3E1, GR64, FP64>;
def CGXTR : BinaryRRFe<"cgxtr", 0xB3E9, GR64, FP128>;
let Predicates = [FeatureFPExtension] in {
def CGDTRA : TernaryRRFe<"cgdtra", 0xB3E1, GR64, FP64>;
def CGXTRA : TernaryRRFe<"cgxtra", 0xB3E9, GR64, FP128>;
def CFDTR : TernaryRRFe<"cfdtr", 0xB941, GR32, FP64>;
def CFXTR : TernaryRRFe<"cfxtr", 0xB949, GR32, FP128>;
}
}
// Convert a floating-point value to an unsigned integer value.
let Defs = [CC] in {
let Predicates = [FeatureFPExtension] in {
def CLGDTR : TernaryRRFe<"clgdtr", 0xB942, GR64, FP64>;
def CLGXTR : TernaryRRFe<"clgxtr", 0xB94A, GR64, FP128>;
def CLFDTR : TernaryRRFe<"clfdtr", 0xB943, GR32, FP64>;
def CLFXTR : TernaryRRFe<"clfxtr", 0xB94B, GR32, FP128>;
}
}
// Convert a packed value to a floating-point one.
def CDSTR : UnaryRRE<"cdstr", 0xB3F3, null_frag, FP64, GR64>;
def CXSTR : UnaryRRE<"cxstr", 0xB3FB, null_frag, FP128, GR128>;
def CDUTR : UnaryRRE<"cdutr", 0xB3F2, null_frag, FP64, GR64>;
def CXUTR : UnaryRRE<"cxutr", 0xB3FA, null_frag, FP128, GR128>;
// Convert a floating-point value to a packed value.
def CSDTR : BinaryRRFd<"csdtr", 0xB3E3, GR64, FP64>;
def CSXTR : BinaryRRFd<"csxtr", 0xB3EB, GR128, FP128>;
def CUDTR : UnaryRRE<"cudtr", 0xB3E2, null_frag, GR64, FP64>;
def CUXTR : UnaryRRE<"cuxtr", 0xB3EA, null_frag, GR128, FP128>;
// Convert from/to memory values in the zoned format.
let Predicates = [FeatureDFPZonedConversion] in {
def CDZT : BinaryRSL<"cdzt", 0xEDAA, FP64>;
def CXZT : BinaryRSL<"cxzt", 0xEDAB, FP128>;
def CZDT : StoreBinaryRSL<"czdt", 0xEDA8, FP64>;
def CZXT : StoreBinaryRSL<"czxt", 0xEDA9, FP128>;
}
// Convert from/to memory values in the packed format.
let Predicates = [FeatureDFPPackedConversion] in {
def CDPT : BinaryRSL<"cdpt", 0xEDAE, FP64>;
def CXPT : BinaryRSL<"cxpt", 0xEDAF, FP128>;
def CPDT : StoreBinaryRSL<"cpdt", 0xEDAC, FP64>;
def CPXT : StoreBinaryRSL<"cpxt", 0xEDAD, FP128>;
}
// Perform floating-point operation.
let Defs = [CC, R1L, F0Q], Uses = [R0L, F4Q] in
def PFPO : SideEffectInherentE<"pfpo", 0x010A>;
//===----------------------------------------------------------------------===//
// Unary arithmetic
//===----------------------------------------------------------------------===//
// Round to an integer, with the second operand (M3) specifying the rounding
// mode. M4 can be set to 4 to suppress detection of inexact conditions.
def FIDTR : TernaryRRFe<"fidtr", 0xB3D7, FP64, FP64>;
def FIXTR : TernaryRRFe<"fixtr", 0xB3DF, FP128, FP128>;
// Extract biased exponent.
def EEDTR : UnaryRRE<"eedtr", 0xB3E5, null_frag, FP64, FP64>;
def EEXTR : UnaryRRE<"eextr", 0xB3ED, null_frag, FP128, FP128>;
// Extract significance.
def ESDTR : UnaryRRE<"esdtr", 0xB3E7, null_frag, FP64, FP64>;
def ESXTR : UnaryRRE<"esxtr", 0xB3EF, null_frag, FP128, FP128>;
//===----------------------------------------------------------------------===//
// Binary arithmetic
//===----------------------------------------------------------------------===//
// Addition.
let Defs = [CC] in {
let isCommutable = 1 in {
def ADTR : BinaryRRFa<"adtr", 0xB3D2, null_frag, FP64, FP64, FP64>;
def AXTR : BinaryRRFa<"axtr", 0xB3DA, null_frag, FP128, FP128, FP128>;
}
let Predicates = [FeatureFPExtension] in {
def ADTRA : TernaryRRFa<"adtra", 0xB3D2, FP64, FP64, FP64>;
def AXTRA : TernaryRRFa<"axtra", 0xB3DA, FP128, FP128, FP128>;
}
}
// Subtraction.
let Defs = [CC] in {
def SDTR : BinaryRRFa<"sdtr", 0xB3D3, null_frag, FP64, FP64, FP64>;
def SXTR : BinaryRRFa<"sxtr", 0xB3DB, null_frag, FP128, FP128, FP128>;
let Predicates = [FeatureFPExtension] in {
def SDTRA : TernaryRRFa<"sdtra", 0xB3D3, FP64, FP64, FP64>;
def SXTRA : TernaryRRFa<"sxtra", 0xB3DB, FP128, FP128, FP128>;
}
}
// Multiplication.
let isCommutable = 1 in {
def MDTR : BinaryRRFa<"mdtr", 0xB3D0, null_frag, FP64, FP64, FP64>;
def MXTR : BinaryRRFa<"mxtr", 0xB3D8, null_frag, FP128, FP128, FP128>;
}
let Predicates = [FeatureFPExtension] in {
def MDTRA : TernaryRRFa<"mdtra", 0xB3D0, FP64, FP64, FP64>;
def MXTRA : TernaryRRFa<"mxtra", 0xB3D8, FP128, FP128, FP128>;
}
// Division.
def DDTR : BinaryRRFa<"ddtr", 0xB3D1, null_frag, FP64, FP64, FP64>;
def DXTR : BinaryRRFa<"dxtr", 0xB3D9, null_frag, FP128, FP128, FP128>;
let Predicates = [FeatureFPExtension] in {
def DDTRA : TernaryRRFa<"ddtra", 0xB3D1, FP64, FP64, FP64>;
def DXTRA : TernaryRRFa<"dxtra", 0xB3D9, FP128, FP128, FP128>;
}
// Quantize.
def QADTR : TernaryRRFb<"qadtr", 0xB3F5, FP64, FP64, FP64>;
def QAXTR : TernaryRRFb<"qaxtr", 0xB3FD, FP128, FP128, FP128>;
// Reround.
def RRDTR : TernaryRRFb<"rrdtr", 0xB3F7, FP64, FP64, FP64>;
def RRXTR : TernaryRRFb<"rrxtr", 0xB3FF, FP128, FP128, FP128>;
// Shift significand left/right.
def SLDT : BinaryRXF<"sldt", 0xED40, null_frag, FP64, FP64, null_frag, 0>;
def SLXT : BinaryRXF<"slxt", 0xED48, null_frag, FP128, FP128, null_frag, 0>;
def SRDT : BinaryRXF<"srdt", 0xED41, null_frag, FP64, FP64, null_frag, 0>;
def SRXT : BinaryRXF<"srxt", 0xED49, null_frag, FP128, FP128, null_frag, 0>;
// Insert biased exponent.
def IEDTR : BinaryRRFb<"iedtr", 0xB3F6, null_frag, FP64, FP64, FP64>;
def IEXTR : BinaryRRFb<"iextr", 0xB3FE, null_frag, FP128, FP128, FP128>;
//===----------------------------------------------------------------------===//
// Comparisons
//===----------------------------------------------------------------------===//
// Compare.
let Defs = [CC] in {
def CDTR : CompareRRE<"cdtr", 0xB3E4, null_frag, FP64, FP64>;
def CXTR : CompareRRE<"cxtr", 0xB3EC, null_frag, FP128, FP128>;
}
// Compare and signal.
let Defs = [CC] in {
def KDTR : CompareRRE<"kdtr", 0xB3E0, null_frag, FP64, FP64>;
def KXTR : CompareRRE<"kxtr", 0xB3E8, null_frag, FP128, FP128>;
}
// Compare biased exponent.
let Defs = [CC] in {
def CEDTR : CompareRRE<"cedtr", 0xB3F4, null_frag, FP64, FP64>;
def CEXTR : CompareRRE<"cextr", 0xB3FC, null_frag, FP128, FP128>;
}
// Test Data Class.
let Defs = [CC] in {
def TDCET : TestRXE<"tdcet", 0xED50, null_frag, FP32>;
def TDCDT : TestRXE<"tdcdt", 0xED54, null_frag, FP64>;
def TDCXT : TestRXE<"tdcxt", 0xED58, null_frag, FP128>;
}
// Test Data Group.
let Defs = [CC] in {
def TDGET : TestRXE<"tdget", 0xED51, null_frag, FP32>;
def TDGDT : TestRXE<"tdgdt", 0xED55, null_frag, FP64>;
def TDGXT : TestRXE<"tdgxt", 0xED59, null_frag, FP128>;
}