1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/unittests/IR/ConstantRangeTest.cpp
Roman Lebedev d9b2a4b5e7 [NFC][ConstantRange] Add 'icmp' helper method
"Does the predicate hold between two ranges?"

Not very surprisingly, some places were already doing this check,
without explicitly naming the algorithm, cleanup them all.
2021-04-10 19:38:55 +03:00

2492 lines
96 KiB
C++

//===- ConstantRangeTest.cpp - ConstantRange tests ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/ConstantRange.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/KnownBits.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class ConstantRangeTest : public ::testing::Test {
protected:
static ConstantRange Full;
static ConstantRange Empty;
static ConstantRange One;
static ConstantRange Some;
static ConstantRange Wrap;
};
template<typename Fn>
static void EnumerateConstantRanges(unsigned Bits, Fn TestFn) {
unsigned Max = 1 << Bits;
for (unsigned Lo = 0; Lo < Max; Lo++) {
for (unsigned Hi = 0; Hi < Max; Hi++) {
// Enforce ConstantRange invariant.
if (Lo == Hi && Lo != 0 && Lo != Max - 1)
continue;
ConstantRange CR(APInt(Bits, Lo), APInt(Bits, Hi));
TestFn(CR);
}
}
}
template<typename Fn>
static void EnumerateTwoConstantRanges(unsigned Bits, Fn TestFn) {
EnumerateConstantRanges(Bits, [&](const ConstantRange &CR1) {
EnumerateConstantRanges(Bits, [&](const ConstantRange &CR2) {
TestFn(CR1, CR2);
});
});
}
template<typename Fn>
static void ForeachNumInConstantRange(const ConstantRange &CR, Fn TestFn) {
if (!CR.isEmptySet()) {
APInt N = CR.getLower();
do TestFn(N);
while (++N != CR.getUpper());
}
}
using PreferFn = llvm::function_ref<bool(const ConstantRange &,
const ConstantRange &)>;
bool PreferSmallest(const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.isSizeStrictlySmallerThan(CR2);
}
bool PreferSmallestUnsigned(const ConstantRange &CR1,
const ConstantRange &CR2) {
if (CR1.isWrappedSet() != CR2.isWrappedSet())
return CR1.isWrappedSet() < CR2.isWrappedSet();
return PreferSmallest(CR1, CR2);
}
bool PreferSmallestSigned(const ConstantRange &CR1, const ConstantRange &CR2) {
if (CR1.isSignWrappedSet() != CR2.isSignWrappedSet())
return CR1.isSignWrappedSet() < CR2.isSignWrappedSet();
return PreferSmallest(CR1, CR2);
}
bool PreferSmallestNonFullUnsigned(const ConstantRange &CR1,
const ConstantRange &CR2) {
if (CR1.isFullSet() != CR2.isFullSet())
return CR1.isFullSet() < CR2.isFullSet();
return PreferSmallestUnsigned(CR1, CR2);
}
bool PreferSmallestNonFullSigned(const ConstantRange &CR1,
const ConstantRange &CR2) {
if (CR1.isFullSet() != CR2.isFullSet())
return CR1.isFullSet() < CR2.isFullSet();
return PreferSmallestSigned(CR1, CR2);
}
// Check whether constant range CR is an optimal approximation of the set
// Elems under the given PreferenceFn. The preference function should return
// true if the first range argument is strictly preferred to the second one.
static void TestRange(const ConstantRange &CR, const SmallBitVector &Elems,
PreferFn PreferenceFn, ArrayRef<ConstantRange> Inputs) {
unsigned BitWidth = CR.getBitWidth();
// Check conservative correctness.
for (unsigned Elem : Elems.set_bits()) {
EXPECT_TRUE(CR.contains(APInt(BitWidth, Elem)));
}
// Make sure we have at least one element for the code below.
if (Elems.none()) {
EXPECT_TRUE(CR.isEmptySet());
return;
}
auto NotPreferred = [&](const ConstantRange &PossibleCR) {
if (!PreferenceFn(PossibleCR, CR))
return testing::AssertionSuccess();
testing::AssertionResult Result = testing::AssertionFailure();
Result << "Inputs = ";
for (const ConstantRange &Input : Inputs)
Result << Input << ", ";
Result << "CR = " << CR << ", BetterCR = " << PossibleCR;
return Result;
};
// Look at all pairs of adjacent elements and the slack-free ranges
// [Elem, PrevElem] they imply. Check that none of the ranges are strictly
// preferred over the computed range (they may have equal preference).
int FirstElem = Elems.find_first();
int PrevElem = FirstElem, Elem;
do {
Elem = Elems.find_next(PrevElem);
if (Elem < 0)
Elem = FirstElem; // Wrap around to first element.
ConstantRange PossibleCR =
ConstantRange::getNonEmpty(APInt(BitWidth, Elem),
APInt(BitWidth, PrevElem) + 1);
// We get a full range any time PrevElem and Elem are adjacent. Avoid
// repeated checks by skipping here, and explicitly checking below instead.
if (!PossibleCR.isFullSet()) {
EXPECT_TRUE(NotPreferred(PossibleCR));
}
PrevElem = Elem;
} while (Elem != FirstElem);
EXPECT_TRUE(NotPreferred(ConstantRange::getFull(BitWidth)));
}
using UnaryRangeFn = llvm::function_ref<ConstantRange(const ConstantRange &)>;
using UnaryIntFn = llvm::function_ref<Optional<APInt>(const APInt &)>;
static void TestUnaryOpExhaustive(UnaryRangeFn RangeFn, UnaryIntFn IntFn,
PreferFn PreferenceFn = PreferSmallest) {
unsigned Bits = 4;
EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
SmallBitVector Elems(1 << Bits);
ForeachNumInConstantRange(CR, [&](const APInt &N) {
if (Optional<APInt> ResultN = IntFn(N))
Elems.set(ResultN->getZExtValue());
});
TestRange(RangeFn(CR), Elems, PreferenceFn, {CR});
});
}
using BinaryRangeFn = llvm::function_ref<ConstantRange(const ConstantRange &,
const ConstantRange &)>;
using BinaryIntFn = llvm::function_ref<Optional<APInt>(const APInt &,
const APInt &)>;
static void TestBinaryOpExhaustive(BinaryRangeFn RangeFn, BinaryIntFn IntFn,
PreferFn PreferenceFn = PreferSmallest) {
unsigned Bits = 4;
EnumerateTwoConstantRanges(
Bits, [&](const ConstantRange &CR1, const ConstantRange &CR2) {
SmallBitVector Elems(1 << Bits);
ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
if (Optional<APInt> ResultN = IntFn(N1, N2))
Elems.set(ResultN->getZExtValue());
});
});
TestRange(RangeFn(CR1, CR2), Elems, PreferenceFn, {CR1, CR2});
});
}
static void TestBinaryOpExhaustiveCorrectnessOnly(BinaryRangeFn RangeFn,
BinaryIntFn IntFn) {
unsigned Bits = 4;
EnumerateTwoConstantRanges(
Bits, [&](const ConstantRange &CR1, const ConstantRange &CR2) {
ConstantRange ResultCR = RangeFn(CR1, CR2);
ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
if (Optional<APInt> ResultN = IntFn(N1, N2)) {
EXPECT_TRUE(ResultCR.contains(*ResultN));
}
});
});
});
}
struct OpRangeGathererBase {
void account(const APInt &N);
ConstantRange getRange();
};
struct UnsignedOpRangeGatherer : public OpRangeGathererBase {
APInt Min;
APInt Max;
UnsignedOpRangeGatherer(unsigned Bits)
: Min(APInt::getMaxValue(Bits)), Max(APInt::getMinValue(Bits)) {}
void account(const APInt &N) {
if (N.ult(Min))
Min = N;
if (N.ugt(Max))
Max = N;
}
ConstantRange getRange() {
if (Min.ugt(Max))
return ConstantRange::getEmpty(Min.getBitWidth());
return ConstantRange::getNonEmpty(Min, Max + 1);
}
};
struct SignedOpRangeGatherer : public OpRangeGathererBase {
APInt Min;
APInt Max;
SignedOpRangeGatherer(unsigned Bits)
: Min(APInt::getSignedMaxValue(Bits)),
Max(APInt::getSignedMinValue(Bits)) {}
void account(const APInt &N) {
if (N.slt(Min))
Min = N;
if (N.sgt(Max))
Max = N;
}
ConstantRange getRange() {
if (Min.sgt(Max))
return ConstantRange::getEmpty(Min.getBitWidth());
return ConstantRange::getNonEmpty(Min, Max + 1);
}
};
ConstantRange ConstantRangeTest::Full(16, true);
ConstantRange ConstantRangeTest::Empty(16, false);
ConstantRange ConstantRangeTest::One(APInt(16, 0xa));
ConstantRange ConstantRangeTest::Some(APInt(16, 0xa), APInt(16, 0xaaa));
ConstantRange ConstantRangeTest::Wrap(APInt(16, 0xaaa), APInt(16, 0xa));
TEST_F(ConstantRangeTest, Basics) {
EXPECT_TRUE(Full.isFullSet());
EXPECT_FALSE(Full.isEmptySet());
EXPECT_TRUE(Full.inverse().isEmptySet());
EXPECT_FALSE(Full.isWrappedSet());
EXPECT_TRUE(Full.contains(APInt(16, 0x0)));
EXPECT_TRUE(Full.contains(APInt(16, 0x9)));
EXPECT_TRUE(Full.contains(APInt(16, 0xa)));
EXPECT_TRUE(Full.contains(APInt(16, 0xaa9)));
EXPECT_TRUE(Full.contains(APInt(16, 0xaaa)));
EXPECT_FALSE(Empty.isFullSet());
EXPECT_TRUE(Empty.isEmptySet());
EXPECT_TRUE(Empty.inverse().isFullSet());
EXPECT_FALSE(Empty.isWrappedSet());
EXPECT_FALSE(Empty.contains(APInt(16, 0x0)));
EXPECT_FALSE(Empty.contains(APInt(16, 0x9)));
EXPECT_FALSE(Empty.contains(APInt(16, 0xa)));
EXPECT_FALSE(Empty.contains(APInt(16, 0xaa9)));
EXPECT_FALSE(Empty.contains(APInt(16, 0xaaa)));
EXPECT_FALSE(One.isFullSet());
EXPECT_FALSE(One.isEmptySet());
EXPECT_FALSE(One.isWrappedSet());
EXPECT_FALSE(One.contains(APInt(16, 0x0)));
EXPECT_FALSE(One.contains(APInt(16, 0x9)));
EXPECT_TRUE(One.contains(APInt(16, 0xa)));
EXPECT_FALSE(One.contains(APInt(16, 0xaa9)));
EXPECT_FALSE(One.contains(APInt(16, 0xaaa)));
EXPECT_FALSE(One.inverse().contains(APInt(16, 0xa)));
EXPECT_FALSE(Some.isFullSet());
EXPECT_FALSE(Some.isEmptySet());
EXPECT_FALSE(Some.isWrappedSet());
EXPECT_FALSE(Some.contains(APInt(16, 0x0)));
EXPECT_FALSE(Some.contains(APInt(16, 0x9)));
EXPECT_TRUE(Some.contains(APInt(16, 0xa)));
EXPECT_TRUE(Some.contains(APInt(16, 0xaa9)));
EXPECT_FALSE(Some.contains(APInt(16, 0xaaa)));
EXPECT_FALSE(Wrap.isFullSet());
EXPECT_FALSE(Wrap.isEmptySet());
EXPECT_TRUE(Wrap.isWrappedSet());
EXPECT_TRUE(Wrap.contains(APInt(16, 0x0)));
EXPECT_TRUE(Wrap.contains(APInt(16, 0x9)));
EXPECT_FALSE(Wrap.contains(APInt(16, 0xa)));
EXPECT_FALSE(Wrap.contains(APInt(16, 0xaa9)));
EXPECT_TRUE(Wrap.contains(APInt(16, 0xaaa)));
}
TEST_F(ConstantRangeTest, Equality) {
EXPECT_EQ(Full, Full);
EXPECT_EQ(Empty, Empty);
EXPECT_EQ(One, One);
EXPECT_EQ(Some, Some);
EXPECT_EQ(Wrap, Wrap);
EXPECT_NE(Full, Empty);
EXPECT_NE(Full, One);
EXPECT_NE(Full, Some);
EXPECT_NE(Full, Wrap);
EXPECT_NE(Empty, One);
EXPECT_NE(Empty, Some);
EXPECT_NE(Empty, Wrap);
EXPECT_NE(One, Some);
EXPECT_NE(One, Wrap);
EXPECT_NE(Some, Wrap);
}
TEST_F(ConstantRangeTest, SingleElement) {
EXPECT_EQ(Full.getSingleElement(), static_cast<APInt *>(nullptr));
EXPECT_EQ(Empty.getSingleElement(), static_cast<APInt *>(nullptr));
EXPECT_EQ(Full.getSingleMissingElement(), static_cast<APInt *>(nullptr));
EXPECT_EQ(Empty.getSingleMissingElement(), static_cast<APInt *>(nullptr));
EXPECT_EQ(*One.getSingleElement(), APInt(16, 0xa));
EXPECT_EQ(Some.getSingleElement(), static_cast<APInt *>(nullptr));
EXPECT_EQ(Wrap.getSingleElement(), static_cast<APInt *>(nullptr));
EXPECT_EQ(One.getSingleMissingElement(), static_cast<APInt *>(nullptr));
EXPECT_EQ(Some.getSingleMissingElement(), static_cast<APInt *>(nullptr));
ConstantRange OneInverse = One.inverse();
EXPECT_EQ(*OneInverse.getSingleMissingElement(), *One.getSingleElement());
EXPECT_FALSE(Full.isSingleElement());
EXPECT_FALSE(Empty.isSingleElement());
EXPECT_TRUE(One.isSingleElement());
EXPECT_FALSE(Some.isSingleElement());
EXPECT_FALSE(Wrap.isSingleElement());
}
TEST_F(ConstantRangeTest, GetMinsAndMaxes) {
EXPECT_EQ(Full.getUnsignedMax(), APInt(16, UINT16_MAX));
EXPECT_EQ(One.getUnsignedMax(), APInt(16, 0xa));
EXPECT_EQ(Some.getUnsignedMax(), APInt(16, 0xaa9));
EXPECT_EQ(Wrap.getUnsignedMax(), APInt(16, UINT16_MAX));
EXPECT_EQ(Full.getUnsignedMin(), APInt(16, 0));
EXPECT_EQ(One.getUnsignedMin(), APInt(16, 0xa));
EXPECT_EQ(Some.getUnsignedMin(), APInt(16, 0xa));
EXPECT_EQ(Wrap.getUnsignedMin(), APInt(16, 0));
EXPECT_EQ(Full.getSignedMax(), APInt(16, INT16_MAX));
EXPECT_EQ(One.getSignedMax(), APInt(16, 0xa));
EXPECT_EQ(Some.getSignedMax(), APInt(16, 0xaa9));
EXPECT_EQ(Wrap.getSignedMax(), APInt(16, INT16_MAX));
EXPECT_EQ(Full.getSignedMin(), APInt(16, (uint64_t)INT16_MIN));
EXPECT_EQ(One.getSignedMin(), APInt(16, 0xa));
EXPECT_EQ(Some.getSignedMin(), APInt(16, 0xa));
EXPECT_EQ(Wrap.getSignedMin(), APInt(16, (uint64_t)INT16_MIN));
// Found by Klee
EXPECT_EQ(ConstantRange(APInt(4, 7), APInt(4, 0)).getSignedMax(),
APInt(4, 7));
}
TEST_F(ConstantRangeTest, SignWrapped) {
EXPECT_FALSE(Full.isSignWrappedSet());
EXPECT_FALSE(Empty.isSignWrappedSet());
EXPECT_FALSE(One.isSignWrappedSet());
EXPECT_FALSE(Some.isSignWrappedSet());
EXPECT_TRUE(Wrap.isSignWrappedSet());
EXPECT_FALSE(ConstantRange(APInt(8, 127), APInt(8, 128)).isSignWrappedSet());
EXPECT_TRUE(ConstantRange(APInt(8, 127), APInt(8, 129)).isSignWrappedSet());
EXPECT_FALSE(ConstantRange(APInt(8, 128), APInt(8, 129)).isSignWrappedSet());
EXPECT_TRUE(ConstantRange(APInt(8, 10), APInt(8, 9)).isSignWrappedSet());
EXPECT_TRUE(ConstantRange(APInt(8, 10), APInt(8, 250)).isSignWrappedSet());
EXPECT_FALSE(ConstantRange(APInt(8, 250), APInt(8, 10)).isSignWrappedSet());
EXPECT_FALSE(ConstantRange(APInt(8, 250), APInt(8, 251)).isSignWrappedSet());
}
TEST_F(ConstantRangeTest, UpperWrapped) {
// The behavior here is the same as for isWrappedSet() / isSignWrappedSet().
EXPECT_FALSE(Full.isUpperWrapped());
EXPECT_FALSE(Empty.isUpperWrapped());
EXPECT_FALSE(One.isUpperWrapped());
EXPECT_FALSE(Some.isUpperWrapped());
EXPECT_TRUE(Wrap.isUpperWrapped());
EXPECT_FALSE(Full.isUpperSignWrapped());
EXPECT_FALSE(Empty.isUpperSignWrapped());
EXPECT_FALSE(One.isUpperSignWrapped());
EXPECT_FALSE(Some.isUpperSignWrapped());
EXPECT_TRUE(Wrap.isUpperSignWrapped());
// The behavior differs if Upper is the Min/SignedMin value.
ConstantRange CR1(APInt(8, 42), APInt::getMinValue(8));
EXPECT_FALSE(CR1.isWrappedSet());
EXPECT_TRUE(CR1.isUpperWrapped());
ConstantRange CR2(APInt(8, 42), APInt::getSignedMinValue(8));
EXPECT_FALSE(CR2.isSignWrappedSet());
EXPECT_TRUE(CR2.isUpperSignWrapped());
}
TEST_F(ConstantRangeTest, Trunc) {
ConstantRange TFull = Full.truncate(10);
ConstantRange TEmpty = Empty.truncate(10);
ConstantRange TOne = One.truncate(10);
ConstantRange TSome = Some.truncate(10);
ConstantRange TWrap = Wrap.truncate(10);
EXPECT_TRUE(TFull.isFullSet());
EXPECT_TRUE(TEmpty.isEmptySet());
EXPECT_EQ(TOne, ConstantRange(One.getLower().trunc(10),
One.getUpper().trunc(10)));
EXPECT_TRUE(TSome.isFullSet());
EXPECT_TRUE(TWrap.isFullSet());
// trunc([2, 5), 3->2) = [2, 1)
ConstantRange TwoFive(APInt(3, 2), APInt(3, 5));
EXPECT_EQ(TwoFive.truncate(2), ConstantRange(APInt(2, 2), APInt(2, 1)));
// trunc([2, 6), 3->2) = full
ConstantRange TwoSix(APInt(3, 2), APInt(3, 6));
EXPECT_TRUE(TwoSix.truncate(2).isFullSet());
// trunc([5, 7), 3->2) = [1, 3)
ConstantRange FiveSeven(APInt(3, 5), APInt(3, 7));
EXPECT_EQ(FiveSeven.truncate(2), ConstantRange(APInt(2, 1), APInt(2, 3)));
// trunc([7, 1), 3->2) = [3, 1)
ConstantRange SevenOne(APInt(3, 7), APInt(3, 1));
EXPECT_EQ(SevenOne.truncate(2), ConstantRange(APInt(2, 3), APInt(2, 1)));
}
TEST_F(ConstantRangeTest, ZExt) {
ConstantRange ZFull = Full.zeroExtend(20);
ConstantRange ZEmpty = Empty.zeroExtend(20);
ConstantRange ZOne = One.zeroExtend(20);
ConstantRange ZSome = Some.zeroExtend(20);
ConstantRange ZWrap = Wrap.zeroExtend(20);
EXPECT_EQ(ZFull, ConstantRange(APInt(20, 0), APInt(20, 0x10000)));
EXPECT_TRUE(ZEmpty.isEmptySet());
EXPECT_EQ(ZOne, ConstantRange(One.getLower().zext(20),
One.getUpper().zext(20)));
EXPECT_EQ(ZSome, ConstantRange(Some.getLower().zext(20),
Some.getUpper().zext(20)));
EXPECT_EQ(ZWrap, ConstantRange(APInt(20, 0), APInt(20, 0x10000)));
// zext([5, 0), 3->7) = [5, 8)
ConstantRange FiveZero(APInt(3, 5), APInt(3, 0));
EXPECT_EQ(FiveZero.zeroExtend(7), ConstantRange(APInt(7, 5), APInt(7, 8)));
}
TEST_F(ConstantRangeTest, SExt) {
ConstantRange SFull = Full.signExtend(20);
ConstantRange SEmpty = Empty.signExtend(20);
ConstantRange SOne = One.signExtend(20);
ConstantRange SSome = Some.signExtend(20);
ConstantRange SWrap = Wrap.signExtend(20);
EXPECT_EQ(SFull, ConstantRange(APInt(20, (uint64_t)INT16_MIN, true),
APInt(20, INT16_MAX + 1, true)));
EXPECT_TRUE(SEmpty.isEmptySet());
EXPECT_EQ(SOne, ConstantRange(One.getLower().sext(20),
One.getUpper().sext(20)));
EXPECT_EQ(SSome, ConstantRange(Some.getLower().sext(20),
Some.getUpper().sext(20)));
EXPECT_EQ(SWrap, ConstantRange(APInt(20, (uint64_t)INT16_MIN, true),
APInt(20, INT16_MAX + 1, true)));
EXPECT_EQ(ConstantRange(APInt(8, 120), APInt(8, 140)).signExtend(16),
ConstantRange(APInt(16, -128), APInt(16, 128)));
EXPECT_EQ(ConstantRange(APInt(16, 0x0200), APInt(16, 0x8000)).signExtend(19),
ConstantRange(APInt(19, 0x0200), APInt(19, 0x8000)));
}
TEST_F(ConstantRangeTest, IntersectWith) {
EXPECT_EQ(Empty.intersectWith(Full), Empty);
EXPECT_EQ(Empty.intersectWith(Empty), Empty);
EXPECT_EQ(Empty.intersectWith(One), Empty);
EXPECT_EQ(Empty.intersectWith(Some), Empty);
EXPECT_EQ(Empty.intersectWith(Wrap), Empty);
EXPECT_EQ(Full.intersectWith(Full), Full);
EXPECT_EQ(Some.intersectWith(Some), Some);
EXPECT_EQ(Some.intersectWith(One), One);
EXPECT_EQ(Full.intersectWith(One), One);
EXPECT_EQ(Full.intersectWith(Some), Some);
EXPECT_EQ(Some.intersectWith(Wrap), Empty);
EXPECT_EQ(One.intersectWith(Wrap), Empty);
EXPECT_EQ(One.intersectWith(Wrap), Wrap.intersectWith(One));
// Klee generated testcase from PR4545.
// The intersection of i16 [4, 2) and [6, 5) is disjoint, looking like
// 01..4.6789ABCDEF where the dots represent values not in the intersection.
ConstantRange LHS(APInt(16, 4), APInt(16, 2));
ConstantRange RHS(APInt(16, 6), APInt(16, 5));
EXPECT_TRUE(LHS.intersectWith(RHS) == LHS);
// previous bug: intersection of [min, 3) and [2, max) should be 2
LHS = ConstantRange(APInt(32, -2147483646), APInt(32, 3));
RHS = ConstantRange(APInt(32, 2), APInt(32, 2147483646));
EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 2)));
// [2, 0) /\ [4, 3) = [2, 0)
LHS = ConstantRange(APInt(32, 2), APInt(32, 0));
RHS = ConstantRange(APInt(32, 4), APInt(32, 3));
EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 2), APInt(32, 0)));
// [2, 0) /\ [4, 2) = [4, 0)
LHS = ConstantRange(APInt(32, 2), APInt(32, 0));
RHS = ConstantRange(APInt(32, 4), APInt(32, 2));
EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 4), APInt(32, 0)));
// [4, 2) /\ [5, 1) = [5, 1)
LHS = ConstantRange(APInt(32, 4), APInt(32, 2));
RHS = ConstantRange(APInt(32, 5), APInt(32, 1));
EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 5), APInt(32, 1)));
// [2, 0) /\ [7, 4) = [7, 4)
LHS = ConstantRange(APInt(32, 2), APInt(32, 0));
RHS = ConstantRange(APInt(32, 7), APInt(32, 4));
EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 7), APInt(32, 4)));
// [4, 2) /\ [1, 0) = [1, 0)
LHS = ConstantRange(APInt(32, 4), APInt(32, 2));
RHS = ConstantRange(APInt(32, 1), APInt(32, 0));
EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 4), APInt(32, 2)));
// [15, 0) /\ [7, 6) = [15, 0)
LHS = ConstantRange(APInt(32, 15), APInt(32, 0));
RHS = ConstantRange(APInt(32, 7), APInt(32, 6));
EXPECT_EQ(LHS.intersectWith(RHS), ConstantRange(APInt(32, 15), APInt(32, 0)));
}
template<typename Fn1, typename Fn2>
void testBinarySetOperationExhaustive(Fn1 OpFn, Fn2 InResultFn) {
unsigned Bits = 4;
EnumerateTwoConstantRanges(Bits,
[=](const ConstantRange &CR1, const ConstantRange &CR2) {
SmallBitVector Elems(1 << Bits);
APInt Num(Bits, 0);
for (unsigned I = 0, Limit = 1 << Bits; I < Limit; ++I, ++Num)
if (InResultFn(CR1, CR2, Num))
Elems.set(Num.getZExtValue());
ConstantRange SmallestCR = OpFn(CR1, CR2, ConstantRange::Smallest);
TestRange(SmallestCR, Elems, PreferSmallest, {CR1, CR2});
ConstantRange UnsignedCR = OpFn(CR1, CR2, ConstantRange::Unsigned);
TestRange(UnsignedCR, Elems, PreferSmallestNonFullUnsigned, {CR1, CR2});
ConstantRange SignedCR = OpFn(CR1, CR2, ConstantRange::Signed);
TestRange(SignedCR, Elems, PreferSmallestNonFullSigned, {CR1, CR2});
});
}
TEST_F(ConstantRangeTest, IntersectWithExhaustive) {
testBinarySetOperationExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2,
ConstantRange::PreferredRangeType Type) {
return CR1.intersectWith(CR2, Type);
},
[](const ConstantRange &CR1, const ConstantRange &CR2, const APInt &N) {
return CR1.contains(N) && CR2.contains(N);
});
}
TEST_F(ConstantRangeTest, UnionWithExhaustive) {
testBinarySetOperationExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2,
ConstantRange::PreferredRangeType Type) {
return CR1.unionWith(CR2, Type);
},
[](const ConstantRange &CR1, const ConstantRange &CR2, const APInt &N) {
return CR1.contains(N) || CR2.contains(N);
});
}
TEST_F(ConstantRangeTest, UnionWith) {
EXPECT_EQ(Wrap.unionWith(One),
ConstantRange(APInt(16, 0xaaa), APInt(16, 0xb)));
EXPECT_EQ(One.unionWith(Wrap), Wrap.unionWith(One));
EXPECT_EQ(Empty.unionWith(Empty), Empty);
EXPECT_EQ(Full.unionWith(Full), Full);
EXPECT_EQ(Some.unionWith(Wrap), Full);
// PR4545
EXPECT_EQ(ConstantRange(APInt(16, 14), APInt(16, 1)).unionWith(
ConstantRange(APInt(16, 0), APInt(16, 8))),
ConstantRange(APInt(16, 14), APInt(16, 8)));
EXPECT_EQ(ConstantRange(APInt(16, 6), APInt(16, 4)).unionWith(
ConstantRange(APInt(16, 4), APInt(16, 0))),
ConstantRange::getFull(16));
EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 0)).unionWith(
ConstantRange(APInt(16, 2), APInt(16, 1))),
ConstantRange::getFull(16));
}
TEST_F(ConstantRangeTest, SetDifference) {
EXPECT_EQ(Full.difference(Empty), Full);
EXPECT_EQ(Full.difference(Full), Empty);
EXPECT_EQ(Empty.difference(Empty), Empty);
EXPECT_EQ(Empty.difference(Full), Empty);
ConstantRange A(APInt(16, 3), APInt(16, 7));
ConstantRange B(APInt(16, 5), APInt(16, 9));
ConstantRange C(APInt(16, 3), APInt(16, 5));
ConstantRange D(APInt(16, 7), APInt(16, 9));
ConstantRange E(APInt(16, 5), APInt(16, 4));
ConstantRange F(APInt(16, 7), APInt(16, 3));
EXPECT_EQ(A.difference(B), C);
EXPECT_EQ(B.difference(A), D);
EXPECT_EQ(E.difference(A), F);
}
TEST_F(ConstantRangeTest, getActiveBits) {
unsigned Bits = 4;
EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
unsigned Exact = 0;
ForeachNumInConstantRange(CR, [&](const APInt &N) {
Exact = std::max(Exact, N.getActiveBits());
});
unsigned ResultCR = CR.getActiveBits();
EXPECT_EQ(Exact, ResultCR);
});
}
TEST_F(ConstantRangeTest, losslessUnsignedTruncationZeroext) {
unsigned Bits = 4;
EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
unsigned MinBitWidth = CR.getActiveBits();
if (MinBitWidth == 0) {
EXPECT_TRUE(CR.isEmptySet() || (CR.isSingleElement() &&
CR.getSingleElement()->isNullValue()));
return;
}
if (MinBitWidth == Bits)
return;
EXPECT_EQ(CR, CR.truncate(MinBitWidth).zeroExtend(Bits));
});
}
TEST_F(ConstantRangeTest, getMinSignedBits) {
unsigned Bits = 4;
EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
unsigned Exact = 0;
ForeachNumInConstantRange(CR, [&](const APInt &N) {
Exact = std::max(Exact, N.getMinSignedBits());
});
unsigned ResultCR = CR.getMinSignedBits();
EXPECT_EQ(Exact, ResultCR);
});
}
TEST_F(ConstantRangeTest, losslessSignedTruncationSignext) {
unsigned Bits = 4;
EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
unsigned MinBitWidth = CR.getMinSignedBits();
if (MinBitWidth == 0) {
EXPECT_TRUE(CR.isEmptySet());
return;
}
if (MinBitWidth == Bits)
return;
EXPECT_EQ(CR, CR.truncate(MinBitWidth).signExtend(Bits));
});
}
TEST_F(ConstantRangeTest, SubtractAPInt) {
EXPECT_EQ(Full.subtract(APInt(16, 4)), Full);
EXPECT_EQ(Empty.subtract(APInt(16, 4)), Empty);
EXPECT_EQ(Some.subtract(APInt(16, 4)),
ConstantRange(APInt(16, 0x6), APInt(16, 0xaa6)));
EXPECT_EQ(Wrap.subtract(APInt(16, 4)),
ConstantRange(APInt(16, 0xaa6), APInt(16, 0x6)));
EXPECT_EQ(One.subtract(APInt(16, 4)),
ConstantRange(APInt(16, 0x6)));
}
TEST_F(ConstantRangeTest, Add) {
EXPECT_EQ(Full.add(APInt(16, 4)), Full);
EXPECT_EQ(Full.add(Full), Full);
EXPECT_EQ(Full.add(Empty), Empty);
EXPECT_EQ(Full.add(One), Full);
EXPECT_EQ(Full.add(Some), Full);
EXPECT_EQ(Full.add(Wrap), Full);
EXPECT_EQ(Empty.add(Empty), Empty);
EXPECT_EQ(Empty.add(One), Empty);
EXPECT_EQ(Empty.add(Some), Empty);
EXPECT_EQ(Empty.add(Wrap), Empty);
EXPECT_EQ(Empty.add(APInt(16, 4)), Empty);
EXPECT_EQ(Some.add(APInt(16, 4)),
ConstantRange(APInt(16, 0xe), APInt(16, 0xaae)));
EXPECT_EQ(Wrap.add(APInt(16, 4)),
ConstantRange(APInt(16, 0xaae), APInt(16, 0xe)));
EXPECT_EQ(One.add(APInt(16, 4)),
ConstantRange(APInt(16, 0xe)));
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.add(CR2);
},
[](const APInt &N1, const APInt &N2) {
return N1 + N2;
});
}
template <typename Fn1, typename Fn2>
static void TestAddWithNoSignedWrapExhaustive(Fn1 RangeFn, Fn2 IntFn) {
unsigned Bits = 4;
EnumerateTwoConstantRanges(Bits, [&](const ConstantRange &CR1,
const ConstantRange &CR2) {
ConstantRange CR = RangeFn(CR1, CR2);
SignedOpRangeGatherer R(CR.getBitWidth());
bool AllOverflow = true;
ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
bool IsOverflow = false;
APInt N = IntFn(IsOverflow, N1, N2);
if (!IsOverflow) {
AllOverflow = false;
R.account(N);
EXPECT_TRUE(CR.contains(N));
}
});
});
EXPECT_EQ(CR.isEmptySet(), AllOverflow);
if (CR1.isSignWrappedSet() || CR2.isSignWrappedSet())
return;
ConstantRange Exact = R.getRange();
EXPECT_EQ(Exact, CR);
});
}
template <typename Fn1, typename Fn2>
static void TestAddWithNoUnsignedWrapExhaustive(Fn1 RangeFn, Fn2 IntFn) {
unsigned Bits = 4;
EnumerateTwoConstantRanges(Bits, [&](const ConstantRange &CR1,
const ConstantRange &CR2) {
ConstantRange CR = RangeFn(CR1, CR2);
UnsignedOpRangeGatherer R(CR.getBitWidth());
bool AllOverflow = true;
ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
bool IsOverflow = false;
APInt N = IntFn(IsOverflow, N1, N2);
if (!IsOverflow) {
AllOverflow = false;
R.account(N);
EXPECT_TRUE(CR.contains(N));
}
});
});
EXPECT_EQ(CR.isEmptySet(), AllOverflow);
if (CR1.isWrappedSet() || CR2.isWrappedSet())
return;
ConstantRange Exact = R.getRange();
EXPECT_EQ(Exact, CR);
});
}
template <typename Fn1, typename Fn2, typename Fn3>
static void TestAddWithNoSignedUnsignedWrapExhaustive(Fn1 RangeFn,
Fn2 IntFnSigned,
Fn3 IntFnUnsigned) {
unsigned Bits = 4;
EnumerateTwoConstantRanges(
Bits, [&](const ConstantRange &CR1, const ConstantRange &CR2) {
ConstantRange CR = RangeFn(CR1, CR2);
UnsignedOpRangeGatherer UR(CR.getBitWidth());
SignedOpRangeGatherer SR(CR.getBitWidth());
bool AllOverflow = true;
ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
bool IsOverflow = false, IsSignedOverflow = false;
APInt N = IntFnSigned(IsSignedOverflow, N1, N2);
(void) IntFnUnsigned(IsOverflow, N1, N2);
if (!IsSignedOverflow && !IsOverflow) {
AllOverflow = false;
UR.account(N);
SR.account(N);
EXPECT_TRUE(CR.contains(N));
}
});
});
EXPECT_EQ(CR.isEmptySet(), AllOverflow);
if (CR1.isWrappedSet() || CR2.isWrappedSet() ||
CR1.isSignWrappedSet() || CR2.isSignWrappedSet())
return;
ConstantRange ExactUnsignedCR = UR.getRange();
ConstantRange ExactSignedCR = SR.getRange();
if (ExactUnsignedCR.isEmptySet() || ExactSignedCR.isEmptySet()) {
EXPECT_TRUE(CR.isEmptySet());
return;
}
ConstantRange Exact = ExactSignedCR.intersectWith(ExactUnsignedCR);
EXPECT_EQ(Exact, CR);
});
}
TEST_F(ConstantRangeTest, AddWithNoWrap) {
typedef OverflowingBinaryOperator OBO;
EXPECT_EQ(Empty.addWithNoWrap(Some, OBO::NoSignedWrap), Empty);
EXPECT_EQ(Some.addWithNoWrap(Empty, OBO::NoSignedWrap), Empty);
EXPECT_EQ(Full.addWithNoWrap(Full, OBO::NoSignedWrap), Full);
EXPECT_NE(Full.addWithNoWrap(Some, OBO::NoSignedWrap), Full);
EXPECT_NE(Some.addWithNoWrap(Full, OBO::NoSignedWrap), Full);
EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, 1), APInt(16, 2)),
OBO::NoSignedWrap),
ConstantRange(APInt(16, INT16_MIN + 1), APInt(16, INT16_MIN)));
EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 2))
.addWithNoWrap(Full, OBO::NoSignedWrap),
ConstantRange(APInt(16, INT16_MIN + 1), APInt(16, INT16_MIN)));
EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, -1), APInt(16, 0)),
OBO::NoSignedWrap),
ConstantRange(APInt(16, INT16_MIN), APInt(16, INT16_MAX)));
EXPECT_EQ(ConstantRange(APInt(8, 100), APInt(8, 120))
.addWithNoWrap(ConstantRange(APInt(8, 120), APInt(8, 123)),
OBO::NoSignedWrap),
ConstantRange(8, false));
EXPECT_EQ(ConstantRange(APInt(8, -120), APInt(8, -100))
.addWithNoWrap(ConstantRange(APInt(8, -110), APInt(8, -100)),
OBO::NoSignedWrap),
ConstantRange(8, false));
EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101))
.addWithNoWrap(ConstantRange(APInt(8, -128), APInt(8, 28)),
OBO::NoSignedWrap),
ConstantRange(8, true));
EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101))
.addWithNoWrap(ConstantRange(APInt(8, -120), APInt(8, 29)),
OBO::NoSignedWrap),
ConstantRange(APInt(8, -120), APInt(8, -128)));
EXPECT_EQ(ConstantRange(APInt(8, -50), APInt(8, 50))
.addWithNoWrap(ConstantRange(APInt(8, 10), APInt(8, 20)),
OBO::NoSignedWrap),
ConstantRange(APInt(8, -40), APInt(8, 69)));
EXPECT_EQ(ConstantRange(APInt(8, 10), APInt(8, 20))
.addWithNoWrap(ConstantRange(APInt(8, -50), APInt(8, 50)),
OBO::NoSignedWrap),
ConstantRange(APInt(8, -40), APInt(8, 69)));
EXPECT_EQ(ConstantRange(APInt(8, 120), APInt(8, -10))
.addWithNoWrap(ConstantRange(APInt(8, 5), APInt(8, 20)),
OBO::NoSignedWrap),
ConstantRange(APInt(8, 125), APInt(8, 9)));
EXPECT_EQ(ConstantRange(APInt(8, 5), APInt(8, 20))
.addWithNoWrap(ConstantRange(APInt(8, 120), APInt(8, -10)),
OBO::NoSignedWrap),
ConstantRange(APInt(8, 125), APInt(8, 9)));
TestAddWithNoSignedWrapExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.addWithNoWrap(CR2, OBO::NoSignedWrap);
},
[](bool &IsOverflow, const APInt &N1, const APInt &N2) {
return N1.sadd_ov(N2, IsOverflow);
});
EXPECT_EQ(Empty.addWithNoWrap(Some, OBO::NoUnsignedWrap), Empty);
EXPECT_EQ(Some.addWithNoWrap(Empty, OBO::NoUnsignedWrap), Empty);
EXPECT_EQ(Full.addWithNoWrap(Full, OBO::NoUnsignedWrap), Full);
EXPECT_NE(Full.addWithNoWrap(Some, OBO::NoUnsignedWrap), Full);
EXPECT_NE(Some.addWithNoWrap(Full, OBO::NoUnsignedWrap), Full);
EXPECT_EQ(Full.addWithNoWrap(ConstantRange(APInt(16, 1), APInt(16, 2)),
OBO::NoUnsignedWrap),
ConstantRange(APInt(16, 1), APInt(16, 0)));
EXPECT_EQ(ConstantRange(APInt(16, 1), APInt(16, 2))
.addWithNoWrap(Full, OBO::NoUnsignedWrap),
ConstantRange(APInt(16, 1), APInt(16, 0)));
EXPECT_EQ(ConstantRange(APInt(8, 200), APInt(8, 220))
.addWithNoWrap(ConstantRange(APInt(8, 100), APInt(8, 123)),
OBO::NoUnsignedWrap),
ConstantRange(8, false));
EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101))
.addWithNoWrap(ConstantRange(APInt(8, 0), APInt(8, 156)),
OBO::NoUnsignedWrap),
ConstantRange(8, true));
EXPECT_EQ(ConstantRange(APInt(8, 0), APInt(8, 101))
.addWithNoWrap(ConstantRange(APInt(8, 10), APInt(8, 29)),
OBO::NoUnsignedWrap),
ConstantRange(APInt(8, 10), APInt(8, 129)));
EXPECT_EQ(ConstantRange(APInt(8, 20), APInt(8, 10))
.addWithNoWrap(ConstantRange(APInt(8, 50), APInt(8, 200)),
OBO::NoUnsignedWrap),
ConstantRange(APInt(8, 50), APInt(8, 0)));
EXPECT_EQ(ConstantRange(APInt(8, 10), APInt(8, 20))
.addWithNoWrap(ConstantRange(APInt(8, 50), APInt(8, 200)),
OBO::NoUnsignedWrap),
ConstantRange(APInt(8, 60), APInt(8, -37)));
EXPECT_EQ(ConstantRange(APInt(8, 20), APInt(8, -30))
.addWithNoWrap(ConstantRange(APInt(8, 5), APInt(8, 20)),
OBO::NoUnsignedWrap),
ConstantRange(APInt(8, 25), APInt(8, -11)));
EXPECT_EQ(ConstantRange(APInt(8, 5), APInt(8, 20))
.addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, -30)),
OBO::NoUnsignedWrap),
ConstantRange(APInt(8, 25), APInt(8, -11)));
TestAddWithNoUnsignedWrapExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.addWithNoWrap(CR2, OBO::NoUnsignedWrap);
},
[](bool &IsOverflow, const APInt &N1, const APInt &N2) {
return N1.uadd_ov(N2, IsOverflow);
});
EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100))
.addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)),
OBO::NoSignedWrap),
ConstantRange(APInt(8, 70), APInt(8, -128)));
EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100))
.addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)),
OBO::NoUnsignedWrap),
ConstantRange(APInt(8, 70), APInt(8, 169)));
EXPECT_EQ(ConstantRange(APInt(8, 50), APInt(8, 100))
.addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 70)),
OBO::NoUnsignedWrap | OBO::NoSignedWrap),
ConstantRange(APInt(8, 70), APInt(8, -128)));
EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50))
.addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)),
OBO::NoSignedWrap),
ConstantRange(APInt(8, -80), APInt(8, -21)));
EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50))
.addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)),
OBO::NoUnsignedWrap),
ConstantRange(APInt(8, 176), APInt(8, 235)));
EXPECT_EQ(ConstantRange(APInt(8, -100), APInt(8, -50))
.addWithNoWrap(ConstantRange(APInt(8, 20), APInt(8, 30)),
OBO::NoUnsignedWrap | OBO::NoSignedWrap),
ConstantRange(APInt(8, 176), APInt(8, 235)));
TestAddWithNoSignedUnsignedWrapExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.addWithNoWrap(CR2, OBO::NoUnsignedWrap | OBO::NoSignedWrap);
},
[](bool &IsOverflow, const APInt &N1, const APInt &N2) {
return N1.sadd_ov(N2, IsOverflow);
},
[](bool &IsOverflow, const APInt &N1, const APInt &N2) {
return N1.uadd_ov(N2, IsOverflow);
});
}
TEST_F(ConstantRangeTest, Sub) {
EXPECT_EQ(Full.sub(APInt(16, 4)), Full);
EXPECT_EQ(Full.sub(Full), Full);
EXPECT_EQ(Full.sub(Empty), Empty);
EXPECT_EQ(Full.sub(One), Full);
EXPECT_EQ(Full.sub(Some), Full);
EXPECT_EQ(Full.sub(Wrap), Full);
EXPECT_EQ(Empty.sub(Empty), Empty);
EXPECT_EQ(Empty.sub(One), Empty);
EXPECT_EQ(Empty.sub(Some), Empty);
EXPECT_EQ(Empty.sub(Wrap), Empty);
EXPECT_EQ(Empty.sub(APInt(16, 4)), Empty);
EXPECT_EQ(Some.sub(APInt(16, 4)),
ConstantRange(APInt(16, 0x6), APInt(16, 0xaa6)));
EXPECT_EQ(Some.sub(Some),
ConstantRange(APInt(16, 0xf561), APInt(16, 0xaa0)));
EXPECT_EQ(Wrap.sub(APInt(16, 4)),
ConstantRange(APInt(16, 0xaa6), APInt(16, 0x6)));
EXPECT_EQ(One.sub(APInt(16, 4)),
ConstantRange(APInt(16, 0x6)));
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.sub(CR2);
},
[](const APInt &N1, const APInt &N2) {
return N1 - N2;
});
}
TEST_F(ConstantRangeTest, SubWithNoWrap) {
typedef OverflowingBinaryOperator OBO;
TestAddWithNoSignedWrapExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.subWithNoWrap(CR2, OBO::NoSignedWrap);
},
[](bool &IsOverflow, const APInt &N1, const APInt &N2) {
return N1.ssub_ov(N2, IsOverflow);
});
TestAddWithNoUnsignedWrapExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.subWithNoWrap(CR2, OBO::NoUnsignedWrap);
},
[](bool &IsOverflow, const APInt &N1, const APInt &N2) {
return N1.usub_ov(N2, IsOverflow);
});
TestAddWithNoSignedUnsignedWrapExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.subWithNoWrap(CR2, OBO::NoUnsignedWrap | OBO::NoSignedWrap);
},
[](bool &IsOverflow, const APInt &N1, const APInt &N2) {
return N1.ssub_ov(N2, IsOverflow);
},
[](bool &IsOverflow, const APInt &N1, const APInt &N2) {
return N1.usub_ov(N2, IsOverflow);
});
}
TEST_F(ConstantRangeTest, Multiply) {
EXPECT_EQ(Full.multiply(Full), Full);
EXPECT_EQ(Full.multiply(Empty), Empty);
EXPECT_EQ(Full.multiply(One), Full);
EXPECT_EQ(Full.multiply(Some), Full);
EXPECT_EQ(Full.multiply(Wrap), Full);
EXPECT_EQ(Empty.multiply(Empty), Empty);
EXPECT_EQ(Empty.multiply(One), Empty);
EXPECT_EQ(Empty.multiply(Some), Empty);
EXPECT_EQ(Empty.multiply(Wrap), Empty);
EXPECT_EQ(One.multiply(One), ConstantRange(APInt(16, 0xa*0xa),
APInt(16, 0xa*0xa + 1)));
EXPECT_EQ(One.multiply(Some), ConstantRange(APInt(16, 0xa*0xa),
APInt(16, 0xa*0xaa9 + 1)));
EXPECT_EQ(One.multiply(Wrap), Full);
EXPECT_EQ(Some.multiply(Some), Full);
EXPECT_EQ(Some.multiply(Wrap), Full);
EXPECT_EQ(Wrap.multiply(Wrap), Full);
ConstantRange Zero(APInt(16, 0));
EXPECT_EQ(Zero.multiply(Full), Zero);
EXPECT_EQ(Zero.multiply(Some), Zero);
EXPECT_EQ(Zero.multiply(Wrap), Zero);
EXPECT_EQ(Full.multiply(Zero), Zero);
EXPECT_EQ(Some.multiply(Zero), Zero);
EXPECT_EQ(Wrap.multiply(Zero), Zero);
// http://llvm.org/PR4545
EXPECT_EQ(ConstantRange(APInt(4, 1), APInt(4, 6)).multiply(
ConstantRange(APInt(4, 6), APInt(4, 2))),
ConstantRange(4, /*isFullSet=*/true));
EXPECT_EQ(ConstantRange(APInt(8, 254), APInt(8, 0)).multiply(
ConstantRange(APInt(8, 252), APInt(8, 4))),
ConstantRange(APInt(8, 250), APInt(8, 9)));
EXPECT_EQ(ConstantRange(APInt(8, 254), APInt(8, 255)).multiply(
ConstantRange(APInt(8, 2), APInt(8, 4))),
ConstantRange(APInt(8, 250), APInt(8, 253)));
// TODO: This should be return [-2, 0]
EXPECT_EQ(ConstantRange(APInt(8, -2)).multiply(
ConstantRange(APInt(8, 0), APInt(8, 2))),
ConstantRange(APInt(8, -2), APInt(8, 1)));
}
TEST_F(ConstantRangeTest, UMax) {
EXPECT_EQ(Full.umax(Full), Full);
EXPECT_EQ(Full.umax(Empty), Empty);
EXPECT_EQ(Full.umax(Some), ConstantRange(APInt(16, 0xa), APInt(16, 0)));
EXPECT_EQ(Full.umax(Wrap), Full);
EXPECT_EQ(Full.umax(Some), ConstantRange(APInt(16, 0xa), APInt(16, 0)));
EXPECT_EQ(Empty.umax(Empty), Empty);
EXPECT_EQ(Empty.umax(Some), Empty);
EXPECT_EQ(Empty.umax(Wrap), Empty);
EXPECT_EQ(Empty.umax(One), Empty);
EXPECT_EQ(Some.umax(Some), Some);
EXPECT_EQ(Some.umax(Wrap), ConstantRange(APInt(16, 0xa), APInt(16, 0)));
EXPECT_EQ(Some.umax(One), Some);
EXPECT_EQ(Wrap.umax(Wrap), Wrap);
EXPECT_EQ(Wrap.umax(One), ConstantRange(APInt(16, 0xa), APInt(16, 0)));
EXPECT_EQ(One.umax(One), One);
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.umax(CR2);
},
[](const APInt &N1, const APInt &N2) {
return APIntOps::umax(N1, N2);
},
PreferSmallestNonFullUnsigned);
}
TEST_F(ConstantRangeTest, SMax) {
EXPECT_EQ(Full.smax(Full), Full);
EXPECT_EQ(Full.smax(Empty), Empty);
EXPECT_EQ(Full.smax(Some), ConstantRange(APInt(16, 0xa),
APInt::getSignedMinValue(16)));
EXPECT_EQ(Full.smax(Wrap), Full);
EXPECT_EQ(Full.smax(One), ConstantRange(APInt(16, 0xa),
APInt::getSignedMinValue(16)));
EXPECT_EQ(Empty.smax(Empty), Empty);
EXPECT_EQ(Empty.smax(Some), Empty);
EXPECT_EQ(Empty.smax(Wrap), Empty);
EXPECT_EQ(Empty.smax(One), Empty);
EXPECT_EQ(Some.smax(Some), Some);
EXPECT_EQ(Some.smax(Wrap), ConstantRange(APInt(16, 0xa),
APInt(16, (uint64_t)INT16_MIN)));
EXPECT_EQ(Some.smax(One), Some);
EXPECT_EQ(Wrap.smax(One), ConstantRange(APInt(16, 0xa),
APInt(16, (uint64_t)INT16_MIN)));
EXPECT_EQ(One.smax(One), One);
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.smax(CR2);
},
[](const APInt &N1, const APInt &N2) {
return APIntOps::smax(N1, N2);
},
PreferSmallestNonFullSigned);
}
TEST_F(ConstantRangeTest, UMin) {
EXPECT_EQ(Full.umin(Full), Full);
EXPECT_EQ(Full.umin(Empty), Empty);
EXPECT_EQ(Full.umin(Some), ConstantRange(APInt(16, 0), APInt(16, 0xaaa)));
EXPECT_EQ(Full.umin(Wrap), Full);
EXPECT_EQ(Empty.umin(Empty), Empty);
EXPECT_EQ(Empty.umin(Some), Empty);
EXPECT_EQ(Empty.umin(Wrap), Empty);
EXPECT_EQ(Empty.umin(One), Empty);
EXPECT_EQ(Some.umin(Some), Some);
EXPECT_EQ(Some.umin(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa)));
EXPECT_EQ(Some.umin(One), One);
EXPECT_EQ(Wrap.umin(Wrap), Wrap);
EXPECT_EQ(Wrap.umin(One), ConstantRange(APInt(16, 0), APInt(16, 0xb)));
EXPECT_EQ(One.umin(One), One);
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.umin(CR2);
},
[](const APInt &N1, const APInt &N2) {
return APIntOps::umin(N1, N2);
},
PreferSmallestNonFullUnsigned);
}
TEST_F(ConstantRangeTest, SMin) {
EXPECT_EQ(Full.smin(Full), Full);
EXPECT_EQ(Full.smin(Empty), Empty);
EXPECT_EQ(Full.smin(Some), ConstantRange(APInt(16, (uint64_t)INT16_MIN),
APInt(16, 0xaaa)));
EXPECT_EQ(Full.smin(Wrap), Full);
EXPECT_EQ(Empty.smin(Empty), Empty);
EXPECT_EQ(Empty.smin(Some), Empty);
EXPECT_EQ(Empty.smin(Wrap), Empty);
EXPECT_EQ(Empty.smin(One), Empty);
EXPECT_EQ(Some.smin(Some), Some);
EXPECT_EQ(Some.smin(Wrap), ConstantRange(APInt(16, (uint64_t)INT16_MIN),
APInt(16, 0xaaa)));
EXPECT_EQ(Some.smin(One), One);
EXPECT_EQ(Wrap.smin(Wrap), Wrap);
EXPECT_EQ(Wrap.smin(One), ConstantRange(APInt(16, (uint64_t)INT16_MIN),
APInt(16, 0xb)));
EXPECT_EQ(One.smin(One), One);
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.smin(CR2);
},
[](const APInt &N1, const APInt &N2) {
return APIntOps::smin(N1, N2);
},
PreferSmallestNonFullSigned);
}
TEST_F(ConstantRangeTest, UDiv) {
EXPECT_EQ(Full.udiv(Full), Full);
EXPECT_EQ(Full.udiv(Empty), Empty);
EXPECT_EQ(Full.udiv(One), ConstantRange(APInt(16, 0),
APInt(16, 0xffff / 0xa + 1)));
EXPECT_EQ(Full.udiv(Some), ConstantRange(APInt(16, 0),
APInt(16, 0xffff / 0xa + 1)));
EXPECT_EQ(Full.udiv(Wrap), Full);
EXPECT_EQ(Empty.udiv(Empty), Empty);
EXPECT_EQ(Empty.udiv(One), Empty);
EXPECT_EQ(Empty.udiv(Some), Empty);
EXPECT_EQ(Empty.udiv(Wrap), Empty);
EXPECT_EQ(One.udiv(One), ConstantRange(APInt(16, 1)));
EXPECT_EQ(One.udiv(Some), ConstantRange(APInt(16, 0), APInt(16, 2)));
EXPECT_EQ(One.udiv(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb)));
EXPECT_EQ(Some.udiv(Some), ConstantRange(APInt(16, 0), APInt(16, 0x111)));
EXPECT_EQ(Some.udiv(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa)));
EXPECT_EQ(Wrap.udiv(Wrap), Full);
ConstantRange Zero(APInt(16, 0));
EXPECT_EQ(Zero.udiv(One), Zero);
EXPECT_EQ(Zero.udiv(Full), Zero);
EXPECT_EQ(ConstantRange(APInt(16, 0), APInt(16, 99)).udiv(Full),
ConstantRange(APInt(16, 0), APInt(16, 99)));
EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 99)).udiv(Full),
ConstantRange(APInt(16, 0), APInt(16, 99)));
}
TEST_F(ConstantRangeTest, SDiv) {
unsigned Bits = 4;
EnumerateTwoConstantRanges(Bits, [&](const ConstantRange &CR1,
const ConstantRange &CR2) {
// Collect possible results in a bit vector. We store the signed value plus
// a bias to make it unsigned.
int Bias = 1 << (Bits - 1);
BitVector Results(1 << Bits);
ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
// Division by zero is UB.
if (N2 == 0)
return;
// SignedMin / -1 is UB.
if (N1.isMinSignedValue() && N2.isAllOnesValue())
return;
APInt N = N1.sdiv(N2);
Results.set(N.getSExtValue() + Bias);
});
});
ConstantRange CR = CR1.sdiv(CR2);
if (Results.none()) {
EXPECT_TRUE(CR.isEmptySet());
return;
}
// If there is a non-full signed envelope, that should be the result.
APInt SMin(Bits, Results.find_first() - Bias);
APInt SMax(Bits, Results.find_last() - Bias);
ConstantRange Envelope = ConstantRange::getNonEmpty(SMin, SMax + 1);
if (!Envelope.isFullSet()) {
EXPECT_EQ(Envelope, CR);
return;
}
// If the signed envelope is a full set, try to find a smaller sign wrapped
// set that is separated in negative and positive components (or one which
// can also additionally contain zero).
int LastNeg = Results.find_last_in(0, Bias) - Bias;
int LastPos = Results.find_next(Bias) - Bias;
if (Results[Bias]) {
if (LastNeg == -1)
++LastNeg;
else if (LastPos == 1)
--LastPos;
}
APInt WMax(Bits, LastNeg);
APInt WMin(Bits, LastPos);
ConstantRange Wrapped = ConstantRange::getNonEmpty(WMin, WMax + 1);
EXPECT_EQ(Wrapped, CR);
});
}
TEST_F(ConstantRangeTest, URem) {
EXPECT_EQ(Full.urem(Empty), Empty);
EXPECT_EQ(Empty.urem(Full), Empty);
// urem by zero is poison.
EXPECT_EQ(Full.urem(ConstantRange(APInt(16, 0))), Empty);
// urem by full range doesn't contain MaxValue.
EXPECT_EQ(Full.urem(Full), ConstantRange(APInt(16, 0), APInt(16, 0xffff)));
// urem is upper bounded by maximum RHS minus one.
EXPECT_EQ(Full.urem(ConstantRange(APInt(16, 0), APInt(16, 123))),
ConstantRange(APInt(16, 0), APInt(16, 122)));
// urem is upper bounded by maximum LHS.
EXPECT_EQ(ConstantRange(APInt(16, 0), APInt(16, 123)).urem(Full),
ConstantRange(APInt(16, 0), APInt(16, 123)));
// If the LHS is always lower than the RHS, the result is the LHS.
EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 20))
.urem(ConstantRange(APInt(16, 20), APInt(16, 30))),
ConstantRange(APInt(16, 10), APInt(16, 20)));
// It has to be strictly lower, otherwise the top value may wrap to zero.
EXPECT_EQ(ConstantRange(APInt(16, 10), APInt(16, 20))
.urem(ConstantRange(APInt(16, 19), APInt(16, 30))),
ConstantRange(APInt(16, 0), APInt(16, 20)));
// [12, 14] % 10 is [2, 4], but we conservatively compute [0, 9].
EXPECT_EQ(ConstantRange(APInt(16, 12), APInt(16, 15))
.urem(ConstantRange(APInt(16, 10))),
ConstantRange(APInt(16, 0), APInt(16, 10)));
TestBinaryOpExhaustiveCorrectnessOnly(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.urem(CR2);
},
[](const APInt &N1, const APInt &N2) -> Optional<APInt> {
if (N2.isNullValue())
return None;
return N1.urem(N2);
});
}
TEST_F(ConstantRangeTest, SRem) {
EXPECT_EQ(Full.srem(Empty), Empty);
EXPECT_EQ(Empty.srem(Full), Empty);
// srem by zero is UB.
EXPECT_EQ(Full.srem(ConstantRange(APInt(16, 0))), Empty);
// srem by full range doesn't contain SignedMinValue.
EXPECT_EQ(Full.srem(Full), ConstantRange(APInt::getSignedMinValue(16) + 1,
APInt::getSignedMinValue(16)));
ConstantRange PosMod(APInt(16, 10), APInt(16, 21)); // [10, 20]
ConstantRange NegMod(APInt(16, -20), APInt(16, -9)); // [-20, -10]
ConstantRange IntMinMod(APInt::getSignedMinValue(16));
ConstantRange Expected(16, true);
// srem is bounded by abs(RHS) minus one.
ConstantRange PosLargeLHS(APInt(16, 0), APInt(16, 41));
Expected = ConstantRange(APInt(16, 0), APInt(16, 20));
EXPECT_EQ(PosLargeLHS.srem(PosMod), Expected);
EXPECT_EQ(PosLargeLHS.srem(NegMod), Expected);
ConstantRange NegLargeLHS(APInt(16, -40), APInt(16, 1));
Expected = ConstantRange(APInt(16, -19), APInt(16, 1));
EXPECT_EQ(NegLargeLHS.srem(PosMod), Expected);
EXPECT_EQ(NegLargeLHS.srem(NegMod), Expected);
ConstantRange PosNegLargeLHS(APInt(16, -32), APInt(16, 38));
Expected = ConstantRange(APInt(16, -19), APInt(16, 20));
EXPECT_EQ(PosNegLargeLHS.srem(PosMod), Expected);
EXPECT_EQ(PosNegLargeLHS.srem(NegMod), Expected);
// srem is bounded by LHS.
ConstantRange PosLHS(APInt(16, 0), APInt(16, 16));
EXPECT_EQ(PosLHS.srem(PosMod), PosLHS);
EXPECT_EQ(PosLHS.srem(NegMod), PosLHS);
EXPECT_EQ(PosLHS.srem(IntMinMod), PosLHS);
ConstantRange NegLHS(APInt(16, -15), APInt(16, 1));
EXPECT_EQ(NegLHS.srem(PosMod), NegLHS);
EXPECT_EQ(NegLHS.srem(NegMod), NegLHS);
EXPECT_EQ(NegLHS.srem(IntMinMod), NegLHS);
ConstantRange PosNegLHS(APInt(16, -12), APInt(16, 18));
EXPECT_EQ(PosNegLHS.srem(PosMod), PosNegLHS);
EXPECT_EQ(PosNegLHS.srem(NegMod), PosNegLHS);
EXPECT_EQ(PosNegLHS.srem(IntMinMod), PosNegLHS);
// srem is LHS if it is smaller than RHS.
ConstantRange PosSmallLHS(APInt(16, 3), APInt(16, 8));
EXPECT_EQ(PosSmallLHS.srem(PosMod), PosSmallLHS);
EXPECT_EQ(PosSmallLHS.srem(NegMod), PosSmallLHS);
EXPECT_EQ(PosSmallLHS.srem(IntMinMod), PosSmallLHS);
ConstantRange NegSmallLHS(APInt(16, -7), APInt(16, -2));
EXPECT_EQ(NegSmallLHS.srem(PosMod), NegSmallLHS);
EXPECT_EQ(NegSmallLHS.srem(NegMod), NegSmallLHS);
EXPECT_EQ(NegSmallLHS.srem(IntMinMod), NegSmallLHS);
ConstantRange PosNegSmallLHS(APInt(16, -3), APInt(16, 8));
EXPECT_EQ(PosNegSmallLHS.srem(PosMod), PosNegSmallLHS);
EXPECT_EQ(PosNegSmallLHS.srem(NegMod), PosNegSmallLHS);
EXPECT_EQ(PosNegSmallLHS.srem(IntMinMod), PosNegSmallLHS);
// Example of a suboptimal result:
// [12, 14] srem 10 is [2, 4], but we conservatively compute [0, 9].
EXPECT_EQ(ConstantRange(APInt(16, 12), APInt(16, 15))
.srem(ConstantRange(APInt(16, 10))),
ConstantRange(APInt(16, 0), APInt(16, 10)));
TestBinaryOpExhaustiveCorrectnessOnly(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.srem(CR2);
},
[](const APInt &N1, const APInt &N2) -> Optional<APInt> {
if (N2.isNullValue())
return None;
return N1.srem(N2);
});
}
TEST_F(ConstantRangeTest, Shl) {
ConstantRange Some2(APInt(16, 0xfff), APInt(16, 0x8000));
ConstantRange WrapNullMax(APInt(16, 0x1), APInt(16, 0x0));
EXPECT_EQ(Full.shl(Full), Full);
EXPECT_EQ(Full.shl(Empty), Empty);
EXPECT_EQ(Full.shl(One), Full); // TODO: [0, (-1 << 0xa) + 1)
EXPECT_EQ(Full.shl(Some), Full); // TODO: [0, (-1 << 0xa) + 1)
EXPECT_EQ(Full.shl(Wrap), Full);
EXPECT_EQ(Empty.shl(Empty), Empty);
EXPECT_EQ(Empty.shl(One), Empty);
EXPECT_EQ(Empty.shl(Some), Empty);
EXPECT_EQ(Empty.shl(Wrap), Empty);
EXPECT_EQ(One.shl(One), ConstantRange(APInt(16, 0xa << 0xa),
APInt(16, (0xa << 0xa) + 1)));
EXPECT_EQ(One.shl(Some), Full); // TODO: [0xa << 0xa, 0)
EXPECT_EQ(One.shl(Wrap), Full); // TODO: [0xa, 0xa << 14 + 1)
EXPECT_EQ(Some.shl(Some), Full); // TODO: [0xa << 0xa, 0xfc01)
EXPECT_EQ(Some.shl(Wrap), Full); // TODO: [0xa, 0x7ff << 0x5 + 1)
EXPECT_EQ(Wrap.shl(Wrap), Full);
EXPECT_EQ(
Some2.shl(ConstantRange(APInt(16, 0x1))),
ConstantRange(APInt(16, 0xfff << 0x1), APInt(16, 0x7fff << 0x1) + 1));
EXPECT_EQ(One.shl(WrapNullMax), Full);
}
TEST_F(ConstantRangeTest, Lshr) {
EXPECT_EQ(Full.lshr(Full), Full);
EXPECT_EQ(Full.lshr(Empty), Empty);
EXPECT_EQ(Full.lshr(One), ConstantRange(APInt(16, 0),
APInt(16, (0xffff >> 0xa) + 1)));
EXPECT_EQ(Full.lshr(Some), ConstantRange(APInt(16, 0),
APInt(16, (0xffff >> 0xa) + 1)));
EXPECT_EQ(Full.lshr(Wrap), Full);
EXPECT_EQ(Empty.lshr(Empty), Empty);
EXPECT_EQ(Empty.lshr(One), Empty);
EXPECT_EQ(Empty.lshr(Some), Empty);
EXPECT_EQ(Empty.lshr(Wrap), Empty);
EXPECT_EQ(One.lshr(One), ConstantRange(APInt(16, 0)));
EXPECT_EQ(One.lshr(Some), ConstantRange(APInt(16, 0)));
EXPECT_EQ(One.lshr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb)));
EXPECT_EQ(Some.lshr(Some), ConstantRange(APInt(16, 0),
APInt(16, (0xaaa >> 0xa) + 1)));
EXPECT_EQ(Some.lshr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa)));
EXPECT_EQ(Wrap.lshr(Wrap), Full);
}
TEST_F(ConstantRangeTest, Ashr) {
EXPECT_EQ(Full.ashr(Full), Full);
EXPECT_EQ(Full.ashr(Empty), Empty);
EXPECT_EQ(Full.ashr(One), ConstantRange(APInt(16, 0xffe0),
APInt(16, (0x7fff >> 0xa) + 1 )));
ConstantRange Small(APInt(16, 0xa), APInt(16, 0xb));
EXPECT_EQ(Full.ashr(Small), ConstantRange(APInt(16, 0xffe0),
APInt(16, (0x7fff >> 0xa) + 1 )));
EXPECT_EQ(Full.ashr(Some), ConstantRange(APInt(16, 0xffe0),
APInt(16, (0x7fff >> 0xa) + 1 )));
EXPECT_EQ(Full.ashr(Wrap), Full);
EXPECT_EQ(Empty.ashr(Empty), Empty);
EXPECT_EQ(Empty.ashr(One), Empty);
EXPECT_EQ(Empty.ashr(Some), Empty);
EXPECT_EQ(Empty.ashr(Wrap), Empty);
EXPECT_EQ(One.ashr(One), ConstantRange(APInt(16, 0)));
EXPECT_EQ(One.ashr(Some), ConstantRange(APInt(16, 0)));
EXPECT_EQ(One.ashr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xb)));
EXPECT_EQ(Some.ashr(Some), ConstantRange(APInt(16, 0),
APInt(16, (0xaaa >> 0xa) + 1)));
EXPECT_EQ(Some.ashr(Wrap), ConstantRange(APInt(16, 0), APInt(16, 0xaaa)));
EXPECT_EQ(Wrap.ashr(Wrap), Full);
ConstantRange Neg(APInt(16, 0xf3f0, true), APInt(16, 0xf7f8, true));
EXPECT_EQ(Neg.ashr(Small), ConstantRange(APInt(16, 0xfffc, true),
APInt(16, 0xfffe, true)));
}
TEST(ConstantRange, MakeAllowedICmpRegion) {
// PR8250
ConstantRange SMax = ConstantRange(APInt::getSignedMaxValue(32));
EXPECT_TRUE(ConstantRange::makeAllowedICmpRegion(ICmpInst::ICMP_SGT, SMax)
.isEmptySet());
}
TEST(ConstantRange, MakeSatisfyingICmpRegion) {
ConstantRange LowHalf(APInt(8, 0), APInt(8, 128));
ConstantRange HighHalf(APInt(8, 128), APInt(8, 0));
ConstantRange EmptySet(8, /* isFullSet = */ false);
EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_NE, LowHalf),
HighHalf);
EXPECT_EQ(
ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_NE, HighHalf),
LowHalf);
EXPECT_TRUE(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_EQ,
HighHalf).isEmptySet());
ConstantRange UnsignedSample(APInt(8, 5), APInt(8, 200));
EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_ULT,
UnsignedSample),
ConstantRange(APInt(8, 0), APInt(8, 5)));
EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_ULE,
UnsignedSample),
ConstantRange(APInt(8, 0), APInt(8, 6)));
EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_UGT,
UnsignedSample),
ConstantRange(APInt(8, 200), APInt(8, 0)));
EXPECT_EQ(ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_UGE,
UnsignedSample),
ConstantRange(APInt(8, 199), APInt(8, 0)));
ConstantRange SignedSample(APInt(8, -5), APInt(8, 5));
EXPECT_EQ(
ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SLT, SignedSample),
ConstantRange(APInt(8, -128), APInt(8, -5)));
EXPECT_EQ(
ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SLE, SignedSample),
ConstantRange(APInt(8, -128), APInt(8, -4)));
EXPECT_EQ(
ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SGT, SignedSample),
ConstantRange(APInt(8, 5), APInt(8, -128)));
EXPECT_EQ(
ConstantRange::makeSatisfyingICmpRegion(ICmpInst::ICMP_SGE, SignedSample),
ConstantRange(APInt(8, 4), APInt(8, -128)));
}
static bool icmp(CmpInst::Predicate Pred, const APInt &LHS, const APInt &RHS) {
switch (Pred) {
case CmpInst::Predicate::ICMP_EQ:
return LHS.eq(RHS);
case CmpInst::Predicate::ICMP_NE:
return LHS.ne(RHS);
case CmpInst::Predicate::ICMP_UGT:
return LHS.ugt(RHS);
case CmpInst::Predicate::ICMP_UGE:
return LHS.uge(RHS);
case CmpInst::Predicate::ICMP_ULT:
return LHS.ult(RHS);
case CmpInst::Predicate::ICMP_ULE:
return LHS.ule(RHS);
case CmpInst::Predicate::ICMP_SGT:
return LHS.sgt(RHS);
case CmpInst::Predicate::ICMP_SGE:
return LHS.sge(RHS);
case CmpInst::Predicate::ICMP_SLT:
return LHS.slt(RHS);
case CmpInst::Predicate::ICMP_SLE:
return LHS.sle(RHS);
default:
llvm_unreachable("Not an ICmp predicate!");
}
}
void ICmpTestImpl(CmpInst::Predicate Pred) {
unsigned Bits = 4;
EnumerateTwoConstantRanges(
Bits, [&](const ConstantRange &CR1, const ConstantRange &CR2) {
bool Exhaustive = true;
ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
ForeachNumInConstantRange(
CR2, [&](const APInt &N2) { Exhaustive &= icmp(Pred, N1, N2); });
});
EXPECT_EQ(CR1.icmp(Pred, CR2), Exhaustive);
});
}
TEST(ConstantRange, ICmp) {
for (auto Pred : seq<unsigned>(CmpInst::Predicate::FIRST_ICMP_PREDICATE,
1 + CmpInst::Predicate::LAST_ICMP_PREDICATE))
ICmpTestImpl((CmpInst::Predicate)Pred);
}
TEST(ConstantRange, MakeGuaranteedNoWrapRegion) {
const int IntMin4Bits = 8;
const int IntMax4Bits = 7;
typedef OverflowingBinaryOperator OBO;
for (int Const : {0, -1, -2, 1, 2, IntMin4Bits, IntMax4Bits}) {
APInt C(4, Const, true /* = isSigned */);
auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, C, OBO::NoUnsignedWrap);
EXPECT_FALSE(NUWRegion.isEmptySet());
auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, C, OBO::NoSignedWrap);
EXPECT_FALSE(NSWRegion.isEmptySet());
for (APInt I = NUWRegion.getLower(), E = NUWRegion.getUpper(); I != E;
++I) {
bool Overflow = false;
(void)I.uadd_ov(C, Overflow);
EXPECT_FALSE(Overflow);
}
for (APInt I = NSWRegion.getLower(), E = NSWRegion.getUpper(); I != E;
++I) {
bool Overflow = false;
(void)I.sadd_ov(C, Overflow);
EXPECT_FALSE(Overflow);
}
}
for (int Const : {0, -1, -2, 1, 2, IntMin4Bits, IntMax4Bits}) {
APInt C(4, Const, true /* = isSigned */);
auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, C, OBO::NoUnsignedWrap);
EXPECT_FALSE(NUWRegion.isEmptySet());
auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, C, OBO::NoSignedWrap);
EXPECT_FALSE(NSWRegion.isEmptySet());
for (APInt I = NUWRegion.getLower(), E = NUWRegion.getUpper(); I != E;
++I) {
bool Overflow = false;
(void)I.usub_ov(C, Overflow);
EXPECT_FALSE(Overflow);
}
for (APInt I = NSWRegion.getLower(), E = NSWRegion.getUpper(); I != E;
++I) {
bool Overflow = false;
(void)I.ssub_ov(C, Overflow);
EXPECT_FALSE(Overflow);
}
}
auto NSWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, ConstantRange(32, /* isFullSet = */ true),
OBO::NoSignedWrap);
EXPECT_TRUE(NSWForAllValues.isSingleElement() &&
NSWForAllValues.getSingleElement()->isMinValue());
NSWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, ConstantRange(32, /* isFullSet = */ true),
OBO::NoSignedWrap);
EXPECT_TRUE(NSWForAllValues.isSingleElement() &&
NSWForAllValues.getSingleElement()->isMaxValue());
auto NUWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, ConstantRange(32, /* isFullSet = */ true),
OBO::NoUnsignedWrap);
EXPECT_TRUE(NUWForAllValues.isSingleElement() &&
NUWForAllValues.getSingleElement()->isMinValue());
NUWForAllValues = ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, ConstantRange(32, /* isFullSet = */ true),
OBO::NoUnsignedWrap);
EXPECT_TRUE(NUWForAllValues.isSingleElement() &&
NUWForAllValues.getSingleElement()->isMaxValue());
EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, APInt(32, 0), OBO::NoUnsignedWrap).isFullSet());
EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, APInt(32, 0), OBO::NoSignedWrap).isFullSet());
EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, APInt(32, 0), OBO::NoUnsignedWrap).isFullSet());
EXPECT_TRUE(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, APInt(32, 0), OBO::NoSignedWrap).isFullSet());
ConstantRange OneToFive(APInt(32, 1), APInt(32, 6));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, OneToFive, OBO::NoSignedWrap),
ConstantRange(APInt::getSignedMinValue(32),
APInt::getSignedMaxValue(32) - 4));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, OneToFive, OBO::NoUnsignedWrap),
ConstantRange(APInt::getMinValue(32), APInt::getMinValue(32) - 5));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, OneToFive, OBO::NoSignedWrap),
ConstantRange(APInt::getSignedMinValue(32) + 5,
APInt::getSignedMinValue(32)));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, OneToFive, OBO::NoUnsignedWrap),
ConstantRange(APInt::getMinValue(32) + 5, APInt::getMinValue(32)));
ConstantRange MinusFiveToMinusTwo(APInt(32, -5), APInt(32, -1));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, MinusFiveToMinusTwo, OBO::NoSignedWrap),
ConstantRange(APInt::getSignedMinValue(32) + 5,
APInt::getSignedMinValue(32)));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, MinusFiveToMinusTwo, OBO::NoUnsignedWrap),
ConstantRange(APInt(32, 0), APInt(32, 2)));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, MinusFiveToMinusTwo, OBO::NoSignedWrap),
ConstantRange(APInt::getSignedMinValue(32),
APInt::getSignedMaxValue(32) - 4));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, MinusFiveToMinusTwo, OBO::NoUnsignedWrap),
ConstantRange(APInt::getMaxValue(32) - 1,
APInt::getMinValue(32)));
ConstantRange MinusOneToOne(APInt(32, -1), APInt(32, 2));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, MinusOneToOne, OBO::NoSignedWrap),
ConstantRange(APInt::getSignedMinValue(32) + 1,
APInt::getSignedMinValue(32) - 1));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, MinusOneToOne, OBO::NoUnsignedWrap),
ConstantRange(APInt(32, 0), APInt(32, 1)));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, MinusOneToOne, OBO::NoSignedWrap),
ConstantRange(APInt::getSignedMinValue(32) + 1,
APInt::getSignedMinValue(32) - 1));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, MinusOneToOne, OBO::NoUnsignedWrap),
ConstantRange(APInt::getMaxValue(32),
APInt::getMinValue(32)));
ConstantRange One(APInt(32, 1), APInt(32, 2));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, One, OBO::NoSignedWrap),
ConstantRange(APInt::getSignedMinValue(32),
APInt::getSignedMaxValue(32)));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Add, One, OBO::NoUnsignedWrap),
ConstantRange(APInt::getMinValue(32), APInt::getMaxValue(32)));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, One, OBO::NoSignedWrap),
ConstantRange(APInt::getSignedMinValue(32) + 1,
APInt::getSignedMinValue(32)));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Sub, One, OBO::NoUnsignedWrap),
ConstantRange(APInt::getMinValue(32) + 1, APInt::getMinValue(32)));
ConstantRange OneLessThanBitWidth(APInt(32, 0), APInt(32, 31) + 1);
ConstantRange UpToBitWidth(APInt(32, 0), APInt(32, 32) + 1);
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, UpToBitWidth, OBO::NoUnsignedWrap),
ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, OneLessThanBitWidth, OBO::NoUnsignedWrap));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, UpToBitWidth, OBO::NoSignedWrap),
ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, OneLessThanBitWidth, OBO::NoSignedWrap));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, UpToBitWidth, OBO::NoUnsignedWrap),
ConstantRange(APInt(32, 0), APInt(32, 1) + 1));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, UpToBitWidth, OBO::NoSignedWrap),
ConstantRange(APInt(32, -1), APInt(32, 0) + 1));
EXPECT_EQ(
ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, ConstantRange::getFull(32), OBO::NoUnsignedWrap),
ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, OneLessThanBitWidth, OBO::NoUnsignedWrap));
EXPECT_EQ(
ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, ConstantRange::getFull(32), OBO::NoSignedWrap),
ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, OneLessThanBitWidth, OBO::NoSignedWrap));
ConstantRange IllegalShAmt(APInt(32, 32), APInt(32, 0) + 1);
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, IllegalShAmt, OBO::NoUnsignedWrap),
ConstantRange::getFull(32));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, IllegalShAmt, OBO::NoSignedWrap),
ConstantRange::getFull(32));
EXPECT_EQ(
ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, ConstantRange(APInt(32, -32), APInt(32, 16) + 1),
OBO::NoUnsignedWrap),
ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, ConstantRange(APInt(32, 0), APInt(32, 16) + 1),
OBO::NoUnsignedWrap));
EXPECT_EQ(
ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, ConstantRange(APInt(32, -32), APInt(32, 16) + 1),
OBO::NoSignedWrap),
ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl, ConstantRange(APInt(32, 0), APInt(32, 16) + 1),
OBO::NoSignedWrap));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl,
ConstantRange(APInt(32, -32), APInt(32, 16) + 1),
OBO::NoUnsignedWrap),
ConstantRange(APInt(32, 0), APInt(32, 65535) + 1));
EXPECT_EQ(ConstantRange::makeGuaranteedNoWrapRegion(
Instruction::Shl,
ConstantRange(APInt(32, -32), APInt(32, 16) + 1),
OBO::NoSignedWrap),
ConstantRange(APInt(32, -32768), APInt(32, 32767) + 1));
}
template<typename Fn>
void TestNoWrapRegionExhaustive(Instruction::BinaryOps BinOp,
unsigned NoWrapKind, Fn OverflowFn) {
unsigned Bits = 5;
EnumerateConstantRanges(Bits, [&](const ConstantRange &CR) {
if (CR.isEmptySet())
return;
if (Instruction::isShift(BinOp) && CR.getUnsignedMax().uge(Bits))
return;
ConstantRange NoWrap =
ConstantRange::makeGuaranteedNoWrapRegion(BinOp, CR, NoWrapKind);
ConstantRange Full = ConstantRange::getFull(Bits);
ForeachNumInConstantRange(Full, [&](const APInt &N1) {
bool NoOverflow = true;
bool Overflow = true;
ForeachNumInConstantRange(CR, [&](const APInt &N2) {
if (OverflowFn(N1, N2))
NoOverflow = false;
else
Overflow = false;
});
EXPECT_EQ(NoOverflow, NoWrap.contains(N1));
// The no-wrap range is exact for single-element ranges.
if (CR.isSingleElement()) {
EXPECT_EQ(Overflow, !NoWrap.contains(N1));
}
});
});
}
// Show that makeGuaranteedNoWrapRegion() is maximal, and for single-element
// ranges also exact.
TEST(ConstantRange, NoWrapRegionExhaustive) {
TestNoWrapRegionExhaustive(
Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap,
[](const APInt &N1, const APInt &N2) {
bool Overflow;
(void) N1.uadd_ov(N2, Overflow);
return Overflow;
});
TestNoWrapRegionExhaustive(
Instruction::Add, OverflowingBinaryOperator::NoSignedWrap,
[](const APInt &N1, const APInt &N2) {
bool Overflow;
(void) N1.sadd_ov(N2, Overflow);
return Overflow;
});
TestNoWrapRegionExhaustive(
Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap,
[](const APInt &N1, const APInt &N2) {
bool Overflow;
(void) N1.usub_ov(N2, Overflow);
return Overflow;
});
TestNoWrapRegionExhaustive(
Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap,
[](const APInt &N1, const APInt &N2) {
bool Overflow;
(void) N1.ssub_ov(N2, Overflow);
return Overflow;
});
TestNoWrapRegionExhaustive(
Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap,
[](const APInt &N1, const APInt &N2) {
bool Overflow;
(void) N1.umul_ov(N2, Overflow);
return Overflow;
});
TestNoWrapRegionExhaustive(
Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap,
[](const APInt &N1, const APInt &N2) {
bool Overflow;
(void) N1.smul_ov(N2, Overflow);
return Overflow;
});
TestNoWrapRegionExhaustive(Instruction::Shl,
OverflowingBinaryOperator::NoUnsignedWrap,
[](const APInt &N1, const APInt &N2) {
bool Overflow;
(void)N1.ushl_ov(N2, Overflow);
return Overflow;
});
TestNoWrapRegionExhaustive(Instruction::Shl,
OverflowingBinaryOperator::NoSignedWrap,
[](const APInt &N1, const APInt &N2) {
bool Overflow;
(void)N1.sshl_ov(N2, Overflow);
return Overflow;
});
}
TEST(ConstantRange, GetEquivalentICmp) {
APInt RHS;
CmpInst::Predicate Pred;
EXPECT_TRUE(ConstantRange(APInt::getMinValue(32), APInt(32, 100))
.getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_ULT);
EXPECT_EQ(RHS, APInt(32, 100));
EXPECT_TRUE(ConstantRange(APInt::getSignedMinValue(32), APInt(32, 100))
.getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_SLT);
EXPECT_EQ(RHS, APInt(32, 100));
EXPECT_TRUE(ConstantRange(APInt(32, 100), APInt::getMinValue(32))
.getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_UGE);
EXPECT_EQ(RHS, APInt(32, 100));
EXPECT_TRUE(ConstantRange(APInt(32, 100), APInt::getSignedMinValue(32))
.getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_SGE);
EXPECT_EQ(RHS, APInt(32, 100));
EXPECT_TRUE(
ConstantRange(32, /*isFullSet=*/true).getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_UGE);
EXPECT_EQ(RHS, APInt(32, 0));
EXPECT_TRUE(
ConstantRange(32, /*isFullSet=*/false).getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_ULT);
EXPECT_EQ(RHS, APInt(32, 0));
EXPECT_FALSE(ConstantRange(APInt(32, 100), APInt(32, 200))
.getEquivalentICmp(Pred, RHS));
EXPECT_FALSE(ConstantRange(APInt::getSignedMinValue(32) - APInt(32, 100),
APInt::getSignedMinValue(32) + APInt(32, 100))
.getEquivalentICmp(Pred, RHS));
EXPECT_FALSE(ConstantRange(APInt::getMinValue(32) - APInt(32, 100),
APInt::getMinValue(32) + APInt(32, 100))
.getEquivalentICmp(Pred, RHS));
EXPECT_TRUE(ConstantRange(APInt(32, 100)).getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_EQ);
EXPECT_EQ(RHS, APInt(32, 100));
EXPECT_TRUE(
ConstantRange(APInt(32, 100)).inverse().getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_NE);
EXPECT_EQ(RHS, APInt(32, 100));
EXPECT_TRUE(
ConstantRange(APInt(512, 100)).inverse().getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_NE);
EXPECT_EQ(RHS, APInt(512, 100));
// NB! It would be correct for the following four calls to getEquivalentICmp
// to return ordered predicates like CmpInst::ICMP_ULT or CmpInst::ICMP_UGT.
// However, that's not the case today.
EXPECT_TRUE(ConstantRange(APInt(32, 0)).getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_EQ);
EXPECT_EQ(RHS, APInt(32, 0));
EXPECT_TRUE(
ConstantRange(APInt(32, 0)).inverse().getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_NE);
EXPECT_EQ(RHS, APInt(32, 0));
EXPECT_TRUE(ConstantRange(APInt(32, -1)).getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_EQ);
EXPECT_EQ(RHS, APInt(32, -1));
EXPECT_TRUE(
ConstantRange(APInt(32, -1)).inverse().getEquivalentICmp(Pred, RHS));
EXPECT_EQ(Pred, CmpInst::ICMP_NE);
EXPECT_EQ(RHS, APInt(32, -1));
}
#define EXPECT_MAY_OVERFLOW(op) \
EXPECT_EQ(ConstantRange::OverflowResult::MayOverflow, (op))
#define EXPECT_ALWAYS_OVERFLOWS_LOW(op) \
EXPECT_EQ(ConstantRange::OverflowResult::AlwaysOverflowsLow, (op))
#define EXPECT_ALWAYS_OVERFLOWS_HIGH(op) \
EXPECT_EQ(ConstantRange::OverflowResult::AlwaysOverflowsHigh, (op))
#define EXPECT_NEVER_OVERFLOWS(op) \
EXPECT_EQ(ConstantRange::OverflowResult::NeverOverflows, (op))
TEST_F(ConstantRangeTest, UnsignedAddOverflow) {
// Ill-defined - may overflow is a conservative result.
EXPECT_MAY_OVERFLOW(Some.unsignedAddMayOverflow(Empty));
EXPECT_MAY_OVERFLOW(Empty.unsignedAddMayOverflow(Some));
// Never overflow despite one full/wrap set.
ConstantRange Zero(APInt::getNullValue(16));
EXPECT_NEVER_OVERFLOWS(Full.unsignedAddMayOverflow(Zero));
EXPECT_NEVER_OVERFLOWS(Wrap.unsignedAddMayOverflow(Zero));
EXPECT_NEVER_OVERFLOWS(Zero.unsignedAddMayOverflow(Full));
EXPECT_NEVER_OVERFLOWS(Zero.unsignedAddMayOverflow(Wrap));
// But usually full/wrap always may overflow.
EXPECT_MAY_OVERFLOW(Full.unsignedAddMayOverflow(One));
EXPECT_MAY_OVERFLOW(Wrap.unsignedAddMayOverflow(One));
EXPECT_MAY_OVERFLOW(One.unsignedAddMayOverflow(Full));
EXPECT_MAY_OVERFLOW(One.unsignedAddMayOverflow(Wrap));
ConstantRange A(APInt(16, 0xfd00), APInt(16, 0xfe00));
ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201));
ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202));
EXPECT_NEVER_OVERFLOWS(A.unsignedAddMayOverflow(B1));
EXPECT_MAY_OVERFLOW(A.unsignedAddMayOverflow(B2));
EXPECT_NEVER_OVERFLOWS(B1.unsignedAddMayOverflow(A));
EXPECT_MAY_OVERFLOW(B2.unsignedAddMayOverflow(A));
ConstantRange C1(APInt(16, 0x0299), APInt(16, 0x0400));
ConstantRange C2(APInt(16, 0x0300), APInt(16, 0x0400));
EXPECT_MAY_OVERFLOW(A.unsignedAddMayOverflow(C1));
EXPECT_ALWAYS_OVERFLOWS_HIGH(A.unsignedAddMayOverflow(C2));
EXPECT_MAY_OVERFLOW(C1.unsignedAddMayOverflow(A));
EXPECT_ALWAYS_OVERFLOWS_HIGH(C2.unsignedAddMayOverflow(A));
}
TEST_F(ConstantRangeTest, UnsignedSubOverflow) {
// Ill-defined - may overflow is a conservative result.
EXPECT_MAY_OVERFLOW(Some.unsignedSubMayOverflow(Empty));
EXPECT_MAY_OVERFLOW(Empty.unsignedSubMayOverflow(Some));
// Never overflow despite one full/wrap set.
ConstantRange Zero(APInt::getNullValue(16));
ConstantRange Max(APInt::getAllOnesValue(16));
EXPECT_NEVER_OVERFLOWS(Full.unsignedSubMayOverflow(Zero));
EXPECT_NEVER_OVERFLOWS(Wrap.unsignedSubMayOverflow(Zero));
EXPECT_NEVER_OVERFLOWS(Max.unsignedSubMayOverflow(Full));
EXPECT_NEVER_OVERFLOWS(Max.unsignedSubMayOverflow(Wrap));
// But usually full/wrap always may overflow.
EXPECT_MAY_OVERFLOW(Full.unsignedSubMayOverflow(One));
EXPECT_MAY_OVERFLOW(Wrap.unsignedSubMayOverflow(One));
EXPECT_MAY_OVERFLOW(One.unsignedSubMayOverflow(Full));
EXPECT_MAY_OVERFLOW(One.unsignedSubMayOverflow(Wrap));
ConstantRange A(APInt(16, 0x0000), APInt(16, 0x0100));
ConstantRange B(APInt(16, 0x0100), APInt(16, 0x0200));
EXPECT_NEVER_OVERFLOWS(B.unsignedSubMayOverflow(A));
EXPECT_ALWAYS_OVERFLOWS_LOW(A.unsignedSubMayOverflow(B));
ConstantRange A1(APInt(16, 0x0000), APInt(16, 0x0101));
ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201));
EXPECT_NEVER_OVERFLOWS(B1.unsignedSubMayOverflow(A1));
EXPECT_MAY_OVERFLOW(A1.unsignedSubMayOverflow(B1));
ConstantRange A2(APInt(16, 0x0000), APInt(16, 0x0102));
ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202));
EXPECT_MAY_OVERFLOW(B2.unsignedSubMayOverflow(A2));
EXPECT_MAY_OVERFLOW(A2.unsignedSubMayOverflow(B2));
}
TEST_F(ConstantRangeTest, SignedAddOverflow) {
// Ill-defined - may overflow is a conservative result.
EXPECT_MAY_OVERFLOW(Some.signedAddMayOverflow(Empty));
EXPECT_MAY_OVERFLOW(Empty.signedAddMayOverflow(Some));
// Never overflow despite one full/wrap set.
ConstantRange Zero(APInt::getNullValue(16));
EXPECT_NEVER_OVERFLOWS(Full.signedAddMayOverflow(Zero));
EXPECT_NEVER_OVERFLOWS(Wrap.signedAddMayOverflow(Zero));
EXPECT_NEVER_OVERFLOWS(Zero.signedAddMayOverflow(Full));
EXPECT_NEVER_OVERFLOWS(Zero.signedAddMayOverflow(Wrap));
// But usually full/wrap always may overflow.
EXPECT_MAY_OVERFLOW(Full.signedAddMayOverflow(One));
EXPECT_MAY_OVERFLOW(Wrap.signedAddMayOverflow(One));
EXPECT_MAY_OVERFLOW(One.signedAddMayOverflow(Full));
EXPECT_MAY_OVERFLOW(One.signedAddMayOverflow(Wrap));
ConstantRange A(APInt(16, 0x7d00), APInt(16, 0x7e00));
ConstantRange B1(APInt(16, 0x0100), APInt(16, 0x0201));
ConstantRange B2(APInt(16, 0x0100), APInt(16, 0x0202));
EXPECT_NEVER_OVERFLOWS(A.signedAddMayOverflow(B1));
EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B2));
ConstantRange B3(APInt(16, 0x8000), APInt(16, 0x0201));
ConstantRange B4(APInt(16, 0x8000), APInt(16, 0x0202));
EXPECT_NEVER_OVERFLOWS(A.signedAddMayOverflow(B3));
EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B4));
ConstantRange B5(APInt(16, 0x0299), APInt(16, 0x0400));
ConstantRange B6(APInt(16, 0x0300), APInt(16, 0x0400));
EXPECT_MAY_OVERFLOW(A.signedAddMayOverflow(B5));
EXPECT_ALWAYS_OVERFLOWS_HIGH(A.signedAddMayOverflow(B6));
ConstantRange C(APInt(16, 0x8200), APInt(16, 0x8300));
ConstantRange D1(APInt(16, 0xfe00), APInt(16, 0xff00));
ConstantRange D2(APInt(16, 0xfd99), APInt(16, 0xff00));
EXPECT_NEVER_OVERFLOWS(C.signedAddMayOverflow(D1));
EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D2));
ConstantRange D3(APInt(16, 0xfe00), APInt(16, 0x8000));
ConstantRange D4(APInt(16, 0xfd99), APInt(16, 0x8000));
EXPECT_NEVER_OVERFLOWS(C.signedAddMayOverflow(D3));
EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D4));
ConstantRange D5(APInt(16, 0xfc00), APInt(16, 0xfd02));
ConstantRange D6(APInt(16, 0xfc00), APInt(16, 0xfd01));
EXPECT_MAY_OVERFLOW(C.signedAddMayOverflow(D5));
EXPECT_ALWAYS_OVERFLOWS_LOW(C.signedAddMayOverflow(D6));
ConstantRange E(APInt(16, 0xff00), APInt(16, 0x0100));
EXPECT_NEVER_OVERFLOWS(E.signedAddMayOverflow(E));
ConstantRange F(APInt(16, 0xf000), APInt(16, 0x7000));
EXPECT_MAY_OVERFLOW(F.signedAddMayOverflow(F));
}
TEST_F(ConstantRangeTest, SignedSubOverflow) {
// Ill-defined - may overflow is a conservative result.
EXPECT_MAY_OVERFLOW(Some.signedSubMayOverflow(Empty));
EXPECT_MAY_OVERFLOW(Empty.signedSubMayOverflow(Some));
// Never overflow despite one full/wrap set.
ConstantRange Zero(APInt::getNullValue(16));
EXPECT_NEVER_OVERFLOWS(Full.signedSubMayOverflow(Zero));
EXPECT_NEVER_OVERFLOWS(Wrap.signedSubMayOverflow(Zero));
// But usually full/wrap always may overflow.
EXPECT_MAY_OVERFLOW(Full.signedSubMayOverflow(One));
EXPECT_MAY_OVERFLOW(Wrap.signedSubMayOverflow(One));
EXPECT_MAY_OVERFLOW(One.signedSubMayOverflow(Full));
EXPECT_MAY_OVERFLOW(One.signedSubMayOverflow(Wrap));
ConstantRange A(APInt(16, 0x7d00), APInt(16, 0x7e00));
ConstantRange B1(APInt(16, 0xfe00), APInt(16, 0xff00));
ConstantRange B2(APInt(16, 0xfd99), APInt(16, 0xff00));
EXPECT_NEVER_OVERFLOWS(A.signedSubMayOverflow(B1));
EXPECT_MAY_OVERFLOW(A.signedSubMayOverflow(B2));
ConstantRange B3(APInt(16, 0xfc00), APInt(16, 0xfd02));
ConstantRange B4(APInt(16, 0xfc00), APInt(16, 0xfd01));
EXPECT_MAY_OVERFLOW(A.signedSubMayOverflow(B3));
EXPECT_ALWAYS_OVERFLOWS_HIGH(A.signedSubMayOverflow(B4));
ConstantRange C(APInt(16, 0x8200), APInt(16, 0x8300));
ConstantRange D1(APInt(16, 0x0100), APInt(16, 0x0201));
ConstantRange D2(APInt(16, 0x0100), APInt(16, 0x0202));
EXPECT_NEVER_OVERFLOWS(C.signedSubMayOverflow(D1));
EXPECT_MAY_OVERFLOW(C.signedSubMayOverflow(D2));
ConstantRange D3(APInt(16, 0x0299), APInt(16, 0x0400));
ConstantRange D4(APInt(16, 0x0300), APInt(16, 0x0400));
EXPECT_MAY_OVERFLOW(C.signedSubMayOverflow(D3));
EXPECT_ALWAYS_OVERFLOWS_LOW(C.signedSubMayOverflow(D4));
ConstantRange E(APInt(16, 0xff00), APInt(16, 0x0100));
EXPECT_NEVER_OVERFLOWS(E.signedSubMayOverflow(E));
ConstantRange F(APInt(16, 0xf000), APInt(16, 0x7001));
EXPECT_MAY_OVERFLOW(F.signedSubMayOverflow(F));
}
template<typename Fn1, typename Fn2>
static void TestOverflowExhaustive(Fn1 OverflowFn, Fn2 MayOverflowFn) {
// Constant range overflow checks are tested exhaustively on 4-bit numbers.
unsigned Bits = 4;
EnumerateTwoConstantRanges(Bits, [=](const ConstantRange &CR1,
const ConstantRange &CR2) {
// Loop over all N1 in CR1 and N2 in CR2 and check whether any of the
// operations have overflow / have no overflow.
bool RangeHasOverflowLow = false;
bool RangeHasOverflowHigh = false;
bool RangeHasNoOverflow = false;
ForeachNumInConstantRange(CR1, [&](const APInt &N1) {
ForeachNumInConstantRange(CR2, [&](const APInt &N2) {
bool IsOverflowHigh;
if (!OverflowFn(IsOverflowHigh, N1, N2)) {
RangeHasNoOverflow = true;
return;
}
if (IsOverflowHigh)
RangeHasOverflowHigh = true;
else
RangeHasOverflowLow = true;
});
});
ConstantRange::OverflowResult OR = MayOverflowFn(CR1, CR2);
switch (OR) {
case ConstantRange::OverflowResult::AlwaysOverflowsLow:
EXPECT_TRUE(RangeHasOverflowLow);
EXPECT_FALSE(RangeHasOverflowHigh);
EXPECT_FALSE(RangeHasNoOverflow);
break;
case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
EXPECT_TRUE(RangeHasOverflowHigh);
EXPECT_FALSE(RangeHasOverflowLow);
EXPECT_FALSE(RangeHasNoOverflow);
break;
case ConstantRange::OverflowResult::NeverOverflows:
EXPECT_FALSE(RangeHasOverflowLow);
EXPECT_FALSE(RangeHasOverflowHigh);
EXPECT_TRUE(RangeHasNoOverflow);
break;
case ConstantRange::OverflowResult::MayOverflow:
// We return MayOverflow for empty sets as a conservative result,
// but of course neither the RangeHasOverflow nor the
// RangeHasNoOverflow flags will be set.
if (CR1.isEmptySet() || CR2.isEmptySet())
break;
EXPECT_TRUE(RangeHasOverflowLow || RangeHasOverflowHigh);
EXPECT_TRUE(RangeHasNoOverflow);
break;
}
});
}
TEST_F(ConstantRangeTest, UnsignedAddOverflowExhaustive) {
TestOverflowExhaustive(
[](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) {
bool Overflow;
(void) N1.uadd_ov(N2, Overflow);
IsOverflowHigh = true;
return Overflow;
},
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.unsignedAddMayOverflow(CR2);
});
}
TEST_F(ConstantRangeTest, UnsignedSubOverflowExhaustive) {
TestOverflowExhaustive(
[](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) {
bool Overflow;
(void) N1.usub_ov(N2, Overflow);
IsOverflowHigh = false;
return Overflow;
},
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.unsignedSubMayOverflow(CR2);
});
}
TEST_F(ConstantRangeTest, UnsignedMulOverflowExhaustive) {
TestOverflowExhaustive(
[](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) {
bool Overflow;
(void) N1.umul_ov(N2, Overflow);
IsOverflowHigh = true;
return Overflow;
},
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.unsignedMulMayOverflow(CR2);
});
}
TEST_F(ConstantRangeTest, SignedAddOverflowExhaustive) {
TestOverflowExhaustive(
[](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) {
bool Overflow;
(void) N1.sadd_ov(N2, Overflow);
IsOverflowHigh = N1.isNonNegative();
return Overflow;
},
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.signedAddMayOverflow(CR2);
});
}
TEST_F(ConstantRangeTest, SignedSubOverflowExhaustive) {
TestOverflowExhaustive(
[](bool &IsOverflowHigh, const APInt &N1, const APInt &N2) {
bool Overflow;
(void) N1.ssub_ov(N2, Overflow);
IsOverflowHigh = N1.isNonNegative();
return Overflow;
},
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.signedSubMayOverflow(CR2);
});
}
TEST_F(ConstantRangeTest, FromKnownBits) {
KnownBits Unknown(16);
EXPECT_EQ(Full, ConstantRange::fromKnownBits(Unknown, /*signed*/false));
EXPECT_EQ(Full, ConstantRange::fromKnownBits(Unknown, /*signed*/true));
// .10..01. -> unsigned 01000010 (66) to 11011011 (219)
// -> signed 11000010 (194) to 01011011 (91)
KnownBits Known(8);
Known.Zero = 36;
Known.One = 66;
ConstantRange Unsigned(APInt(8, 66), APInt(8, 219 + 1));
ConstantRange Signed(APInt(8, 194), APInt(8, 91 + 1));
EXPECT_EQ(Unsigned, ConstantRange::fromKnownBits(Known, /*signed*/false));
EXPECT_EQ(Signed, ConstantRange::fromKnownBits(Known, /*signed*/true));
// 1.10.10. -> 10100100 (164) to 11101101 (237)
Known.Zero = 18;
Known.One = 164;
ConstantRange CR1(APInt(8, 164), APInt(8, 237 + 1));
EXPECT_EQ(CR1, ConstantRange::fromKnownBits(Known, /*signed*/false));
EXPECT_EQ(CR1, ConstantRange::fromKnownBits(Known, /*signed*/true));
// 01.0.1.0 -> 01000100 (68) to 01101110 (110)
Known.Zero = 145;
Known.One = 68;
ConstantRange CR2(APInt(8, 68), APInt(8, 110 + 1));
EXPECT_EQ(CR2, ConstantRange::fromKnownBits(Known, /*signed*/false));
EXPECT_EQ(CR2, ConstantRange::fromKnownBits(Known, /*signed*/true));
}
TEST_F(ConstantRangeTest, FromKnownBitsExhaustive) {
unsigned Bits = 4;
unsigned Max = 1 << Bits;
KnownBits Known(Bits);
for (unsigned Zero = 0; Zero < Max; ++Zero) {
for (unsigned One = 0; One < Max; ++One) {
Known.Zero = Zero;
Known.One = One;
if (Known.hasConflict() || Known.isUnknown())
continue;
UnsignedOpRangeGatherer UR(Bits);
SignedOpRangeGatherer SR(Bits);
for (unsigned N = 0; N < Max; ++N) {
APInt Num(Bits, N);
if ((Num & Known.Zero) != 0 || (~Num & Known.One) != 0)
continue;
UR.account(Num);
SR.account(Num);
}
ConstantRange UnsignedCR = UR.getRange();
ConstantRange SignedCR = SR.getRange();
EXPECT_EQ(UnsignedCR, ConstantRange::fromKnownBits(Known, false));
EXPECT_EQ(SignedCR, ConstantRange::fromKnownBits(Known, true));
}
}
}
TEST_F(ConstantRangeTest, Negative) {
// All elements in an empty set (of which there are none) are both negative
// and non-negative. Empty & full sets checked explicitly for clarity, but
// they are also covered by the exhaustive test below.
EXPECT_TRUE(Empty.isAllNegative());
EXPECT_TRUE(Empty.isAllNonNegative());
EXPECT_FALSE(Full.isAllNegative());
EXPECT_FALSE(Full.isAllNonNegative());
unsigned Bits = 4;
EnumerateConstantRanges(Bits, [](const ConstantRange &CR) {
bool AllNegative = true;
bool AllNonNegative = true;
ForeachNumInConstantRange(CR, [&](const APInt &N) {
if (!N.isNegative())
AllNegative = false;
if (!N.isNonNegative())
AllNonNegative = false;
});
assert((CR.isEmptySet() || !AllNegative || !AllNonNegative) &&
"Only empty set can be both all negative and all non-negative");
EXPECT_EQ(AllNegative, CR.isAllNegative());
EXPECT_EQ(AllNonNegative, CR.isAllNonNegative());
});
}
TEST_F(ConstantRangeTest, UAddSat) {
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.uadd_sat(CR2);
},
[](const APInt &N1, const APInt &N2) {
return N1.uadd_sat(N2);
},
PreferSmallestUnsigned);
}
TEST_F(ConstantRangeTest, USubSat) {
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.usub_sat(CR2);
},
[](const APInt &N1, const APInt &N2) {
return N1.usub_sat(N2);
},
PreferSmallestUnsigned);
}
TEST_F(ConstantRangeTest, UMulSat) {
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.umul_sat(CR2);
},
[](const APInt &N1, const APInt &N2) { return N1.umul_sat(N2); },
PreferSmallestUnsigned);
}
TEST_F(ConstantRangeTest, UShlSat) {
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.ushl_sat(CR2);
},
[](const APInt &N1, const APInt &N2) { return N1.ushl_sat(N2); },
PreferSmallestUnsigned);
}
TEST_F(ConstantRangeTest, SAddSat) {
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.sadd_sat(CR2);
},
[](const APInt &N1, const APInt &N2) {
return N1.sadd_sat(N2);
},
PreferSmallestSigned);
}
TEST_F(ConstantRangeTest, SSubSat) {
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.ssub_sat(CR2);
},
[](const APInt &N1, const APInt &N2) {
return N1.ssub_sat(N2);
},
PreferSmallestSigned);
}
TEST_F(ConstantRangeTest, SMulSat) {
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.smul_sat(CR2);
},
[](const APInt &N1, const APInt &N2) { return N1.smul_sat(N2); },
PreferSmallestSigned);
}
TEST_F(ConstantRangeTest, SShlSat) {
TestBinaryOpExhaustive(
[](const ConstantRange &CR1, const ConstantRange &CR2) {
return CR1.sshl_sat(CR2);
},
[](const APInt &N1, const APInt &N2) { return N1.sshl_sat(N2); },
PreferSmallestSigned);
}
TEST_F(ConstantRangeTest, Abs) {
TestUnaryOpExhaustive(
[](const ConstantRange &CR) { return CR.abs(); },
[](const APInt &N) { return N.abs(); });
TestUnaryOpExhaustive(
[](const ConstantRange &CR) { return CR.abs(/*IntMinIsPoison=*/true); },
[](const APInt &N) -> Optional<APInt> {
if (N.isMinSignedValue())
return None;
return N.abs();
});
}
TEST_F(ConstantRangeTest, castOps) {
ConstantRange A(APInt(16, 66), APInt(16, 128));
ConstantRange FpToI8 = A.castOp(Instruction::FPToSI, 8);
EXPECT_EQ(8u, FpToI8.getBitWidth());
EXPECT_TRUE(FpToI8.isFullSet());
ConstantRange FpToI16 = A.castOp(Instruction::FPToSI, 16);
EXPECT_EQ(16u, FpToI16.getBitWidth());
EXPECT_EQ(A, FpToI16);
ConstantRange FPExtToDouble = A.castOp(Instruction::FPExt, 64);
EXPECT_EQ(64u, FPExtToDouble.getBitWidth());
EXPECT_TRUE(FPExtToDouble.isFullSet());
ConstantRange PtrToInt = A.castOp(Instruction::PtrToInt, 64);
EXPECT_EQ(64u, PtrToInt.getBitWidth());
EXPECT_TRUE(PtrToInt.isFullSet());
ConstantRange IntToPtr = A.castOp(Instruction::IntToPtr, 64);
EXPECT_EQ(64u, IntToPtr.getBitWidth());
EXPECT_TRUE(IntToPtr.isFullSet());
}
TEST_F(ConstantRangeTest, binaryXor) {
// Single element ranges.
ConstantRange R16(APInt(8, 16));
ConstantRange R20(APInt(8, 20));
EXPECT_EQ(*R16.binaryXor(R16).getSingleElement(), APInt(8, 0));
EXPECT_EQ(*R16.binaryXor(R20).getSingleElement(), APInt(8, 16 ^ 20));
// Ranges with more than a single element. Handled conservatively for now.
ConstantRange R16_35(APInt(8, 16), APInt(8, 35));
ConstantRange R0_99(APInt(8, 0), APInt(8, 99));
EXPECT_TRUE(R16_35.binaryXor(R16_35).isFullSet());
EXPECT_TRUE(R16_35.binaryXor(R0_99).isFullSet());
EXPECT_TRUE(R0_99.binaryXor(R16_35).isFullSet());
}
TEST_F(ConstantRangeTest, binaryNot) {
TestUnaryOpExhaustive(
[](const ConstantRange &CR) { return CR.binaryNot(); },
[](const APInt &N) { return ~N; },
PreferSmallest);
TestUnaryOpExhaustive(
[](const ConstantRange &CR) {
return CR.binaryXor(
ConstantRange(APInt::getAllOnesValue(CR.getBitWidth())));
},
[](const APInt &N) { return ~N; },
PreferSmallest);
TestUnaryOpExhaustive(
[](const ConstantRange &CR) {
return ConstantRange(APInt::getAllOnesValue(CR.getBitWidth()))
.binaryXor(CR);
},
[](const APInt &N) { return ~N; },
PreferSmallest);
}
} // anonymous namespace