1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-01-31 20:51:52 +01:00
llvm-mirror/lib/CodeGen/MachineFunction.cpp
Jeremy Morse 7d0a83254c [DebugInfo][InstrRef] Fix a broken substitution method, add test coverage
This patch fixes a clearly-broken function that I absent-mindedly bodged
many months ago.

Over in D85749 I landed the substituteDebugValuesForInst, that creates
substitution records for all the def operands from one debug-labelled
instruction to the new one. Unfortunately it would crash if the two
instructions had different numbers of operands; I tried to fix this in
537f0fbe82 by adding a "max operand" parameter to the method, but then
didn't actually change the loop bound to take account of this. It passed
all the tests because.... well there wasn't any real test coverage of this
method.

This patch fixes up the loop to be bounded by the MaxOperand bound; and
adds test coverage for the x86-fixup-LEAs calls to this method, so that
it's actually tested.

Differential Revision: https://reviews.llvm.org/D105820
2021-07-20 11:45:13 +01:00

1476 lines
52 KiB
C++

//===- MachineFunction.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Collect native machine code information for a function. This allows
// target-specific information about the generated code to be stored with each
// function.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/WasmEHFuncInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "codegen"
static cl::opt<unsigned> AlignAllFunctions(
"align-all-functions",
cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
"means align on 16B boundaries)."),
cl::init(0), cl::Hidden);
static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
using P = MachineFunctionProperties::Property;
switch(Prop) {
case P::FailedISel: return "FailedISel";
case P::IsSSA: return "IsSSA";
case P::Legalized: return "Legalized";
case P::NoPHIs: return "NoPHIs";
case P::NoVRegs: return "NoVRegs";
case P::RegBankSelected: return "RegBankSelected";
case P::Selected: return "Selected";
case P::TracksLiveness: return "TracksLiveness";
case P::TiedOpsRewritten: return "TiedOpsRewritten";
}
llvm_unreachable("Invalid machine function property");
}
// Pin the vtable to this file.
void MachineFunction::Delegate::anchor() {}
void MachineFunctionProperties::print(raw_ostream &OS) const {
const char *Separator = "";
for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
if (!Properties[I])
continue;
OS << Separator << getPropertyName(static_cast<Property>(I));
Separator = ", ";
}
}
//===----------------------------------------------------------------------===//
// MachineFunction implementation
//===----------------------------------------------------------------------===//
// Out-of-line virtual method.
MachineFunctionInfo::~MachineFunctionInfo() = default;
void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
MBB->getParent()->DeleteMachineBasicBlock(MBB);
}
static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
const Function &F) {
if (F.hasFnAttribute(Attribute::StackAlignment))
return F.getFnStackAlignment();
return STI->getFrameLowering()->getStackAlign().value();
}
MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
const TargetSubtargetInfo &STI,
unsigned FunctionNum, MachineModuleInfo &mmi)
: F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
FunctionNumber = FunctionNum;
init();
}
void MachineFunction::handleInsertion(MachineInstr &MI) {
if (TheDelegate)
TheDelegate->MF_HandleInsertion(MI);
}
void MachineFunction::handleRemoval(MachineInstr &MI) {
if (TheDelegate)
TheDelegate->MF_HandleRemoval(MI);
}
void MachineFunction::init() {
// Assume the function starts in SSA form with correct liveness.
Properties.set(MachineFunctionProperties::Property::IsSSA);
Properties.set(MachineFunctionProperties::Property::TracksLiveness);
if (STI->getRegisterInfo())
RegInfo = new (Allocator) MachineRegisterInfo(this);
else
RegInfo = nullptr;
MFInfo = nullptr;
// We can realign the stack if the target supports it and the user hasn't
// explicitly asked us not to.
bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
!F.hasFnAttribute("no-realign-stack");
FrameInfo = new (Allocator) MachineFrameInfo(
getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
/*ForcedRealign=*/CanRealignSP &&
F.hasFnAttribute(Attribute::StackAlignment));
if (F.hasFnAttribute(Attribute::StackAlignment))
FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
// FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
// FIXME: Use Function::hasOptSize().
if (!F.hasFnAttribute(Attribute::OptimizeForSize))
Alignment = std::max(Alignment,
STI->getTargetLowering()->getPrefFunctionAlignment());
if (AlignAllFunctions)
Alignment = Align(1ULL << AlignAllFunctions);
JumpTableInfo = nullptr;
if (isFuncletEHPersonality(classifyEHPersonality(
F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
WinEHInfo = new (Allocator) WinEHFuncInfo();
}
if (isScopedEHPersonality(classifyEHPersonality(
F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
WasmEHInfo = new (Allocator) WasmEHFuncInfo();
}
assert(Target.isCompatibleDataLayout(getDataLayout()) &&
"Can't create a MachineFunction using a Module with a "
"Target-incompatible DataLayout attached\n");
PSVManager =
std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
getInstrInfo()));
}
MachineFunction::~MachineFunction() {
clear();
}
void MachineFunction::clear() {
Properties.reset();
// Don't call destructors on MachineInstr and MachineOperand. All of their
// memory comes from the BumpPtrAllocator which is about to be purged.
//
// Do call MachineBasicBlock destructors, it contains std::vectors.
for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
I->Insts.clearAndLeakNodesUnsafely();
MBBNumbering.clear();
InstructionRecycler.clear(Allocator);
OperandRecycler.clear(Allocator);
BasicBlockRecycler.clear(Allocator);
CodeViewAnnotations.clear();
VariableDbgInfos.clear();
if (RegInfo) {
RegInfo->~MachineRegisterInfo();
Allocator.Deallocate(RegInfo);
}
if (MFInfo) {
MFInfo->~MachineFunctionInfo();
Allocator.Deallocate(MFInfo);
}
FrameInfo->~MachineFrameInfo();
Allocator.Deallocate(FrameInfo);
ConstantPool->~MachineConstantPool();
Allocator.Deallocate(ConstantPool);
if (JumpTableInfo) {
JumpTableInfo->~MachineJumpTableInfo();
Allocator.Deallocate(JumpTableInfo);
}
if (WinEHInfo) {
WinEHInfo->~WinEHFuncInfo();
Allocator.Deallocate(WinEHInfo);
}
if (WasmEHInfo) {
WasmEHInfo->~WasmEHFuncInfo();
Allocator.Deallocate(WasmEHInfo);
}
}
const DataLayout &MachineFunction::getDataLayout() const {
return F.getParent()->getDataLayout();
}
/// Get the JumpTableInfo for this function.
/// If it does not already exist, allocate one.
MachineJumpTableInfo *MachineFunction::
getOrCreateJumpTableInfo(unsigned EntryKind) {
if (JumpTableInfo) return JumpTableInfo;
JumpTableInfo = new (Allocator)
MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
return JumpTableInfo;
}
DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
return F.getDenormalMode(FPType);
}
/// Should we be emitting segmented stack stuff for the function
bool MachineFunction::shouldSplitStack() const {
return getFunction().hasFnAttribute("split-stack");
}
LLVM_NODISCARD unsigned
MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
FrameInstructions.push_back(Inst);
return FrameInstructions.size() - 1;
}
/// This discards all of the MachineBasicBlock numbers and recomputes them.
/// This guarantees that the MBB numbers are sequential, dense, and match the
/// ordering of the blocks within the function. If a specific MachineBasicBlock
/// is specified, only that block and those after it are renumbered.
void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
if (empty()) { MBBNumbering.clear(); return; }
MachineFunction::iterator MBBI, E = end();
if (MBB == nullptr)
MBBI = begin();
else
MBBI = MBB->getIterator();
// Figure out the block number this should have.
unsigned BlockNo = 0;
if (MBBI != begin())
BlockNo = std::prev(MBBI)->getNumber() + 1;
for (; MBBI != E; ++MBBI, ++BlockNo) {
if (MBBI->getNumber() != (int)BlockNo) {
// Remove use of the old number.
if (MBBI->getNumber() != -1) {
assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
"MBB number mismatch!");
MBBNumbering[MBBI->getNumber()] = nullptr;
}
// If BlockNo is already taken, set that block's number to -1.
if (MBBNumbering[BlockNo])
MBBNumbering[BlockNo]->setNumber(-1);
MBBNumbering[BlockNo] = &*MBBI;
MBBI->setNumber(BlockNo);
}
}
// Okay, all the blocks are renumbered. If we have compactified the block
// numbering, shrink MBBNumbering now.
assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
MBBNumbering.resize(BlockNo);
}
/// This method iterates over the basic blocks and assigns their IsBeginSection
/// and IsEndSection fields. This must be called after MBB layout is finalized
/// and the SectionID's are assigned to MBBs.
void MachineFunction::assignBeginEndSections() {
front().setIsBeginSection();
auto CurrentSectionID = front().getSectionID();
for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
if (MBBI->getSectionID() == CurrentSectionID)
continue;
MBBI->setIsBeginSection();
std::prev(MBBI)->setIsEndSection();
CurrentSectionID = MBBI->getSectionID();
}
back().setIsEndSection();
}
/// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
const DebugLoc &DL,
bool NoImplicit) {
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
MachineInstr(*this, MCID, DL, NoImplicit);
}
/// Create a new MachineInstr which is a copy of the 'Orig' instruction,
/// identical in all ways except the instruction has no parent, prev, or next.
MachineInstr *
MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
MachineInstr(*this, *Orig);
}
MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
MachineInstr *FirstClone = nullptr;
MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
while (true) {
MachineInstr *Cloned = CloneMachineInstr(&*I);
MBB.insert(InsertBefore, Cloned);
if (FirstClone == nullptr) {
FirstClone = Cloned;
} else {
Cloned->bundleWithPred();
}
if (!I->isBundledWithSucc())
break;
++I;
}
// Copy over call site info to the cloned instruction if needed. If Orig is in
// a bundle, copyCallSiteInfo takes care of finding the call instruction in
// the bundle.
if (Orig.shouldUpdateCallSiteInfo())
copyCallSiteInfo(&Orig, FirstClone);
return *FirstClone;
}
/// Delete the given MachineInstr.
///
/// This function also serves as the MachineInstr destructor - the real
/// ~MachineInstr() destructor must be empty.
void
MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
// Verify that a call site info is at valid state. This assertion should
// be triggered during the implementation of support for the
// call site info of a new architecture. If the assertion is triggered,
// back trace will tell where to insert a call to updateCallSiteInfo().
assert((!MI->isCandidateForCallSiteEntry() ||
CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
"Call site info was not updated!");
// Strip it for parts. The operand array and the MI object itself are
// independently recyclable.
if (MI->Operands)
deallocateOperandArray(MI->CapOperands, MI->Operands);
// Don't call ~MachineInstr() which must be trivial anyway because
// ~MachineFunction drops whole lists of MachineInstrs wihout calling their
// destructors.
InstructionRecycler.Deallocate(Allocator, MI);
}
/// Allocate a new MachineBasicBlock. Use this instead of
/// `new MachineBasicBlock'.
MachineBasicBlock *
MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
MachineBasicBlock(*this, bb);
}
/// Delete the given MachineBasicBlock.
void
MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
assert(MBB->getParent() == this && "MBB parent mismatch!");
// Clean up any references to MBB in jump tables before deleting it.
if (JumpTableInfo)
JumpTableInfo->RemoveMBBFromJumpTables(MBB);
MBB->~MachineBasicBlock();
BasicBlockRecycler.Deallocate(Allocator, MBB);
}
MachineMemOperand *MachineFunction::getMachineMemOperand(
MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
SyncScope::ID SSID, AtomicOrdering Ordering,
AtomicOrdering FailureOrdering) {
return new (Allocator)
MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
SSID, Ordering, FailureOrdering);
}
MachineMemOperand *MachineFunction::getMachineMemOperand(
MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
SyncScope::ID SSID, AtomicOrdering Ordering,
AtomicOrdering FailureOrdering) {
return new (Allocator)
MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
Ordering, FailureOrdering);
}
MachineMemOperand *MachineFunction::getMachineMemOperand(
const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
return new (Allocator)
MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
AAMDNodes(), nullptr, MMO->getSyncScopeID(),
MMO->getSuccessOrdering(), MMO->getFailureOrdering());
}
MachineMemOperand *MachineFunction::getMachineMemOperand(
const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
return new (Allocator)
MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
AAMDNodes(), nullptr, MMO->getSyncScopeID(),
MMO->getSuccessOrdering(), MMO->getFailureOrdering());
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
int64_t Offset, LLT Ty) {
const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
// If there is no pointer value, the offset isn't tracked so we need to adjust
// the base alignment.
Align Alignment = PtrInfo.V.isNull()
? commonAlignment(MMO->getBaseAlign(), Offset)
: MMO->getBaseAlign();
// Do not preserve ranges, since we don't necessarily know what the high bits
// are anymore.
return new (Allocator) MachineMemOperand(
PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
MMO->getSuccessOrdering(), MMO->getFailureOrdering());
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
const AAMDNodes &AAInfo) {
MachinePointerInfo MPI = MMO->getValue() ?
MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
return new (Allocator) MachineMemOperand(
MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
MMO->getFailureOrdering());
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
MachineMemOperand::Flags Flags) {
return new (Allocator) MachineMemOperand(
MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
MMO->getSuccessOrdering(), MMO->getFailureOrdering());
}
MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
PostInstrSymbol, HeapAllocMarker);
}
const char *MachineFunction::createExternalSymbolName(StringRef Name) {
char *Dest = Allocator.Allocate<char>(Name.size() + 1);
llvm::copy(Name, Dest);
Dest[Name.size()] = 0;
return Dest;
}
uint32_t *MachineFunction::allocateRegMask() {
unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
memset(Mask, 0, Size * sizeof(Mask[0]));
return Mask;
}
ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
int* AllocMask = Allocator.Allocate<int>(Mask.size());
copy(Mask, AllocMask);
return {AllocMask, Mask.size()};
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineFunction::dump() const {
print(dbgs());
}
#endif
StringRef MachineFunction::getName() const {
return getFunction().getName();
}
void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
OS << "# Machine code for function " << getName() << ": ";
getProperties().print(OS);
OS << '\n';
// Print Frame Information
FrameInfo->print(*this, OS);
// Print JumpTable Information
if (JumpTableInfo)
JumpTableInfo->print(OS);
// Print Constant Pool
ConstantPool->print(OS);
const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
if (RegInfo && !RegInfo->livein_empty()) {
OS << "Function Live Ins: ";
for (MachineRegisterInfo::livein_iterator
I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
OS << printReg(I->first, TRI);
if (I->second)
OS << " in " << printReg(I->second, TRI);
if (std::next(I) != E)
OS << ", ";
}
OS << '\n';
}
ModuleSlotTracker MST(getFunction().getParent());
MST.incorporateFunction(getFunction());
for (const auto &BB : *this) {
OS << '\n';
// If we print the whole function, print it at its most verbose level.
BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
}
OS << "\n# End machine code for function " << getName() << ".\n\n";
}
/// True if this function needs frame moves for debug or exceptions.
bool MachineFunction::needsFrameMoves() const {
return getMMI().hasDebugInfo() ||
getTarget().Options.ForceDwarfFrameSection ||
F.needsUnwindTableEntry();
}
namespace llvm {
template<>
struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
static std::string getGraphName(const MachineFunction *F) {
return ("CFG for '" + F->getName() + "' function").str();
}
std::string getNodeLabel(const MachineBasicBlock *Node,
const MachineFunction *Graph) {
std::string OutStr;
{
raw_string_ostream OSS(OutStr);
if (isSimple()) {
OSS << printMBBReference(*Node);
if (const BasicBlock *BB = Node->getBasicBlock())
OSS << ": " << BB->getName();
} else
Node->print(OSS);
}
if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
// Process string output to make it nicer...
for (unsigned i = 0; i != OutStr.length(); ++i)
if (OutStr[i] == '\n') { // Left justify
OutStr[i] = '\\';
OutStr.insert(OutStr.begin()+i+1, 'l');
}
return OutStr;
}
};
} // end namespace llvm
void MachineFunction::viewCFG() const
{
#ifndef NDEBUG
ViewGraph(this, "mf" + getName());
#else
errs() << "MachineFunction::viewCFG is only available in debug builds on "
<< "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
void MachineFunction::viewCFGOnly() const
{
#ifndef NDEBUG
ViewGraph(this, "mf" + getName(), true);
#else
errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
<< "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
/// Add the specified physical register as a live-in value and
/// create a corresponding virtual register for it.
Register MachineFunction::addLiveIn(MCRegister PReg,
const TargetRegisterClass *RC) {
MachineRegisterInfo &MRI = getRegInfo();
Register VReg = MRI.getLiveInVirtReg(PReg);
if (VReg) {
const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
(void)VRegRC;
// A physical register can be added several times.
// Between two calls, the register class of the related virtual register
// may have been constrained to match some operation constraints.
// In that case, check that the current register class includes the
// physical register and is a sub class of the specified RC.
assert((VRegRC == RC || (VRegRC->contains(PReg) &&
RC->hasSubClassEq(VRegRC))) &&
"Register class mismatch!");
return VReg;
}
VReg = MRI.createVirtualRegister(RC);
MRI.addLiveIn(PReg, VReg);
return VReg;
}
/// Return the MCSymbol for the specified non-empty jump table.
/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
/// normal 'L' label is returned.
MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
bool isLinkerPrivate) const {
const DataLayout &DL = getDataLayout();
assert(JumpTableInfo && "No jump tables");
assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
: DL.getPrivateGlobalPrefix();
SmallString<60> Name;
raw_svector_ostream(Name)
<< Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
return Ctx.getOrCreateSymbol(Name);
}
/// Return a function-local symbol to represent the PIC base.
MCSymbol *MachineFunction::getPICBaseSymbol() const {
const DataLayout &DL = getDataLayout();
return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
Twine(getFunctionNumber()) + "$pb");
}
/// \name Exception Handling
/// \{
LandingPadInfo &
MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
unsigned N = LandingPads.size();
for (unsigned i = 0; i < N; ++i) {
LandingPadInfo &LP = LandingPads[i];
if (LP.LandingPadBlock == LandingPad)
return LP;
}
LandingPads.push_back(LandingPadInfo(LandingPad));
return LandingPads[N];
}
void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
MCSymbol *BeginLabel, MCSymbol *EndLabel) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
LP.BeginLabels.push_back(BeginLabel);
LP.EndLabels.push_back(EndLabel);
}
MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
LP.LandingPadLabel = LandingPadLabel;
const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
if (const auto *PF =
dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
getMMI().addPersonality(PF);
if (LPI->isCleanup())
addCleanup(LandingPad);
// FIXME: New EH - Add the clauses in reverse order. This isn't 100%
// correct, but we need to do it this way because of how the DWARF EH
// emitter processes the clauses.
for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
Value *Val = LPI->getClause(I - 1);
if (LPI->isCatch(I - 1)) {
addCatchTypeInfo(LandingPad,
dyn_cast<GlobalValue>(Val->stripPointerCasts()));
} else {
// Add filters in a list.
auto *CVal = cast<Constant>(Val);
SmallVector<const GlobalValue *, 4> FilterList;
for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
II != IE; ++II)
FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
addFilterTypeInfo(LandingPad, FilterList);
}
}
} else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
}
} else {
assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
}
return LandingPadLabel;
}
void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
ArrayRef<const GlobalValue *> TyInfo) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
for (unsigned N = TyInfo.size(); N; --N)
LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
}
void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
ArrayRef<const GlobalValue *> TyInfo) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
std::vector<unsigned> IdsInFilter(TyInfo.size());
for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
}
void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
bool TidyIfNoBeginLabels) {
for (unsigned i = 0; i != LandingPads.size(); ) {
LandingPadInfo &LandingPad = LandingPads[i];
if (LandingPad.LandingPadLabel &&
!LandingPad.LandingPadLabel->isDefined() &&
(!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
LandingPad.LandingPadLabel = nullptr;
// Special case: we *should* emit LPs with null LP MBB. This indicates
// "nounwind" case.
if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
LandingPads.erase(LandingPads.begin() + i);
continue;
}
if (TidyIfNoBeginLabels) {
for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
MCSymbol *EndLabel = LandingPad.EndLabels[j];
if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
(EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
continue;
LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
--j;
--e;
}
// Remove landing pads with no try-ranges.
if (LandingPads[i].BeginLabels.empty()) {
LandingPads.erase(LandingPads.begin() + i);
continue;
}
}
// If there is no landing pad, ensure that the list of typeids is empty.
// If the only typeid is a cleanup, this is the same as having no typeids.
if (!LandingPad.LandingPadBlock ||
(LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
LandingPad.TypeIds.clear();
++i;
}
}
void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
LP.TypeIds.push_back(0);
}
void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
const Function *Filter,
const BlockAddress *RecoverBA) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
SEHHandler Handler;
Handler.FilterOrFinally = Filter;
Handler.RecoverBA = RecoverBA;
LP.SEHHandlers.push_back(Handler);
}
void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
const Function *Cleanup) {
LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
SEHHandler Handler;
Handler.FilterOrFinally = Cleanup;
Handler.RecoverBA = nullptr;
LP.SEHHandlers.push_back(Handler);
}
void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
ArrayRef<unsigned> Sites) {
LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
}
unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
if (TypeInfos[i] == TI) return i + 1;
TypeInfos.push_back(TI);
return TypeInfos.size();
}
int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
// If the new filter coincides with the tail of an existing filter, then
// re-use the existing filter. Folding filters more than this requires
// re-ordering filters and/or their elements - probably not worth it.
for (unsigned i : FilterEnds) {
unsigned j = TyIds.size();
while (i && j)
if (FilterIds[--i] != TyIds[--j])
goto try_next;
if (!j)
// The new filter coincides with range [i, end) of the existing filter.
return -(1 + i);
try_next:;
}
// Add the new filter.
int FilterID = -(1 + FilterIds.size());
FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
llvm::append_range(FilterIds, TyIds);
FilterEnds.push_back(FilterIds.size());
FilterIds.push_back(0); // terminator
return FilterID;
}
MachineFunction::CallSiteInfoMap::iterator
MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
assert(MI->isCandidateForCallSiteEntry() &&
"Call site info refers only to call (MI) candidates");
if (!Target.Options.EmitCallSiteInfo)
return CallSitesInfo.end();
return CallSitesInfo.find(MI);
}
/// Return the call machine instruction or find a call within bundle.
static const MachineInstr *getCallInstr(const MachineInstr *MI) {
if (!MI->isBundle())
return MI;
for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
getBundleEnd(MI->getIterator())))
if (BMI.isCandidateForCallSiteEntry())
return &BMI;
llvm_unreachable("Unexpected bundle without a call site candidate");
}
void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
assert(MI->shouldUpdateCallSiteInfo() &&
"Call site info refers only to call (MI) candidates or "
"candidates inside bundles");
const MachineInstr *CallMI = getCallInstr(MI);
CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
if (CSIt == CallSitesInfo.end())
return;
CallSitesInfo.erase(CSIt);
}
void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
const MachineInstr *New) {
assert(Old->shouldUpdateCallSiteInfo() &&
"Call site info refers only to call (MI) candidates or "
"candidates inside bundles");
if (!New->isCandidateForCallSiteEntry())
return eraseCallSiteInfo(Old);
const MachineInstr *OldCallMI = getCallInstr(Old);
CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
if (CSIt == CallSitesInfo.end())
return;
CallSiteInfo CSInfo = CSIt->second;
CallSitesInfo[New] = CSInfo;
}
void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
const MachineInstr *New) {
assert(Old->shouldUpdateCallSiteInfo() &&
"Call site info refers only to call (MI) candidates or "
"candidates inside bundles");
if (!New->isCandidateForCallSiteEntry())
return eraseCallSiteInfo(Old);
const MachineInstr *OldCallMI = getCallInstr(Old);
CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
if (CSIt == CallSitesInfo.end())
return;
CallSiteInfo CSInfo = std::move(CSIt->second);
CallSitesInfo.erase(CSIt);
CallSitesInfo[New] = CSInfo;
}
void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
DebugInstrNumberingCount = Num;
}
void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
DebugInstrOperandPair B,
unsigned Subreg) {
// Catch any accidental self-loops.
assert(A.first != B.first);
DebugValueSubstitutions.push_back({A, B, Subreg});
}
void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
MachineInstr &New,
unsigned MaxOperand) {
// If the Old instruction wasn't tracked at all, there is no work to do.
unsigned OldInstrNum = Old.peekDebugInstrNum();
if (!OldInstrNum)
return;
// Iterate over all operands looking for defs to create substitutions for.
// Avoid creating new instr numbers unless we create a new substitution.
// While this has no functional effect, it risks confusing someone reading
// MIR output.
// Examine all the operands, or the first N specified by the caller.
MaxOperand = std::min(MaxOperand, Old.getNumOperands());
for (unsigned int I = 0; I < MaxOperand; ++I) {
const auto &OldMO = Old.getOperand(I);
auto &NewMO = New.getOperand(I);
(void)NewMO;
if (!OldMO.isReg() || !OldMO.isDef())
continue;
assert(NewMO.isDef());
unsigned NewInstrNum = New.getDebugInstrNum();
makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
std::make_pair(NewInstrNum, I));
}
}
auto MachineFunction::salvageCopySSA(MachineInstr &MI)
-> DebugInstrOperandPair {
MachineRegisterInfo &MRI = getRegInfo();
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
// Chase the value read by a copy-like instruction back to the instruction
// that ultimately _defines_ that value. This may pass:
// * Through multiple intermediate copies, including subregister moves /
// copies,
// * Copies from physical registers that must then be traced back to the
// defining instruction,
// * Or, physical registers may be live-in to (only) the entry block, which
// requires a DBG_PHI to be created.
// We can pursue this problem in that order: trace back through copies,
// optionally through a physical register, to a defining instruction. We
// should never move from physreg to vreg. As we're still in SSA form, no need
// to worry about partial definitions of registers.
// Helper lambda to interpret a copy-like instruction. Takes instruction,
// returns the register read and any subregister identifying which part is
// read.
auto GetRegAndSubreg =
[&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
Register NewReg, OldReg;
unsigned SubReg;
if (Cpy.isCopy()) {
OldReg = Cpy.getOperand(0).getReg();
NewReg = Cpy.getOperand(1).getReg();
SubReg = Cpy.getOperand(1).getSubReg();
} else if (Cpy.isSubregToReg()) {
OldReg = Cpy.getOperand(0).getReg();
NewReg = Cpy.getOperand(2).getReg();
SubReg = Cpy.getOperand(3).getImm();
} else {
auto CopyDetails = *TII.isCopyInstr(Cpy);
const MachineOperand &Src = *CopyDetails.Source;
const MachineOperand &Dest = *CopyDetails.Destination;
OldReg = Dest.getReg();
NewReg = Src.getReg();
SubReg = Src.getSubReg();
}
return {NewReg, SubReg};
};
// First seek either the defining instruction, or a copy from a physreg.
// During search, the current state is the current copy instruction, and which
// register we've read. Accumulate qualifying subregisters into SubregsSeen;
// deal with those later.
auto State = GetRegAndSubreg(MI);
auto CurInst = MI.getIterator();
SmallVector<unsigned, 4> SubregsSeen;
while (true) {
// If we've found a copy from a physreg, first portion of search is over.
if (!State.first.isVirtual())
break;
// Record any subregister qualifier.
if (State.second)
SubregsSeen.push_back(State.second);
assert(MRI.hasOneDef(State.first));
MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
CurInst = Inst.getIterator();
// Any non-copy instruction is the defining instruction we're seeking.
if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
break;
State = GetRegAndSubreg(Inst);
};
// Helper lambda to apply additional subregister substitutions to a known
// instruction/operand pair. Adds new (fake) substitutions so that we can
// record the subregister. FIXME: this isn't very space efficient if multiple
// values are tracked back through the same copies; cache something later.
auto ApplySubregisters =
[&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
for (unsigned Subreg : reverse(SubregsSeen)) {
// Fetch a new instruction number, not attached to an actual instruction.
unsigned NewInstrNumber = getNewDebugInstrNum();
// Add a substitution from the "new" number to the known one, with a
// qualifying subreg.
makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
// Return the new number; to find the underlying value, consumers need to
// deal with the qualifying subreg.
P = {NewInstrNumber, 0};
}
return P;
};
// If we managed to find the defining instruction after COPYs, return an
// instruction / operand pair after adding subregister qualifiers.
if (State.first.isVirtual()) {
// Virtual register def -- we can just look up where this happens.
MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
for (auto &MO : Inst->operands()) {
if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first)
continue;
return ApplySubregisters(
{Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)});
}
llvm_unreachable("Vreg def with no corresponding operand?");
}
// Our search ended in a copy from a physreg: walk back up the function
// looking for whatever defines the physreg.
assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
State = GetRegAndSubreg(*CurInst);
Register RegToSeek = State.first;
auto RMII = CurInst->getReverseIterator();
auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
for (auto &ToExamine : PrevInstrs) {
for (auto &MO : ToExamine.operands()) {
// Test for operand that defines something aliasing RegToSeek.
if (!MO.isReg() || !MO.isDef() ||
!TRI.regsOverlap(RegToSeek, MO.getReg()))
continue;
return ApplySubregisters(
{ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)});
}
}
// We reached the start of the block before finding a defining instruction.
// It must be an argument: assert that this is the entry block, and produce
// a DBG_PHI.
assert(!State.first.isVirtual());
MachineBasicBlock &TargetBB = *CurInst->getParent();
assert(&*TargetBB.getParent()->begin() == &TargetBB);
// Create DBG_PHI for specified physreg.
auto Builder = BuildMI(TargetBB, TargetBB.getFirstNonPHI(), DebugLoc(),
TII.get(TargetOpcode::DBG_PHI));
Builder.addReg(State.first, RegState::Debug);
unsigned NewNum = getNewDebugInstrNum();
Builder.addImm(NewNum);
return ApplySubregisters({NewNum, 0u});
}
void MachineFunction::finalizeDebugInstrRefs() {
auto *TII = getSubtarget().getInstrInfo();
auto MakeDbgValue = [&](MachineInstr &MI) {
const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE);
MI.setDesc(RefII);
MI.getOperand(1).ChangeToRegister(0, false);
MI.getOperand(0).setIsDebug();
};
if (!getTarget().Options.ValueTrackingVariableLocations)
return;
for (auto &MBB : *this) {
for (auto &MI : MBB) {
if (!MI.isDebugRef() || !MI.getOperand(0).isReg())
continue;
Register Reg = MI.getOperand(0).getReg();
// Some vregs can be deleted as redundant in the meantime. Mark those
// as DBG_VALUE $noreg.
if (Reg == 0) {
MakeDbgValue(MI);
continue;
}
assert(Reg.isVirtual());
MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
assert(RegInfo->hasOneDef(Reg));
// If we've found a copy-like instruction, follow it back to the
// instruction that defines the source value, see salvageCopySSA docs
// for why this is important.
if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
auto Result = salvageCopySSA(DefMI);
MI.getOperand(0).ChangeToImmediate(Result.first);
MI.getOperand(1).setImm(Result.second);
} else {
// Otherwise, identify the operand number that the VReg refers to.
unsigned OperandIdx = 0;
for (const auto &MO : DefMI.operands()) {
if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
break;
++OperandIdx;
}
assert(OperandIdx < DefMI.getNumOperands());
// Morph this instr ref to point at the given instruction and operand.
unsigned ID = DefMI.getDebugInstrNum();
MI.getOperand(0).ChangeToImmediate(ID);
MI.getOperand(1).setImm(OperandIdx);
}
}
}
}
/// \}
//===----------------------------------------------------------------------===//
// MachineJumpTableInfo implementation
//===----------------------------------------------------------------------===//
/// Return the size of each entry in the jump table.
unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
// The size of a jump table entry is 4 bytes unless the entry is just the
// address of a block, in which case it is the pointer size.
switch (getEntryKind()) {
case MachineJumpTableInfo::EK_BlockAddress:
return TD.getPointerSize();
case MachineJumpTableInfo::EK_GPRel64BlockAddress:
return 8;
case MachineJumpTableInfo::EK_GPRel32BlockAddress:
case MachineJumpTableInfo::EK_LabelDifference32:
case MachineJumpTableInfo::EK_Custom32:
return 4;
case MachineJumpTableInfo::EK_Inline:
return 0;
}
llvm_unreachable("Unknown jump table encoding!");
}
/// Return the alignment of each entry in the jump table.
unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
// The alignment of a jump table entry is the alignment of int32 unless the
// entry is just the address of a block, in which case it is the pointer
// alignment.
switch (getEntryKind()) {
case MachineJumpTableInfo::EK_BlockAddress:
return TD.getPointerABIAlignment(0).value();
case MachineJumpTableInfo::EK_GPRel64BlockAddress:
return TD.getABIIntegerTypeAlignment(64).value();
case MachineJumpTableInfo::EK_GPRel32BlockAddress:
case MachineJumpTableInfo::EK_LabelDifference32:
case MachineJumpTableInfo::EK_Custom32:
return TD.getABIIntegerTypeAlignment(32).value();
case MachineJumpTableInfo::EK_Inline:
return 1;
}
llvm_unreachable("Unknown jump table encoding!");
}
/// Create a new jump table entry in the jump table info.
unsigned MachineJumpTableInfo::createJumpTableIndex(
const std::vector<MachineBasicBlock*> &DestBBs) {
assert(!DestBBs.empty() && "Cannot create an empty jump table!");
JumpTables.push_back(MachineJumpTableEntry(DestBBs));
return JumpTables.size()-1;
}
/// If Old is the target of any jump tables, update the jump tables to branch
/// to New instead.
bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Not making a change?");
bool MadeChange = false;
for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
ReplaceMBBInJumpTable(i, Old, New);
return MadeChange;
}
/// If MBB is present in any jump tables, remove it.
bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
bool MadeChange = false;
for (MachineJumpTableEntry &JTE : JumpTables) {
auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
MadeChange |= (removeBeginItr != JTE.MBBs.end());
JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
}
return MadeChange;
}
/// If Old is a target of the jump tables, update the jump table to branch to
/// New instead.
bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Not making a change?");
bool MadeChange = false;
MachineJumpTableEntry &JTE = JumpTables[Idx];
for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
if (JTE.MBBs[j] == Old) {
JTE.MBBs[j] = New;
MadeChange = true;
}
return MadeChange;
}
void MachineJumpTableInfo::print(raw_ostream &OS) const {
if (JumpTables.empty()) return;
OS << "Jump Tables:\n";
for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
OS << printJumpTableEntryReference(i) << ':';
for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
if (i != e)
OS << '\n';
}
OS << '\n';
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
#endif
Printable llvm::printJumpTableEntryReference(unsigned Idx) {
return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
}
//===----------------------------------------------------------------------===//
// MachineConstantPool implementation
//===----------------------------------------------------------------------===//
void MachineConstantPoolValue::anchor() {}
unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
return DL.getTypeAllocSize(Ty);
}
unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getSizeInBytes(DL);
return DL.getTypeAllocSize(Val.ConstVal->getType());
}
bool MachineConstantPoolEntry::needsRelocation() const {
if (isMachineConstantPoolEntry())
return true;
return Val.ConstVal->needsDynamicRelocation();
}
SectionKind
MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
if (needsRelocation())
return SectionKind::getReadOnlyWithRel();
switch (getSizeInBytes(*DL)) {
case 4:
return SectionKind::getMergeableConst4();
case 8:
return SectionKind::getMergeableConst8();
case 16:
return SectionKind::getMergeableConst16();
case 32:
return SectionKind::getMergeableConst32();
default:
return SectionKind::getReadOnly();
}
}
MachineConstantPool::~MachineConstantPool() {
// A constant may be a member of both Constants and MachineCPVsSharingEntries,
// so keep track of which we've deleted to avoid double deletions.
DenseSet<MachineConstantPoolValue*> Deleted;
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (Constants[i].isMachineConstantPoolEntry()) {
Deleted.insert(Constants[i].Val.MachineCPVal);
delete Constants[i].Val.MachineCPVal;
}
for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
if (Deleted.count(CPV) == 0)
delete CPV;
}
}
/// Test whether the given two constants can be allocated the same constant pool
/// entry.
static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
const DataLayout &DL) {
// Handle the trivial case quickly.
if (A == B) return true;
// If they have the same type but weren't the same constant, quickly
// reject them.
if (A->getType() == B->getType()) return false;
// We can't handle structs or arrays.
if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
return false;
// For now, only support constants with the same size.
uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
return false;
Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
// Try constant folding a bitcast of both instructions to an integer. If we
// get two identical ConstantInt's, then we are good to share them. We use
// the constant folding APIs to do this so that we get the benefit of
// DataLayout.
if (isa<PointerType>(A->getType()))
A = ConstantFoldCastOperand(Instruction::PtrToInt,
const_cast<Constant *>(A), IntTy, DL);
else if (A->getType() != IntTy)
A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
IntTy, DL);
if (isa<PointerType>(B->getType()))
B = ConstantFoldCastOperand(Instruction::PtrToInt,
const_cast<Constant *>(B), IntTy, DL);
else if (B->getType() != IntTy)
B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
IntTy, DL);
return A == B;
}
/// Create a new entry in the constant pool or return an existing one.
/// User must specify the log2 of the minimum required alignment for the object.
unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
Align Alignment) {
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (!Constants[i].isMachineConstantPoolEntry() &&
CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
if (Constants[i].getAlign() < Alignment)
Constants[i].Alignment = Alignment;
return i;
}
Constants.push_back(MachineConstantPoolEntry(C, Alignment));
return Constants.size()-1;
}
unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
Align Alignment) {
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
int Idx = V->getExistingMachineCPValue(this, Alignment);
if (Idx != -1) {
MachineCPVsSharingEntries.insert(V);
return (unsigned)Idx;
}
Constants.push_back(MachineConstantPoolEntry(V, Alignment));
return Constants.size()-1;
}
void MachineConstantPool::print(raw_ostream &OS) const {
if (Constants.empty()) return;
OS << "Constant Pool:\n";
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
OS << " cp#" << i << ": ";
if (Constants[i].isMachineConstantPoolEntry())
Constants[i].Val.MachineCPVal->print(OS);
else
Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
OS << ", align=" << Constants[i].getAlign().value();
OS << "\n";
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
#endif