1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 11:02:59 +02:00
llvm-mirror/lib/Target/Hexagon/HexagonStoreWidening.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

610 lines
20 KiB
C++

//===- HexagonStoreWidening.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Replace sequences of "narrow" stores to adjacent memory locations with
// a fewer "wide" stores that have the same effect.
// For example, replace:
// S4_storeirb_io %100, 0, 0 ; store-immediate-byte
// S4_storeirb_io %100, 1, 0 ; store-immediate-byte
// with
// S4_storeirh_io %100, 0, 0 ; store-immediate-halfword
// The above is the general idea. The actual cases handled by the code
// may be a bit more complex.
// The purpose of this pass is to reduce the number of outstanding stores,
// or as one could say, "reduce store queue pressure". Also, wide stores
// mean fewer stores, and since there are only two memory instructions allowed
// per packet, it also means fewer packets, and ultimately fewer cycles.
//===---------------------------------------------------------------------===//
#define DEBUG_TYPE "hexagon-widen-stores"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <vector>
using namespace llvm;
namespace llvm {
FunctionPass *createHexagonStoreWidening();
void initializeHexagonStoreWideningPass(PassRegistry&);
} // end namespace llvm
namespace {
struct HexagonStoreWidening : public MachineFunctionPass {
const HexagonInstrInfo *TII;
const HexagonRegisterInfo *TRI;
const MachineRegisterInfo *MRI;
AliasAnalysis *AA;
MachineFunction *MF;
public:
static char ID;
HexagonStoreWidening() : MachineFunctionPass(ID) {
initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "Hexagon Store Widening"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
static bool handledStoreType(const MachineInstr *MI);
private:
static const int MaxWideSize = 4;
using InstrGroup = std::vector<MachineInstr *>;
using InstrGroupList = std::vector<InstrGroup>;
bool instrAliased(InstrGroup &Stores, const MachineMemOperand &MMO);
bool instrAliased(InstrGroup &Stores, const MachineInstr *MI);
void createStoreGroup(MachineInstr *BaseStore, InstrGroup::iterator Begin,
InstrGroup::iterator End, InstrGroup &Group);
void createStoreGroups(MachineBasicBlock &MBB,
InstrGroupList &StoreGroups);
bool processBasicBlock(MachineBasicBlock &MBB);
bool processStoreGroup(InstrGroup &Group);
bool selectStores(InstrGroup::iterator Begin, InstrGroup::iterator End,
InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize);
bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
bool replaceStores(InstrGroup &OG, InstrGroup &NG);
bool storesAreAdjacent(const MachineInstr *S1, const MachineInstr *S2);
};
} // end anonymous namespace
char HexagonStoreWidening::ID = 0;
INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores",
"Hexason Store Widening", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores",
"Hexagon Store Widening", false, false)
// Some local helper functions...
static unsigned getBaseAddressRegister(const MachineInstr *MI) {
const MachineOperand &MO = MI->getOperand(0);
assert(MO.isReg() && "Expecting register operand");
return MO.getReg();
}
static int64_t getStoreOffset(const MachineInstr *MI) {
unsigned OpC = MI->getOpcode();
assert(HexagonStoreWidening::handledStoreType(MI) && "Unhandled opcode");
switch (OpC) {
case Hexagon::S4_storeirb_io:
case Hexagon::S4_storeirh_io:
case Hexagon::S4_storeiri_io: {
const MachineOperand &MO = MI->getOperand(1);
assert(MO.isImm() && "Expecting immediate offset");
return MO.getImm();
}
}
dbgs() << *MI;
llvm_unreachable("Store offset calculation missing for a handled opcode");
return 0;
}
static const MachineMemOperand &getStoreTarget(const MachineInstr *MI) {
assert(!MI->memoperands_empty() && "Expecting memory operands");
return **MI->memoperands_begin();
}
// Filtering function: any stores whose opcodes are not "approved" of by
// this function will not be subjected to widening.
inline bool HexagonStoreWidening::handledStoreType(const MachineInstr *MI) {
// For now, only handle stores of immediate values.
// Also, reject stores to stack slots.
unsigned Opc = MI->getOpcode();
switch (Opc) {
case Hexagon::S4_storeirb_io:
case Hexagon::S4_storeirh_io:
case Hexagon::S4_storeiri_io:
// Base address must be a register. (Implement FI later.)
return MI->getOperand(0).isReg();
default:
return false;
}
}
// Check if the machine memory operand MMO is aliased with any of the
// stores in the store group Stores.
bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
const MachineMemOperand &MMO) {
if (!MMO.getValue())
return true;
MemoryLocation L(MMO.getValue(), MMO.getSize(), MMO.getAAInfo());
for (auto SI : Stores) {
const MachineMemOperand &SMO = getStoreTarget(SI);
if (!SMO.getValue())
return true;
MemoryLocation SL(SMO.getValue(), SMO.getSize(), SMO.getAAInfo());
if (AA->alias(L, SL))
return true;
}
return false;
}
// Check if the machine instruction MI accesses any storage aliased with
// any store in the group Stores.
bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
const MachineInstr *MI) {
for (auto &I : MI->memoperands())
if (instrAliased(Stores, *I))
return true;
return false;
}
// Inspect a machine basic block, and generate store groups out of stores
// encountered in the block.
//
// A store group is a group of stores that use the same base register,
// and which can be reordered within that group without altering the
// semantics of the program. A single store group could be widened as
// a whole, if there existed a single store instruction with the same
// semantics as the entire group. In many cases, a single store group
// may need more than one wide store.
void HexagonStoreWidening::createStoreGroups(MachineBasicBlock &MBB,
InstrGroupList &StoreGroups) {
InstrGroup AllInsns;
// Copy all instruction pointers from the basic block to a temporary
// list. This will allow operating on the list, and modifying its
// elements without affecting the basic block.
for (auto &I : MBB)
AllInsns.push_back(&I);
// Traverse all instructions in the AllInsns list, and if we encounter
// a store, then try to create a store group starting at that instruction
// i.e. a sequence of independent stores that can be widened.
for (auto I = AllInsns.begin(), E = AllInsns.end(); I != E; ++I) {
MachineInstr *MI = *I;
// Skip null pointers (processed instructions).
if (!MI || !handledStoreType(MI))
continue;
// Found a store. Try to create a store group.
InstrGroup G;
createStoreGroup(MI, I+1, E, G);
if (G.size() > 1)
StoreGroups.push_back(G);
}
}
// Create a single store group. The stores need to be independent between
// themselves, and also there cannot be other instructions between them
// that could read or modify storage being stored into.
void HexagonStoreWidening::createStoreGroup(MachineInstr *BaseStore,
InstrGroup::iterator Begin, InstrGroup::iterator End, InstrGroup &Group) {
assert(handledStoreType(BaseStore) && "Unexpected instruction");
unsigned BaseReg = getBaseAddressRegister(BaseStore);
InstrGroup Other;
Group.push_back(BaseStore);
for (auto I = Begin; I != End; ++I) {
MachineInstr *MI = *I;
if (!MI)
continue;
if (handledStoreType(MI)) {
// If this store instruction is aliased with anything already in the
// group, terminate the group now.
if (instrAliased(Group, getStoreTarget(MI)))
return;
// If this store is aliased to any of the memory instructions we have
// seen so far (that are not a part of this group), terminate the group.
if (instrAliased(Other, getStoreTarget(MI)))
return;
unsigned BR = getBaseAddressRegister(MI);
if (BR == BaseReg) {
Group.push_back(MI);
*I = nullptr;
continue;
}
}
// Assume calls are aliased to everything.
if (MI->isCall() || MI->hasUnmodeledSideEffects())
return;
if (MI->mayLoad() || MI->mayStore()) {
if (MI->hasOrderedMemoryRef() || instrAliased(Group, MI))
return;
Other.push_back(MI);
}
} // for
}
// Check if store instructions S1 and S2 are adjacent. More precisely,
// S2 has to access memory immediately following that accessed by S1.
bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr *S1,
const MachineInstr *S2) {
if (!handledStoreType(S1) || !handledStoreType(S2))
return false;
const MachineMemOperand &S1MO = getStoreTarget(S1);
// Currently only handling immediate stores.
int Off1 = S1->getOperand(1).getImm();
int Off2 = S2->getOperand(1).getImm();
return (Off1 >= 0) ? Off1+S1MO.getSize() == unsigned(Off2)
: int(Off1+S1MO.getSize()) == Off2;
}
/// Given a sequence of adjacent stores, and a maximum size of a single wide
/// store, pick a group of stores that can be replaced by a single store
/// of size not exceeding MaxSize. The selected sequence will be recorded
/// in OG ("old group" of instructions).
/// OG should be empty on entry, and should be left empty if the function
/// fails.
bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin,
InstrGroup::iterator End, InstrGroup &OG, unsigned &TotalSize,
unsigned MaxSize) {
assert(Begin != End && "No instructions to analyze");
assert(OG.empty() && "Old group not empty on entry");
if (std::distance(Begin, End) <= 1)
return false;
MachineInstr *FirstMI = *Begin;
assert(!FirstMI->memoperands_empty() && "Expecting some memory operands");
const MachineMemOperand &FirstMMO = getStoreTarget(FirstMI);
unsigned Alignment = FirstMMO.getAlignment();
unsigned SizeAccum = FirstMMO.getSize();
unsigned FirstOffset = getStoreOffset(FirstMI);
// The initial value of SizeAccum should always be a power of 2.
assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2");
// If the size of the first store equals to or exceeds the limit, do nothing.
if (SizeAccum >= MaxSize)
return false;
// If the size of the first store is greater than or equal to the address
// stored to, then the store cannot be made any wider.
if (SizeAccum >= Alignment)
return false;
// The offset of a store will put restrictions on how wide the store can be.
// Offsets in stores of size 2^n bytes need to have the n lowest bits be 0.
// If the first store already exhausts the offset limits, quit. Test this
// by checking if the next wider size would exceed the limit.
if ((2*SizeAccum-1) & FirstOffset)
return false;
OG.push_back(FirstMI);
MachineInstr *S1 = FirstMI, *S2 = *(Begin+1);
InstrGroup::iterator I = Begin+1;
// Pow2Num will be the largest number of elements in OG such that the sum
// of sizes of stores 0...Pow2Num-1 will be a power of 2.
unsigned Pow2Num = 1;
unsigned Pow2Size = SizeAccum;
// Be greedy: keep accumulating stores as long as they are to adjacent
// memory locations, and as long as the total number of bytes stored
// does not exceed the limit (MaxSize).
// Keep track of when the total size covered is a power of 2, since
// this is a size a single store can cover.
while (I != End) {
S2 = *I;
// Stores are sorted, so if S1 and S2 are not adjacent, there won't be
// any other store to fill the "hole".
if (!storesAreAdjacent(S1, S2))
break;
unsigned S2Size = getStoreTarget(S2).getSize();
if (SizeAccum + S2Size > std::min(MaxSize, Alignment))
break;
OG.push_back(S2);
SizeAccum += S2Size;
if (isPowerOf2_32(SizeAccum)) {
Pow2Num = OG.size();
Pow2Size = SizeAccum;
}
if ((2*Pow2Size-1) & FirstOffset)
break;
S1 = S2;
++I;
}
// The stores don't add up to anything that can be widened. Clean up.
if (Pow2Num <= 1) {
OG.clear();
return false;
}
// Only leave the stored being widened.
OG.resize(Pow2Num);
TotalSize = Pow2Size;
return true;
}
/// Given an "old group" OG of stores, create a "new group" NG of instructions
/// to replace them. Ideally, NG would only have a single instruction in it,
/// but that may only be possible for store-immediate.
bool HexagonStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG,
unsigned TotalSize) {
// XXX Current limitations:
// - only expect stores of immediate values in OG,
// - only handle a TotalSize of up to 4.
if (TotalSize > 4)
return false;
unsigned Acc = 0; // Value accumulator.
unsigned Shift = 0;
for (InstrGroup::iterator I = OG.begin(), E = OG.end(); I != E; ++I) {
MachineInstr *MI = *I;
const MachineMemOperand &MMO = getStoreTarget(MI);
MachineOperand &SO = MI->getOperand(2); // Source.
assert(SO.isImm() && "Expecting an immediate operand");
unsigned NBits = MMO.getSize()*8;
unsigned Mask = (0xFFFFFFFFU >> (32-NBits));
unsigned Val = (SO.getImm() & Mask) << Shift;
Acc |= Val;
Shift += NBits;
}
MachineInstr *FirstSt = OG.front();
DebugLoc DL = OG.back()->getDebugLoc();
const MachineMemOperand &OldM = getStoreTarget(FirstSt);
MachineMemOperand *NewM =
MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
TotalSize, OldM.getAlignment(),
OldM.getAAInfo());
if (Acc < 0x10000) {
// Create mem[hw] = #Acc
unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io :
(TotalSize == 4) ? Hexagon::S4_storeiri_io : 0;
assert(WOpc && "Unexpected size");
int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc);
const MCInstrDesc &StD = TII->get(WOpc);
MachineOperand &MR = FirstSt->getOperand(0);
int64_t Off = FirstSt->getOperand(1).getImm();
MachineInstr *StI =
BuildMI(*MF, DL, StD)
.addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg())
.addImm(Off)
.addImm(Val);
StI->addMemOperand(*MF, NewM);
NG.push_back(StI);
} else {
// Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
unsigned VReg = MF->getRegInfo().createVirtualRegister(RC);
MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg)
.addImm(int(Acc));
NG.push_back(TfrI);
unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io :
(TotalSize == 4) ? Hexagon::S2_storeri_io : 0;
assert(WOpc && "Unexpected size");
const MCInstrDesc &StD = TII->get(WOpc);
MachineOperand &MR = FirstSt->getOperand(0);
int64_t Off = FirstSt->getOperand(1).getImm();
MachineInstr *StI =
BuildMI(*MF, DL, StD)
.addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg())
.addImm(Off)
.addReg(VReg, RegState::Kill);
StI->addMemOperand(*MF, NewM);
NG.push_back(StI);
}
return true;
}
// Replace instructions from the old group OG with instructions from the
// new group NG. Conceptually, remove all instructions in OG, and then
// insert all instructions in NG, starting at where the first instruction
// from OG was (in the order in which they appeared in the basic block).
// (The ordering in OG does not have to match the order in the basic block.)
bool HexagonStoreWidening::replaceStores(InstrGroup &OG, InstrGroup &NG) {
LLVM_DEBUG({
dbgs() << "Replacing:\n";
for (auto I : OG)
dbgs() << " " << *I;
dbgs() << "with\n";
for (auto I : NG)
dbgs() << " " << *I;
});
MachineBasicBlock *MBB = OG.back()->getParent();
MachineBasicBlock::iterator InsertAt = MBB->end();
// Need to establish the insertion point. The best one is right before
// the first store in the OG, but in the order in which the stores occur
// in the program list. Since the ordering in OG does not correspond
// to the order in the program list, we need to do some work to find
// the insertion point.
// Create a set of all instructions in OG (for quick lookup).
SmallPtrSet<MachineInstr*, 4> InstrSet;
for (auto I : OG)
InstrSet.insert(I);
// Traverse the block, until we hit an instruction from OG.
for (auto &I : *MBB) {
if (InstrSet.count(&I)) {
InsertAt = I;
break;
}
}
assert((InsertAt != MBB->end()) && "Cannot locate any store from the group");
bool AtBBStart = false;
// InsertAt points at the first instruction that will be removed. We need
// to move it out of the way, so it remains valid after removing all the
// old stores, and so we are able to recover it back to the proper insertion
// position.
if (InsertAt != MBB->begin())
--InsertAt;
else
AtBBStart = true;
for (auto I : OG)
I->eraseFromParent();
if (!AtBBStart)
++InsertAt;
else
InsertAt = MBB->begin();
for (auto I : NG)
MBB->insert(InsertAt, I);
return true;
}
// Break up the group into smaller groups, each of which can be replaced by
// a single wide store. Widen each such smaller group and replace the old
// instructions with the widened ones.
bool HexagonStoreWidening::processStoreGroup(InstrGroup &Group) {
bool Changed = false;
InstrGroup::iterator I = Group.begin(), E = Group.end();
InstrGroup OG, NG; // Old and new groups.
unsigned CollectedSize;
while (I != E) {
OG.clear();
NG.clear();
bool Succ = selectStores(I++, E, OG, CollectedSize, MaxWideSize) &&
createWideStores(OG, NG, CollectedSize) &&
replaceStores(OG, NG);
if (!Succ)
continue;
assert(OG.size() > 1 && "Created invalid group");
assert(distance(I, E)+1 >= int(OG.size()) && "Too many elements");
I += OG.size()-1;
Changed = true;
}
return Changed;
}
// Process a single basic block: create the store groups, and replace them
// with the widened stores, if possible. Processing of each basic block
// is independent from processing of any other basic block. This transfor-
// mation could be stopped after having processed any basic block without
// any ill effects (other than not having performed widening in the unpro-
// cessed blocks). Also, the basic blocks can be processed in any order.
bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock &MBB) {
InstrGroupList SGs;
bool Changed = false;
createStoreGroups(MBB, SGs);
auto Less = [] (const MachineInstr *A, const MachineInstr *B) -> bool {
return getStoreOffset(A) < getStoreOffset(B);
};
for (auto &G : SGs) {
assert(G.size() > 1 && "Store group with fewer than 2 elements");
llvm::sort(G, Less);
Changed |= processStoreGroup(G);
}
return Changed;
}
bool HexagonStoreWidening::runOnMachineFunction(MachineFunction &MFn) {
if (skipFunction(MFn.getFunction()))
return false;
MF = &MFn;
auto &ST = MFn.getSubtarget<HexagonSubtarget>();
TII = ST.getInstrInfo();
TRI = ST.getRegisterInfo();
MRI = &MFn.getRegInfo();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
bool Changed = false;
for (auto &B : MFn)
Changed |= processBasicBlock(B);
return Changed;
}
FunctionPass *llvm::createHexagonStoreWidening() {
return new HexagonStoreWidening();
}