1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/test/ThinLTO/X86/index-const-prop2.ll
Jin Lin 673715d427 Preserve the lexical order for global variables during llvm-link merge
The order of global variables is generated in the order of recursively materializing variables if the global variable has the attribute of hasLocalLinkage or hasLinkOnceLinkage during the module merging. In practice, it is often the exact reverse of source order. This new order may cause performance regression.

The change is to preserve the original lexical order for global variables.

Reviewed By: jdoerfert, dexonsmith

Differential Revision: https://reviews.llvm.org/D94202
2021-04-26 10:11:34 -07:00

106 lines
3.7 KiB
LLVM

; Check constant propagation in thinlto combined summary. This allows us to do 2 things:
; 1. Internalize global definition which is not used externally if all accesses to it are read-only
; 2. Make a local copy of internal definition if all accesses to it are readonly. This allows constant
; folding it during optimziation phase.
; RUN: opt -module-summary %s -o %t1.bc
; RUN: opt -module-summary %p/Inputs/index-const-prop.ll -o %t2.bc
; RUN: llvm-lto2 run %t1.bc %t2.bc -save-temps \
; RUN: -r=%t2.bc,foo,pl \
; RUN: -r=%t2.bc,bar,pl \
; RUN: -r=%t2.bc,baz,pl \
; RUN: -r=%t2.bc,rand, \
; RUN: -r=%t2.bc,gBar,pl \
; RUN: -r=%t1.bc,main,plx \
; RUN: -r=%t1.bc,main2,pl \
; RUN: -r=%t1.bc,foo, \
; RUN: -r=%t1.bc,bar, \
; RUN: -r=%t1.bc,baz, \
; RUN: -r=%t1.bc,gBar, \
; RUN: -o %t3
; RUN: llvm-dis %t3.1.3.import.bc -o - | FileCheck %s --check-prefix=IMPORT
; RUN: llvm-dis %t3.1.5.precodegen.bc -o - | FileCheck %s --check-prefix=CODEGEN
; Now check that we won't internalize global (gBar) if it's externally referenced
; RUN: llvm-lto2 run %t1.bc %t2.bc -save-temps \
; RUN: -r=%t2.bc,foo,pl \
; RUN: -r=%t2.bc,bar,pl \
; RUN: -r=%t2.bc,baz,pl \
; RUN: -r=%t2.bc,rand, \
; RUN: -r=%t2.bc,gBar,plx \
; RUN: -r=%t1.bc,main,plx \
; RUN: -r=%t1.bc,main2,pl \
; RUN: -r=%t1.bc,foo, \
; RUN: -r=%t1.bc,bar, \
; RUN: -r=%t1.bc,baz, \
; RUN: -r=%t1.bc,gBar, \
; RUN: -o %t4
; RUN: llvm-dis %t4.1.3.import.bc -o - | FileCheck %s --check-prefix=IMPORT2
; Run again but with main2 exported instead of main to check that write only
; variables are optimized out.
; RUN: llvm-lto2 run %t1.bc %t2.bc -save-temps \
; RUN: -r=%t2.bc,foo,pl \
; RUN: -r=%t2.bc,bar,pl \
; RUN: -r=%t2.bc,baz,pl \
; RUN: -r=%t2.bc,rand, \
; RUN: -r=%t2.bc,gBar,pl \
; RUN: -r=%t1.bc,main,pl \
; RUN: -r=%t1.bc,main2,plx \
; RUN: -r=%t1.bc,foo, \
; RUN: -r=%t1.bc,bar, \
; RUN: -r=%t1.bc,baz, \
; RUN: -r=%t1.bc,gBar, \
; RUN: -o %t5
; RUN: llvm-dis %t5.1.3.import.bc -o - | FileCheck %s --check-prefix=IMPORT-WRITEONLY
; RUN: llvm-dis %t5.1.5.precodegen.bc -o - | FileCheck %s --check-prefix=CODEGEN2
; Check that gFoo and gBar were eliminated from source module together
; with corresponsing stores
; RUN: llvm-dis %t5.2.5.precodegen.bc -o - | FileCheck %s --check-prefix=CODEGEN2-SRC
; IMPORT: @gBar = internal local_unnamed_addr global i32 2, align 4
; IMPORT-NEXT: @gFoo.llvm.0 = internal unnamed_addr global i32 1, align 4
; IMPORT: !DICompileUnit({{.*}})
; Write only variables are imported with a zero initializer.
; IMPORT-WRITEONLY: @gBar = internal local_unnamed_addr global i32 0
; IMPORT-WRITEONLY: @gFoo.llvm.0 = internal unnamed_addr global i32 0
; CODEGEN: i32 @main()
; CODEGEN-NEXT: ret i32 3
; IMPORT2: @gBar = available_externally local_unnamed_addr global i32 2, align 4
; CODEGEN2: i32 @main2
; CODEGEN2-NEXT: %1 = tail call i32 @rand()
; CODEGEN2-NEXT: %2 = tail call i32 @rand()
; CODEGEN2-NEXT: ret i32 0
; CODEGEN2-SRC: void @baz()
; CODEGEN2-SRC-NEXT: %1 = tail call i32 @rand()
; CODEGEN2-SRC-NEXT: %2 = tail call i32 @rand()
; CODEGEN2-SRC-NEXT: ret void
target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"
; We should be able to link external definition of gBar to its declaration
@gBar = external global i32
define i32 @main() local_unnamed_addr {
%call = tail call i32 bitcast (i32 (...)* @foo to i32 ()*)()
%call1 = tail call i32 bitcast (i32 (...)* @bar to i32 ()*)()
%add = add nsw i32 %call1, %call
ret i32 %add
}
define i32 @main2() local_unnamed_addr {
tail call void @baz()
ret i32 0
}
declare i32 @foo(...) local_unnamed_addr
declare i32 @bar(...) local_unnamed_addr
declare void @baz() local_unnamed_addr