mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
df1f2a779a
Differential Revision: http://reviews.llvm.org/D23619 llvm-svn: 279523
694 lines
24 KiB
C++
694 lines
24 KiB
C++
//===-- Instruction.cpp - Implement the Instruction class -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Instruction class for the IR library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
using namespace llvm;
|
|
|
|
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
|
|
Instruction *InsertBefore)
|
|
: User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
|
|
|
|
// If requested, insert this instruction into a basic block...
|
|
if (InsertBefore) {
|
|
BasicBlock *BB = InsertBefore->getParent();
|
|
assert(BB && "Instruction to insert before is not in a basic block!");
|
|
BB->getInstList().insert(InsertBefore->getIterator(), this);
|
|
}
|
|
}
|
|
|
|
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
|
|
BasicBlock *InsertAtEnd)
|
|
: User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
|
|
|
|
// append this instruction into the basic block
|
|
assert(InsertAtEnd && "Basic block to append to may not be NULL!");
|
|
InsertAtEnd->getInstList().push_back(this);
|
|
}
|
|
|
|
|
|
// Out of line virtual method, so the vtable, etc has a home.
|
|
Instruction::~Instruction() {
|
|
assert(!Parent && "Instruction still linked in the program!");
|
|
if (hasMetadataHashEntry())
|
|
clearMetadataHashEntries();
|
|
}
|
|
|
|
|
|
void Instruction::setParent(BasicBlock *P) {
|
|
Parent = P;
|
|
}
|
|
|
|
const Module *Instruction::getModule() const {
|
|
return getParent()->getModule();
|
|
}
|
|
|
|
Module *Instruction::getModule() {
|
|
return getParent()->getModule();
|
|
}
|
|
|
|
Function *Instruction::getFunction() { return getParent()->getParent(); }
|
|
|
|
const Function *Instruction::getFunction() const {
|
|
return getParent()->getParent();
|
|
}
|
|
|
|
void Instruction::removeFromParent() {
|
|
getParent()->getInstList().remove(getIterator());
|
|
}
|
|
|
|
iplist<Instruction>::iterator Instruction::eraseFromParent() {
|
|
return getParent()->getInstList().erase(getIterator());
|
|
}
|
|
|
|
/// Insert an unlinked instruction into a basic block immediately before the
|
|
/// specified instruction.
|
|
void Instruction::insertBefore(Instruction *InsertPos) {
|
|
InsertPos->getParent()->getInstList().insert(InsertPos->getIterator(), this);
|
|
}
|
|
|
|
/// Insert an unlinked instruction into a basic block immediately after the
|
|
/// specified instruction.
|
|
void Instruction::insertAfter(Instruction *InsertPos) {
|
|
InsertPos->getParent()->getInstList().insertAfter(InsertPos->getIterator(),
|
|
this);
|
|
}
|
|
|
|
/// Unlink this instruction from its current basic block and insert it into the
|
|
/// basic block that MovePos lives in, right before MovePos.
|
|
void Instruction::moveBefore(Instruction *MovePos) {
|
|
moveBefore(*MovePos->getParent(), MovePos->getIterator());
|
|
}
|
|
|
|
void Instruction::moveBefore(BasicBlock &BB,
|
|
SymbolTableList<Instruction>::iterator I) {
|
|
assert(I == BB.end() || I->getParent() == &BB);
|
|
BB.getInstList().splice(I, getParent()->getInstList(), getIterator());
|
|
}
|
|
|
|
void Instruction::setHasNoUnsignedWrap(bool b) {
|
|
cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
|
|
}
|
|
|
|
void Instruction::setHasNoSignedWrap(bool b) {
|
|
cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
|
|
}
|
|
|
|
void Instruction::setIsExact(bool b) {
|
|
cast<PossiblyExactOperator>(this)->setIsExact(b);
|
|
}
|
|
|
|
bool Instruction::hasNoUnsignedWrap() const {
|
|
return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
|
|
}
|
|
|
|
bool Instruction::hasNoSignedWrap() const {
|
|
return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
|
|
}
|
|
|
|
bool Instruction::isExact() const {
|
|
return cast<PossiblyExactOperator>(this)->isExact();
|
|
}
|
|
|
|
/// Set or clear the unsafe-algebra flag on this instruction, which must be an
|
|
/// operator which supports this flag. See LangRef.html for the meaning of this
|
|
/// flag.
|
|
void Instruction::setHasUnsafeAlgebra(bool B) {
|
|
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
|
|
cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B);
|
|
}
|
|
|
|
/// Set or clear the NoNaNs flag on this instruction, which must be an operator
|
|
/// which supports this flag. See LangRef.html for the meaning of this flag.
|
|
void Instruction::setHasNoNaNs(bool B) {
|
|
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
|
|
cast<FPMathOperator>(this)->setHasNoNaNs(B);
|
|
}
|
|
|
|
/// Set or clear the no-infs flag on this instruction, which must be an operator
|
|
/// which supports this flag. See LangRef.html for the meaning of this flag.
|
|
void Instruction::setHasNoInfs(bool B) {
|
|
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
|
|
cast<FPMathOperator>(this)->setHasNoInfs(B);
|
|
}
|
|
|
|
/// Set or clear the no-signed-zeros flag on this instruction, which must be an
|
|
/// operator which supports this flag. See LangRef.html for the meaning of this
|
|
/// flag.
|
|
void Instruction::setHasNoSignedZeros(bool B) {
|
|
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
|
|
cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
|
|
}
|
|
|
|
/// Set or clear the allow-reciprocal flag on this instruction, which must be an
|
|
/// operator which supports this flag. See LangRef.html for the meaning of this
|
|
/// flag.
|
|
void Instruction::setHasAllowReciprocal(bool B) {
|
|
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
|
|
cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
|
|
}
|
|
|
|
/// Convenience function for setting all the fast-math flags on this
|
|
/// instruction, which must be an operator which supports these flags. See
|
|
/// LangRef.html for the meaning of these flats.
|
|
void Instruction::setFastMathFlags(FastMathFlags FMF) {
|
|
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
|
|
cast<FPMathOperator>(this)->setFastMathFlags(FMF);
|
|
}
|
|
|
|
void Instruction::copyFastMathFlags(FastMathFlags FMF) {
|
|
assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
|
|
cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
|
|
}
|
|
|
|
/// Determine whether the unsafe-algebra flag is set.
|
|
bool Instruction::hasUnsafeAlgebra() const {
|
|
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
|
|
return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
|
|
}
|
|
|
|
/// Determine whether the no-NaNs flag is set.
|
|
bool Instruction::hasNoNaNs() const {
|
|
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
|
|
return cast<FPMathOperator>(this)->hasNoNaNs();
|
|
}
|
|
|
|
/// Determine whether the no-infs flag is set.
|
|
bool Instruction::hasNoInfs() const {
|
|
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
|
|
return cast<FPMathOperator>(this)->hasNoInfs();
|
|
}
|
|
|
|
/// Determine whether the no-signed-zeros flag is set.
|
|
bool Instruction::hasNoSignedZeros() const {
|
|
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
|
|
return cast<FPMathOperator>(this)->hasNoSignedZeros();
|
|
}
|
|
|
|
/// Determine whether the allow-reciprocal flag is set.
|
|
bool Instruction::hasAllowReciprocal() const {
|
|
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
|
|
return cast<FPMathOperator>(this)->hasAllowReciprocal();
|
|
}
|
|
|
|
/// Convenience function for getting all the fast-math flags, which must be an
|
|
/// operator which supports these flags. See LangRef.html for the meaning of
|
|
/// these flags.
|
|
FastMathFlags Instruction::getFastMathFlags() const {
|
|
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
|
|
return cast<FPMathOperator>(this)->getFastMathFlags();
|
|
}
|
|
|
|
/// Copy I's fast-math flags
|
|
void Instruction::copyFastMathFlags(const Instruction *I) {
|
|
copyFastMathFlags(I->getFastMathFlags());
|
|
}
|
|
|
|
void Instruction::copyIRFlags(const Value *V) {
|
|
// Copy the wrapping flags.
|
|
if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
|
|
if (isa<OverflowingBinaryOperator>(this)) {
|
|
setHasNoSignedWrap(OB->hasNoSignedWrap());
|
|
setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
|
|
}
|
|
}
|
|
|
|
// Copy the exact flag.
|
|
if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
|
|
if (isa<PossiblyExactOperator>(this))
|
|
setIsExact(PE->isExact());
|
|
|
|
// Copy the fast-math flags.
|
|
if (auto *FP = dyn_cast<FPMathOperator>(V))
|
|
if (isa<FPMathOperator>(this))
|
|
copyFastMathFlags(FP->getFastMathFlags());
|
|
|
|
if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
|
|
if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
|
|
DestGEP->setIsInBounds(SrcGEP->isInBounds() | DestGEP->isInBounds());
|
|
}
|
|
|
|
void Instruction::andIRFlags(const Value *V) {
|
|
if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
|
|
if (isa<OverflowingBinaryOperator>(this)) {
|
|
setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
|
|
setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
|
|
}
|
|
}
|
|
|
|
if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
|
|
if (isa<PossiblyExactOperator>(this))
|
|
setIsExact(isExact() & PE->isExact());
|
|
|
|
if (auto *FP = dyn_cast<FPMathOperator>(V)) {
|
|
if (isa<FPMathOperator>(this)) {
|
|
FastMathFlags FM = getFastMathFlags();
|
|
FM &= FP->getFastMathFlags();
|
|
copyFastMathFlags(FM);
|
|
}
|
|
}
|
|
|
|
if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
|
|
if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
|
|
DestGEP->setIsInBounds(SrcGEP->isInBounds() & DestGEP->isInBounds());
|
|
}
|
|
|
|
const char *Instruction::getOpcodeName(unsigned OpCode) {
|
|
switch (OpCode) {
|
|
// Terminators
|
|
case Ret: return "ret";
|
|
case Br: return "br";
|
|
case Switch: return "switch";
|
|
case IndirectBr: return "indirectbr";
|
|
case Invoke: return "invoke";
|
|
case Resume: return "resume";
|
|
case Unreachable: return "unreachable";
|
|
case CleanupRet: return "cleanupret";
|
|
case CatchRet: return "catchret";
|
|
case CatchPad: return "catchpad";
|
|
case CatchSwitch: return "catchswitch";
|
|
|
|
// Standard binary operators...
|
|
case Add: return "add";
|
|
case FAdd: return "fadd";
|
|
case Sub: return "sub";
|
|
case FSub: return "fsub";
|
|
case Mul: return "mul";
|
|
case FMul: return "fmul";
|
|
case UDiv: return "udiv";
|
|
case SDiv: return "sdiv";
|
|
case FDiv: return "fdiv";
|
|
case URem: return "urem";
|
|
case SRem: return "srem";
|
|
case FRem: return "frem";
|
|
|
|
// Logical operators...
|
|
case And: return "and";
|
|
case Or : return "or";
|
|
case Xor: return "xor";
|
|
|
|
// Memory instructions...
|
|
case Alloca: return "alloca";
|
|
case Load: return "load";
|
|
case Store: return "store";
|
|
case AtomicCmpXchg: return "cmpxchg";
|
|
case AtomicRMW: return "atomicrmw";
|
|
case Fence: return "fence";
|
|
case GetElementPtr: return "getelementptr";
|
|
|
|
// Convert instructions...
|
|
case Trunc: return "trunc";
|
|
case ZExt: return "zext";
|
|
case SExt: return "sext";
|
|
case FPTrunc: return "fptrunc";
|
|
case FPExt: return "fpext";
|
|
case FPToUI: return "fptoui";
|
|
case FPToSI: return "fptosi";
|
|
case UIToFP: return "uitofp";
|
|
case SIToFP: return "sitofp";
|
|
case IntToPtr: return "inttoptr";
|
|
case PtrToInt: return "ptrtoint";
|
|
case BitCast: return "bitcast";
|
|
case AddrSpaceCast: return "addrspacecast";
|
|
|
|
// Other instructions...
|
|
case ICmp: return "icmp";
|
|
case FCmp: return "fcmp";
|
|
case PHI: return "phi";
|
|
case Select: return "select";
|
|
case Call: return "call";
|
|
case Shl: return "shl";
|
|
case LShr: return "lshr";
|
|
case AShr: return "ashr";
|
|
case VAArg: return "va_arg";
|
|
case ExtractElement: return "extractelement";
|
|
case InsertElement: return "insertelement";
|
|
case ShuffleVector: return "shufflevector";
|
|
case ExtractValue: return "extractvalue";
|
|
case InsertValue: return "insertvalue";
|
|
case LandingPad: return "landingpad";
|
|
case CleanupPad: return "cleanuppad";
|
|
|
|
default: return "<Invalid operator> ";
|
|
}
|
|
}
|
|
|
|
/// Return true if both instructions have the same special state This must be
|
|
/// kept in sync with FunctionComparator::cmpOperations in
|
|
/// lib/Transforms/IPO/MergeFunctions.cpp.
|
|
static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
|
|
bool IgnoreAlignment = false) {
|
|
assert(I1->getOpcode() == I2->getOpcode() &&
|
|
"Can not compare special state of different instructions");
|
|
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(I1))
|
|
return AI->getAllocatedType() == cast<AllocaInst>(I2)->getAllocatedType() &&
|
|
(AI->getAlignment() == cast<AllocaInst>(I2)->getAlignment() ||
|
|
IgnoreAlignment);
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
|
|
return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
|
|
(LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
|
|
IgnoreAlignment) &&
|
|
LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
|
|
LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
|
|
return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
|
|
(SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
|
|
IgnoreAlignment) &&
|
|
SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
|
|
SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
|
|
return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I1))
|
|
return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
|
|
CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
|
|
CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
|
|
CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
|
|
if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
|
|
return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
|
|
CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
|
|
CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
|
|
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
|
|
return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
|
|
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
|
|
return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
|
|
if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
|
|
return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
|
|
FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
|
|
if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
|
|
return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
|
|
CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
|
|
CXI->getSuccessOrdering() ==
|
|
cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
|
|
CXI->getFailureOrdering() ==
|
|
cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
|
|
CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
|
|
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
|
|
return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
|
|
RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
|
|
RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
|
|
RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isIdenticalTo - Return true if the specified instruction is exactly
|
|
/// identical to the current one. This means that all operands match and any
|
|
/// extra information (e.g. load is volatile) agree.
|
|
bool Instruction::isIdenticalTo(const Instruction *I) const {
|
|
return isIdenticalToWhenDefined(I) &&
|
|
SubclassOptionalData == I->SubclassOptionalData;
|
|
}
|
|
|
|
/// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
|
|
/// ignores the SubclassOptionalData flags, which specify conditions
|
|
/// under which the instruction's result is undefined.
|
|
bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
|
|
if (getOpcode() != I->getOpcode() ||
|
|
getNumOperands() != I->getNumOperands() ||
|
|
getType() != I->getType())
|
|
return false;
|
|
|
|
// If both instructions have no operands, they are identical.
|
|
if (getNumOperands() == 0 && I->getNumOperands() == 0)
|
|
return haveSameSpecialState(this, I);
|
|
|
|
// We have two instructions of identical opcode and #operands. Check to see
|
|
// if all operands are the same.
|
|
if (!std::equal(op_begin(), op_end(), I->op_begin()))
|
|
return false;
|
|
|
|
if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
|
|
const PHINode *otherPHI = cast<PHINode>(I);
|
|
return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
|
|
otherPHI->block_begin());
|
|
}
|
|
|
|
return haveSameSpecialState(this, I);
|
|
}
|
|
|
|
// Keep this in sync with FunctionComparator::cmpOperations in
|
|
// lib/Transforms/IPO/MergeFunctions.cpp.
|
|
bool Instruction::isSameOperationAs(const Instruction *I,
|
|
unsigned flags) const {
|
|
bool IgnoreAlignment = flags & CompareIgnoringAlignment;
|
|
bool UseScalarTypes = flags & CompareUsingScalarTypes;
|
|
|
|
if (getOpcode() != I->getOpcode() ||
|
|
getNumOperands() != I->getNumOperands() ||
|
|
(UseScalarTypes ?
|
|
getType()->getScalarType() != I->getType()->getScalarType() :
|
|
getType() != I->getType()))
|
|
return false;
|
|
|
|
// We have two instructions of identical opcode and #operands. Check to see
|
|
// if all operands are the same type
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
if (UseScalarTypes ?
|
|
getOperand(i)->getType()->getScalarType() !=
|
|
I->getOperand(i)->getType()->getScalarType() :
|
|
getOperand(i)->getType() != I->getOperand(i)->getType())
|
|
return false;
|
|
|
|
return haveSameSpecialState(this, I, IgnoreAlignment);
|
|
}
|
|
|
|
/// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
|
|
/// specified block. Note that PHI nodes are considered to evaluate their
|
|
/// operands in the corresponding predecessor block.
|
|
bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
|
|
for (const Use &U : uses()) {
|
|
// PHI nodes uses values in the corresponding predecessor block. For other
|
|
// instructions, just check to see whether the parent of the use matches up.
|
|
const Instruction *I = cast<Instruction>(U.getUser());
|
|
const PHINode *PN = dyn_cast<PHINode>(I);
|
|
if (!PN) {
|
|
if (I->getParent() != BB)
|
|
return true;
|
|
continue;
|
|
}
|
|
|
|
if (PN->getIncomingBlock(U) != BB)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// mayReadFromMemory - Return true if this instruction may read memory.
|
|
///
|
|
bool Instruction::mayReadFromMemory() const {
|
|
switch (getOpcode()) {
|
|
default: return false;
|
|
case Instruction::VAArg:
|
|
case Instruction::Load:
|
|
case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
|
|
case Instruction::AtomicCmpXchg:
|
|
case Instruction::AtomicRMW:
|
|
case Instruction::CatchPad:
|
|
case Instruction::CatchRet:
|
|
return true;
|
|
case Instruction::Call:
|
|
return !cast<CallInst>(this)->doesNotAccessMemory();
|
|
case Instruction::Invoke:
|
|
return !cast<InvokeInst>(this)->doesNotAccessMemory();
|
|
case Instruction::Store:
|
|
return !cast<StoreInst>(this)->isUnordered();
|
|
}
|
|
}
|
|
|
|
/// mayWriteToMemory - Return true if this instruction may modify memory.
|
|
///
|
|
bool Instruction::mayWriteToMemory() const {
|
|
switch (getOpcode()) {
|
|
default: return false;
|
|
case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
|
|
case Instruction::Store:
|
|
case Instruction::VAArg:
|
|
case Instruction::AtomicCmpXchg:
|
|
case Instruction::AtomicRMW:
|
|
case Instruction::CatchPad:
|
|
case Instruction::CatchRet:
|
|
return true;
|
|
case Instruction::Call:
|
|
return !cast<CallInst>(this)->onlyReadsMemory();
|
|
case Instruction::Invoke:
|
|
return !cast<InvokeInst>(this)->onlyReadsMemory();
|
|
case Instruction::Load:
|
|
return !cast<LoadInst>(this)->isUnordered();
|
|
}
|
|
}
|
|
|
|
bool Instruction::isAtomic() const {
|
|
switch (getOpcode()) {
|
|
default:
|
|
return false;
|
|
case Instruction::AtomicCmpXchg:
|
|
case Instruction::AtomicRMW:
|
|
case Instruction::Fence:
|
|
return true;
|
|
case Instruction::Load:
|
|
return cast<LoadInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
|
|
case Instruction::Store:
|
|
return cast<StoreInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
|
|
}
|
|
}
|
|
|
|
bool Instruction::mayThrow() const {
|
|
if (const CallInst *CI = dyn_cast<CallInst>(this))
|
|
return !CI->doesNotThrow();
|
|
if (const auto *CRI = dyn_cast<CleanupReturnInst>(this))
|
|
return CRI->unwindsToCaller();
|
|
if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(this))
|
|
return CatchSwitch->unwindsToCaller();
|
|
return isa<ResumeInst>(this);
|
|
}
|
|
|
|
/// isAssociative - Return true if the instruction is associative:
|
|
///
|
|
/// Associative operators satisfy: x op (y op z) === (x op y) op z
|
|
///
|
|
/// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
|
|
///
|
|
bool Instruction::isAssociative(unsigned Opcode) {
|
|
return Opcode == And || Opcode == Or || Opcode == Xor ||
|
|
Opcode == Add || Opcode == Mul;
|
|
}
|
|
|
|
bool Instruction::isAssociative() const {
|
|
unsigned Opcode = getOpcode();
|
|
if (isAssociative(Opcode))
|
|
return true;
|
|
|
|
switch (Opcode) {
|
|
case FMul:
|
|
case FAdd:
|
|
return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// isCommutative - Return true if the instruction is commutative:
|
|
///
|
|
/// Commutative operators satisfy: (x op y) === (y op x)
|
|
///
|
|
/// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
|
|
/// applied to any type.
|
|
///
|
|
bool Instruction::isCommutative(unsigned op) {
|
|
switch (op) {
|
|
case Add:
|
|
case FAdd:
|
|
case Mul:
|
|
case FMul:
|
|
case And:
|
|
case Or:
|
|
case Xor:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// isIdempotent - Return true if the instruction is idempotent:
|
|
///
|
|
/// Idempotent operators satisfy: x op x === x
|
|
///
|
|
/// In LLVM, the And and Or operators are idempotent.
|
|
///
|
|
bool Instruction::isIdempotent(unsigned Opcode) {
|
|
return Opcode == And || Opcode == Or;
|
|
}
|
|
|
|
/// isNilpotent - Return true if the instruction is nilpotent:
|
|
///
|
|
/// Nilpotent operators satisfy: x op x === Id,
|
|
///
|
|
/// where Id is the identity for the operator, i.e. a constant such that
|
|
/// x op Id === x and Id op x === x for all x.
|
|
///
|
|
/// In LLVM, the Xor operator is nilpotent.
|
|
///
|
|
bool Instruction::isNilpotent(unsigned Opcode) {
|
|
return Opcode == Xor;
|
|
}
|
|
|
|
Instruction *Instruction::cloneImpl() const {
|
|
llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
|
|
}
|
|
|
|
void Instruction::swapProfMetadata() {
|
|
MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
|
|
if (!ProfileData || ProfileData->getNumOperands() != 3 ||
|
|
!isa<MDString>(ProfileData->getOperand(0)))
|
|
return;
|
|
|
|
MDString *MDName = cast<MDString>(ProfileData->getOperand(0));
|
|
if (MDName->getString() != "branch_weights")
|
|
return;
|
|
|
|
// The first operand is the name. Fetch them backwards and build a new one.
|
|
Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
|
|
ProfileData->getOperand(1)};
|
|
setMetadata(LLVMContext::MD_prof,
|
|
MDNode::get(ProfileData->getContext(), Ops));
|
|
}
|
|
|
|
/// Copy meta data from \p SrcInst to this instruction. If WL is empty, all
|
|
/// data will be copied, otherwise only ones specified in WL will be copied.
|
|
void Instruction::copyMetadata(const Instruction &SrcInst,
|
|
ArrayRef<unsigned> WL) {
|
|
if (!SrcInst.hasMetadata())
|
|
return;
|
|
|
|
DenseSet<unsigned> WLS;
|
|
for (unsigned M : WL)
|
|
WLS.insert(M);
|
|
|
|
// Otherwise, enumerate and copy over metadata from the old instruction to the
|
|
// new one.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
|
|
SrcInst.getAllMetadataOtherThanDebugLoc(TheMDs);
|
|
for (const auto &MD : TheMDs) {
|
|
if (WL.empty() || WLS.count(MD.first))
|
|
setMetadata(MD.first, MD.second);
|
|
}
|
|
if (WL.empty() || WLS.count(LLVMContext::MD_dbg))
|
|
setDebugLoc(SrcInst.getDebugLoc());
|
|
return;
|
|
}
|
|
|
|
Instruction *Instruction::clone() const {
|
|
Instruction *New = nullptr;
|
|
switch (getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unhandled Opcode.");
|
|
#define HANDLE_INST(num, opc, clas) \
|
|
case Instruction::opc: \
|
|
New = cast<clas>(this)->cloneImpl(); \
|
|
break;
|
|
#include "llvm/IR/Instruction.def"
|
|
#undef HANDLE_INST
|
|
}
|
|
|
|
New->SubclassOptionalData = SubclassOptionalData;
|
|
New->copyMetadata(*this);
|
|
return New;
|
|
}
|