1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/tools/llvm-xray/xray-color-helper.cpp
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

222 lines
8.5 KiB
C++

//===-- xray-graph.cpp: XRay Function Call Graph Renderer -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A class to get a color from a specified gradient.
//
//===----------------------------------------------------------------------===//
#include "xray-color-helper.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace xray;
// Sequential ColorMaps, which are used to represent information
// from some minimum to some maximum.
static const std::tuple<uint8_t, uint8_t, uint8_t> SequentialMaps[][9] = {
{// The greys color scheme from http://colorbrewer2.org/
std::make_tuple(255, 255, 255), std::make_tuple(240, 240, 240),
std::make_tuple(217, 217, 217), std::make_tuple(189, 189, 189),
std::make_tuple(150, 150, 150), std::make_tuple(115, 115, 115),
std::make_tuple(82, 82, 82), std::make_tuple(37, 37, 37),
std::make_tuple(0, 0, 0)},
{// The OrRd color scheme from http://colorbrewer2.org/
std::make_tuple(255, 247, 236), std::make_tuple(254, 232, 200),
std::make_tuple(253, 212, 158), std::make_tuple(253, 187, 132),
std::make_tuple(252, 141, 89), std::make_tuple(239, 101, 72),
std::make_tuple(215, 48, 31), std::make_tuple(179, 0, 0),
std::make_tuple(127, 0, 0)},
{// The PuBu color scheme from http://colorbrewer2.org/
std::make_tuple(255, 247, 251), std::make_tuple(236, 231, 242),
std::make_tuple(208, 209, 230), std::make_tuple(166, 189, 219),
std::make_tuple(116, 169, 207), std::make_tuple(54, 144, 192),
std::make_tuple(5, 112, 176), std::make_tuple(4, 90, 141),
std::make_tuple(2, 56, 88)}};
// Sequential Maps extend the last colors given out of range inputs.
static const std::tuple<uint8_t, uint8_t, uint8_t> SequentialBounds[][2] = {
{// The Bounds for the greys color scheme
std::make_tuple(255, 255, 255), std::make_tuple(0, 0, 0)},
{// The Bounds for the OrRd color Scheme
std::make_tuple(255, 247, 236), std::make_tuple(127, 0, 0)},
{// The Bounds for the PuBu color Scheme
std::make_tuple(255, 247, 251), std::make_tuple(2, 56, 88)}};
ColorHelper::ColorHelper(ColorHelper::SequentialScheme S)
: MinIn(0.0), MaxIn(1.0), ColorMap(SequentialMaps[static_cast<int>(S)]),
BoundMap(SequentialBounds[static_cast<int>(S)]) {}
// Diverging ColorMaps, which are used to represent information
// representing differenes, or a range that goes from negative to positive.
// These take an input in the range [-1,1].
static const std::tuple<uint8_t, uint8_t, uint8_t> DivergingCoeffs[][11] = {
{// The PiYG color scheme from http://colorbrewer2.org/
std::make_tuple(142, 1, 82), std::make_tuple(197, 27, 125),
std::make_tuple(222, 119, 174), std::make_tuple(241, 182, 218),
std::make_tuple(253, 224, 239), std::make_tuple(247, 247, 247),
std::make_tuple(230, 245, 208), std::make_tuple(184, 225, 134),
std::make_tuple(127, 188, 65), std::make_tuple(77, 146, 33),
std::make_tuple(39, 100, 25)}};
// Diverging maps use out of bounds ranges to show missing data. Missing Right
// Being below min, and missing left being above max.
static const std::tuple<uint8_t, uint8_t, uint8_t> DivergingBounds[][2] = {
{// The PiYG color scheme has green and red for missing right and left
// respectively.
std::make_tuple(255, 0, 0), std::make_tuple(0, 255, 0)}};
ColorHelper::ColorHelper(ColorHelper::DivergingScheme S)
: MinIn(-1.0), MaxIn(1.0), ColorMap(DivergingCoeffs[static_cast<int>(S)]),
BoundMap(DivergingBounds[static_cast<int>(S)]) {}
// Takes a tuple of uint8_ts representing a color in RGB and converts them to
// HSV represented by a tuple of doubles
static std::tuple<double, double, double>
convertToHSV(const std::tuple<uint8_t, uint8_t, uint8_t> &Color) {
double Scaled[3] = {std::get<0>(Color) / 255.0, std::get<1>(Color) / 255.0,
std::get<2>(Color) / 255.0};
int Min = 0;
int Max = 0;
for (int i = 1; i < 3; ++i) {
if (Scaled[i] < Scaled[Min])
Min = i;
if (Scaled[i] > Scaled[Max])
Max = i;
}
double C = Scaled[Max] - Scaled[Min];
double HPrime =
(C == 0) ? 0 : (Scaled[(Max + 1) % 3] - Scaled[(Max + 2) % 3]) / C;
HPrime = HPrime + 2.0 * Max;
double H = (HPrime < 0) ? (HPrime + 6.0) * 60
: HPrime * 60; // Scale to between 0 and 360
double V = Scaled[Max];
double S = (V == 0.0) ? 0.0 : C / V;
return std::make_tuple(H, S, V);
}
// Takes a double precision number, clips it between 0 and 1 and then converts
// that to an integer between 0x00 and 0xFF with proxpper rounding.
static uint8_t unitIntervalTo8BitChar(double B) {
double n = std::max(std::min(B, 1.0), 0.0);
return static_cast<uint8_t>(255 * n + 0.5);
}
// Takes a typle of doubles representing a color in HSV and converts them to
// RGB represented as a tuple of uint8_ts
static std::tuple<uint8_t, uint8_t, uint8_t>
convertToRGB(const std::tuple<double, double, double> &Color) {
const double &H = std::get<0>(Color);
const double &S = std::get<1>(Color);
const double &V = std::get<2>(Color);
double C = V * S;
double HPrime = H / 60;
double X = C * (1 - std::abs(std::fmod(HPrime, 2.0) - 1));
double RGB1[3];
int HPrimeInt = static_cast<int>(HPrime);
if (HPrimeInt % 2 == 0) {
RGB1[(HPrimeInt / 2) % 3] = C;
RGB1[(HPrimeInt / 2 + 1) % 3] = X;
RGB1[(HPrimeInt / 2 + 2) % 3] = 0.0;
} else {
RGB1[(HPrimeInt / 2) % 3] = X;
RGB1[(HPrimeInt / 2 + 1) % 3] = C;
RGB1[(HPrimeInt / 2 + 2) % 3] = 0.0;
}
double Min = V - C;
double RGB2[3] = {RGB1[0] + Min, RGB1[1] + Min, RGB1[2] + Min};
return std::make_tuple(unitIntervalTo8BitChar(RGB2[0]),
unitIntervalTo8BitChar(RGB2[1]),
unitIntervalTo8BitChar(RGB2[2]));
}
// The Hue component of the HSV interpolation Routine
static double interpolateHue(double H0, double H1, double T) {
double D = H1 - H0;
if (H0 > H1) {
std::swap(H0, H1);
D = -D;
T = 1 - T;
}
if (D <= 180) {
return H0 + T * (H1 - H0);
} else {
H0 = H0 + 360;
return std::fmod(H0 + T * (H1 - H0) + 720, 360);
}
}
// Interpolates between two HSV Colors both represented as a tuple of doubles
// Returns an HSV Color represented as a tuple of doubles
static std::tuple<double, double, double>
interpolateHSV(const std::tuple<double, double, double> &C0,
const std::tuple<double, double, double> &C1, double T) {
double H = interpolateHue(std::get<0>(C0), std::get<0>(C1), T);
double S = std::get<1>(C0) + T * (std::get<1>(C1) - std::get<1>(C0));
double V = std::get<2>(C0) + T * (std::get<2>(C1) - std::get<2>(C0));
return std::make_tuple(H, S, V);
}
// Get the Color as a tuple of uint8_ts
std::tuple<uint8_t, uint8_t, uint8_t>
ColorHelper::getColorTuple(double Point) const {
assert(!ColorMap.empty() && "ColorMap must not be empty!");
assert(!BoundMap.empty() && "BoundMap must not be empty!");
if (Point < MinIn)
return BoundMap[0];
if (Point > MaxIn)
return BoundMap[1];
size_t MaxIndex = ColorMap.size() - 1;
double IntervalWidth = MaxIn - MinIn;
double OffsetP = Point - MinIn;
double SectionWidth = IntervalWidth / static_cast<double>(MaxIndex);
size_t SectionNo = std::floor(OffsetP / SectionWidth);
double T = (OffsetP - SectionNo * SectionWidth) / SectionWidth;
auto &RGBColor0 = ColorMap[SectionNo];
auto &RGBColor1 = ColorMap[std::min(SectionNo + 1, MaxIndex)];
auto HSVColor0 = convertToHSV(RGBColor0);
auto HSVColor1 = convertToHSV(RGBColor1);
auto InterpolatedHSVColor = interpolateHSV(HSVColor0, HSVColor1, T);
return convertToRGB(InterpolatedHSVColor);
}
// A helper method to convert a color represented as tuple of uint8s to a hex
// string.
std::string
ColorHelper::getColorString(std::tuple<uint8_t, uint8_t, uint8_t> t) {
return llvm::formatv("#{0:X-2}{1:X-2}{2:X-2}", std::get<0>(t), std::get<1>(t),
std::get<2>(t));
}
// Gets a color in a gradient given a number in the interval [0,1], it does this
// by evaluating a polynomial which maps [0, 1] -> [0, 1] for each of the R G
// and B values in the color. It then converts this [0,1] colors to a 24 bit
// color as a hex string.
std::string ColorHelper::getColorString(double Point) const {
return getColorString(getColorTuple(Point));
}