1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 20:12:56 +02:00
llvm-mirror/include/llvm/Transforms/Utils/BypassSlowDivision.h
Eric Christopher 96f0bbf15a Clarify that the bypassSlowDivision optimization operates on a single BB [v2]
Update some comments to be more explicit.

Change bypassSlowDivision and the functions it calls so that they take
BasicBlock*s and Instruction*s, rather than Function::iterator&s and
BasicBlock::iterator&s.

Change the APIs so that the caller is responsible for updating the
iterator, rather than the callee. This makes control flow much easier
to follow.

Patch by Justin Lebar!

llvm-svn: 256789
2016-01-04 23:18:58 +00:00

37 lines
1.4 KiB
C++

//===- llvm/Transforms/Utils/BypassSlowDivision.h --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains an optimization for div and rem on architectures that
// execute short instructions significantly faster than longer instructions.
// For example, on Intel Atom 32-bit divides are slow enough that during
// runtime it is profitable to check the value of the operands, and if they are
// positive and less than 256 use an unsigned 8-bit divide.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_BYPASSSLOWDIVISION_H
#define LLVM_TRANSFORMS_UTILS_BYPASSSLOWDIVISION_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/IR/Function.h"
namespace llvm {
/// This optimization identifies DIV instructions in a BB that can be
/// profitably bypassed and carried out with a shorter, faster divide.
///
/// This optimization may add basic blocks immediately after BB; for obvious
/// reasons, you shouldn't pass those blocks to bypassSlowDivision.
bool bypassSlowDivision(
BasicBlock *BB, const DenseMap<unsigned int, unsigned int> &BypassWidth);
} // End llvm namespace
#endif