1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/tools/bugpoint/ListReducer.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

209 lines
7.9 KiB
C++

//===- ListReducer.h - Trim down list while retaining property --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class is to be used as a base class for operations that want to zero in
// on a subset of the input which still causes the bug we are tracking.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_BUGPOINT_LISTREDUCER_H
#define LLVM_TOOLS_BUGPOINT_LISTREDUCER_H
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdlib>
#include <random>
#include <vector>
namespace llvm {
extern bool BugpointIsInterrupted;
template <typename ElTy> struct ListReducer {
enum TestResult {
NoFailure, // No failure of the predicate was detected
KeepSuffix, // The suffix alone satisfies the predicate
KeepPrefix // The prefix alone satisfies the predicate
};
virtual ~ListReducer() {}
/// This virtual function should be overriden by subclasses to implement the
/// test desired. The testcase is only required to test to see if the Kept
/// list still satisfies the property, but if it is going to check the prefix
/// anyway, it can.
virtual Expected<TestResult> doTest(std::vector<ElTy> &Prefix,
std::vector<ElTy> &Kept) = 0;
/// This function attempts to reduce the length of the specified list while
/// still maintaining the "test" property. This is the core of the "work"
/// that bugpoint does.
Expected<bool> reduceList(std::vector<ElTy> &TheList) {
std::vector<ElTy> empty;
std::mt19937 randomness(0x6e5ea738); // Seed the random number generator
Expected<TestResult> Result = doTest(TheList, empty);
if (Error E = Result.takeError())
return std::move(E);
switch (*Result) {
case KeepPrefix:
if (TheList.size() == 1) // we are done, it's the base case and it fails
return true;
else
break; // there's definitely an error, but we need to narrow it down
case KeepSuffix:
// cannot be reached!
llvm_unreachable("bugpoint ListReducer internal error: "
"selected empty set.");
case NoFailure:
return false; // there is no failure with the full set of passes/funcs!
}
// Maximal number of allowed splitting iterations,
// before the elements are randomly shuffled.
const unsigned MaxIterationsWithoutProgress = 3;
// Maximal number of allowed single-element trim iterations. We add a
// threshold here as single-element reductions may otherwise take a
// very long time to complete.
const unsigned MaxTrimIterationsWithoutBackJump = 3;
bool ShufflingEnabled = true;
Backjump:
unsigned MidTop = TheList.size();
unsigned MaxIterations = MaxIterationsWithoutProgress;
unsigned NumOfIterationsWithoutProgress = 0;
while (MidTop > 1) { // Binary split reduction loop
// Halt if the user presses ctrl-c.
if (BugpointIsInterrupted) {
errs() << "\n\n*** Reduction Interrupted, cleaning up...\n\n";
return true;
}
// If the loop doesn't make satisfying progress, try shuffling.
// The purpose of shuffling is to avoid the heavy tails of the
// distribution (improving the speed of convergence).
if (ShufflingEnabled && NumOfIterationsWithoutProgress > MaxIterations) {
std::vector<ElTy> ShuffledList(TheList);
std::shuffle(ShuffledList.begin(), ShuffledList.end(), randomness);
errs() << "\n\n*** Testing shuffled set...\n\n";
// Check that random shuffle doesn't lose the bug
Expected<TestResult> Result = doTest(ShuffledList, empty);
// TODO: Previously, this error was ignored and we treated it as if
// shuffling hid the bug. This should really either be consumeError if
// that behaviour was sensible, or we should propagate the error.
assert(!Result.takeError() && "Shuffling caused internal error?");
if (*Result == KeepPrefix) {
// If the bug is still here, use the shuffled list.
TheList.swap(ShuffledList);
MidTop = TheList.size();
// Must increase the shuffling treshold to avoid the small
// probability of infinite looping without making progress.
MaxIterations += 2;
errs() << "\n\n*** Shuffling does not hide the bug...\n\n";
} else {
ShufflingEnabled = false; // Disable shuffling further on
errs() << "\n\n*** Shuffling hides the bug...\n\n";
}
NumOfIterationsWithoutProgress = 0;
}
unsigned Mid = MidTop / 2;
std::vector<ElTy> Prefix(TheList.begin(), TheList.begin() + Mid);
std::vector<ElTy> Suffix(TheList.begin() + Mid, TheList.end());
Expected<TestResult> Result = doTest(Prefix, Suffix);
if (Error E = Result.takeError())
return std::move(E);
switch (*Result) {
case KeepSuffix:
// The property still holds. We can just drop the prefix elements, and
// shorten the list to the "kept" elements.
TheList.swap(Suffix);
MidTop = TheList.size();
// Reset progress treshold and progress counter
MaxIterations = MaxIterationsWithoutProgress;
NumOfIterationsWithoutProgress = 0;
break;
case KeepPrefix:
// The predicate still holds, shorten the list to the prefix elements.
TheList.swap(Prefix);
MidTop = TheList.size();
// Reset progress treshold and progress counter
MaxIterations = MaxIterationsWithoutProgress;
NumOfIterationsWithoutProgress = 0;
break;
case NoFailure:
// Otherwise the property doesn't hold. Some of the elements we removed
// must be necessary to maintain the property.
MidTop = Mid;
NumOfIterationsWithoutProgress++;
break;
}
}
// Probability of backjumping from the trimming loop back to the binary
// split reduction loop.
const int BackjumpProbability = 10;
// Okay, we trimmed as much off the top and the bottom of the list as we
// could. If there is more than two elements in the list, try deleting
// interior elements and testing that.
//
if (TheList.size() > 2) {
bool Changed = true;
std::vector<ElTy> EmptyList;
unsigned TrimIterations = 0;
while (Changed) { // Trimming loop.
Changed = false;
// If the binary split reduction loop made an unfortunate sequence of
// splits, the trimming loop might be left off with a huge number of
// remaining elements (large search space). Backjumping out of that
// search space and attempting a different split can significantly
// improve the convergence speed.
if (std::rand() % 100 < BackjumpProbability)
goto Backjump;
for (unsigned i = 1; i < TheList.size() - 1; ++i) {
// Check interior elts
if (BugpointIsInterrupted) {
errs() << "\n\n*** Reduction Interrupted, cleaning up...\n\n";
return true;
}
std::vector<ElTy> TestList(TheList);
TestList.erase(TestList.begin() + i);
Expected<TestResult> Result = doTest(EmptyList, TestList);
if (Error E = Result.takeError())
return std::move(E);
if (*Result == KeepSuffix) {
// We can trim down the list!
TheList.swap(TestList);
--i; // Don't skip an element of the list
Changed = true;
}
}
if (TrimIterations >= MaxTrimIterationsWithoutBackJump)
break;
TrimIterations++;
}
}
return true; // there are some failure and we've narrowed them down
}
};
} // End llvm namespace
#endif