1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/include/llvm/ADT/DepthFirstIterator.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

308 lines
10 KiB
C++

//===- llvm/ADT/DepthFirstIterator.h - Depth First iterator -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file builds on the ADT/GraphTraits.h file to build generic depth
// first graph iterator. This file exposes the following functions/types:
//
// df_begin/df_end/df_iterator
// * Normal depth-first iteration - visit a node and then all of its children.
//
// idf_begin/idf_end/idf_iterator
// * Depth-first iteration on the 'inverse' graph.
//
// df_ext_begin/df_ext_end/df_ext_iterator
// * Normal depth-first iteration - visit a node and then all of its children.
// This iterator stores the 'visited' set in an external set, which allows
// it to be more efficient, and allows external clients to use the set for
// other purposes.
//
// idf_ext_begin/idf_ext_end/idf_ext_iterator
// * Depth-first iteration on the 'inverse' graph.
// This iterator stores the 'visited' set in an external set, which allows
// it to be more efficient, and allows external clients to use the set for
// other purposes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DEPTHFIRSTITERATOR_H
#define LLVM_ADT_DEPTHFIRSTITERATOR_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/iterator_range.h"
#include <iterator>
#include <set>
#include <utility>
#include <vector>
namespace llvm {
// df_iterator_storage - A private class which is used to figure out where to
// store the visited set.
template<class SetType, bool External> // Non-external set
class df_iterator_storage {
public:
SetType Visited;
};
template<class SetType>
class df_iterator_storage<SetType, true> {
public:
df_iterator_storage(SetType &VSet) : Visited(VSet) {}
df_iterator_storage(const df_iterator_storage &S) : Visited(S.Visited) {}
SetType &Visited;
};
// The visited stated for the iteration is a simple set augmented with
// one more method, completed, which is invoked when all children of a
// node have been processed. It is intended to distinguish of back and
// cross edges in the spanning tree but is not used in the common case.
template <typename NodeRef, unsigned SmallSize=8>
struct df_iterator_default_set : public SmallPtrSet<NodeRef, SmallSize> {
using BaseSet = SmallPtrSet<NodeRef, SmallSize>;
using iterator = typename BaseSet::iterator;
std::pair<iterator,bool> insert(NodeRef N) { return BaseSet::insert(N); }
template <typename IterT>
void insert(IterT Begin, IterT End) { BaseSet::insert(Begin,End); }
void completed(NodeRef) {}
};
// Generic Depth First Iterator
template <class GraphT,
class SetType =
df_iterator_default_set<typename GraphTraits<GraphT>::NodeRef>,
bool ExtStorage = false, class GT = GraphTraits<GraphT>>
class df_iterator
: public std::iterator<std::forward_iterator_tag, typename GT::NodeRef>,
public df_iterator_storage<SetType, ExtStorage> {
using super = std::iterator<std::forward_iterator_tag, typename GT::NodeRef>;
using NodeRef = typename GT::NodeRef;
using ChildItTy = typename GT::ChildIteratorType;
// First element is node reference, second is the 'next child' to visit.
// The second child is initialized lazily to pick up graph changes during the
// DFS.
using StackElement = std::pair<NodeRef, Optional<ChildItTy>>;
// VisitStack - Used to maintain the ordering. Top = current block
std::vector<StackElement> VisitStack;
private:
inline df_iterator(NodeRef Node) {
this->Visited.insert(Node);
VisitStack.push_back(StackElement(Node, None));
}
inline df_iterator() = default; // End is when stack is empty
inline df_iterator(NodeRef Node, SetType &S)
: df_iterator_storage<SetType, ExtStorage>(S) {
if (this->Visited.insert(Node).second)
VisitStack.push_back(StackElement(Node, None));
}
inline df_iterator(SetType &S)
: df_iterator_storage<SetType, ExtStorage>(S) {
// End is when stack is empty
}
inline void toNext() {
do {
NodeRef Node = VisitStack.back().first;
Optional<ChildItTy> &Opt = VisitStack.back().second;
if (!Opt)
Opt.emplace(GT::child_begin(Node));
// Notice that we directly mutate *Opt here, so that
// VisitStack.back().second actually gets updated as the iterator
// increases.
while (*Opt != GT::child_end(Node)) {
NodeRef Next = *(*Opt)++;
// Has our next sibling been visited?
if (this->Visited.insert(Next).second) {
// No, do it now.
VisitStack.push_back(StackElement(Next, None));
return;
}
}
this->Visited.completed(Node);
// Oops, ran out of successors... go up a level on the stack.
VisitStack.pop_back();
} while (!VisitStack.empty());
}
public:
using pointer = typename super::pointer;
// Provide static begin and end methods as our public "constructors"
static df_iterator begin(const GraphT &G) {
return df_iterator(GT::getEntryNode(G));
}
static df_iterator end(const GraphT &G) { return df_iterator(); }
// Static begin and end methods as our public ctors for external iterators
static df_iterator begin(const GraphT &G, SetType &S) {
return df_iterator(GT::getEntryNode(G), S);
}
static df_iterator end(const GraphT &G, SetType &S) { return df_iterator(S); }
bool operator==(const df_iterator &x) const {
return VisitStack == x.VisitStack;
}
bool operator!=(const df_iterator &x) const { return !(*this == x); }
const NodeRef &operator*() const { return VisitStack.back().first; }
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the Node, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
NodeRef operator->() const { return **this; }
df_iterator &operator++() { // Preincrement
toNext();
return *this;
}
/// Skips all children of the current node and traverses to next node
///
/// Note: This function takes care of incrementing the iterator. If you
/// always increment and call this function, you risk walking off the end.
df_iterator &skipChildren() {
VisitStack.pop_back();
if (!VisitStack.empty())
toNext();
return *this;
}
df_iterator operator++(int) { // Postincrement
df_iterator tmp = *this;
++*this;
return tmp;
}
// nodeVisited - return true if this iterator has already visited the
// specified node. This is public, and will probably be used to iterate over
// nodes that a depth first iteration did not find: ie unreachable nodes.
//
bool nodeVisited(NodeRef Node) const {
return this->Visited.count(Node) != 0;
}
/// getPathLength - Return the length of the path from the entry node to the
/// current node, counting both nodes.
unsigned getPathLength() const { return VisitStack.size(); }
/// getPath - Return the n'th node in the path from the entry node to the
/// current node.
NodeRef getPath(unsigned n) const { return VisitStack[n].first; }
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
df_iterator<T> df_begin(const T& G) {
return df_iterator<T>::begin(G);
}
template <class T>
df_iterator<T> df_end(const T& G) {
return df_iterator<T>::end(G);
}
// Provide an accessor method to use them in range-based patterns.
template <class T>
iterator_range<df_iterator<T>> depth_first(const T& G) {
return make_range(df_begin(G), df_end(G));
}
// Provide global definitions of external depth first iterators...
template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeRef>>
struct df_ext_iterator : public df_iterator<T, SetTy, true> {
df_ext_iterator(const df_iterator<T, SetTy, true> &V)
: df_iterator<T, SetTy, true>(V) {}
};
template <class T, class SetTy>
df_ext_iterator<T, SetTy> df_ext_begin(const T& G, SetTy &S) {
return df_ext_iterator<T, SetTy>::begin(G, S);
}
template <class T, class SetTy>
df_ext_iterator<T, SetTy> df_ext_end(const T& G, SetTy &S) {
return df_ext_iterator<T, SetTy>::end(G, S);
}
template <class T, class SetTy>
iterator_range<df_ext_iterator<T, SetTy>> depth_first_ext(const T& G,
SetTy &S) {
return make_range(df_ext_begin(G, S), df_ext_end(G, S));
}
// Provide global definitions of inverse depth first iterators...
template <class T,
class SetTy =
df_iterator_default_set<typename GraphTraits<T>::NodeRef>,
bool External = false>
struct idf_iterator : public df_iterator<Inverse<T>, SetTy, External> {
idf_iterator(const df_iterator<Inverse<T>, SetTy, External> &V)
: df_iterator<Inverse<T>, SetTy, External>(V) {}
};
template <class T>
idf_iterator<T> idf_begin(const T& G) {
return idf_iterator<T>::begin(Inverse<T>(G));
}
template <class T>
idf_iterator<T> idf_end(const T& G){
return idf_iterator<T>::end(Inverse<T>(G));
}
// Provide an accessor method to use them in range-based patterns.
template <class T>
iterator_range<idf_iterator<T>> inverse_depth_first(const T& G) {
return make_range(idf_begin(G), idf_end(G));
}
// Provide global definitions of external inverse depth first iterators...
template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeRef>>
struct idf_ext_iterator : public idf_iterator<T, SetTy, true> {
idf_ext_iterator(const idf_iterator<T, SetTy, true> &V)
: idf_iterator<T, SetTy, true>(V) {}
idf_ext_iterator(const df_iterator<Inverse<T>, SetTy, true> &V)
: idf_iterator<T, SetTy, true>(V) {}
};
template <class T, class SetTy>
idf_ext_iterator<T, SetTy> idf_ext_begin(const T& G, SetTy &S) {
return idf_ext_iterator<T, SetTy>::begin(Inverse<T>(G), S);
}
template <class T, class SetTy>
idf_ext_iterator<T, SetTy> idf_ext_end(const T& G, SetTy &S) {
return idf_ext_iterator<T, SetTy>::end(Inverse<T>(G), S);
}
template <class T, class SetTy>
iterator_range<idf_ext_iterator<T, SetTy>> inverse_depth_first_ext(const T& G,
SetTy &S) {
return make_range(idf_ext_begin(G, S), idf_ext_end(G, S));
}
} // end namespace llvm
#endif // LLVM_ADT_DEPTHFIRSTITERATOR_H