1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/CodeGen/DeadMachineInstructionElim.cpp
Nick Lewycky 2b8400628d Remove includes of Support/Compiler.h that are no longer needed after the
VISIBILITY_HIDDEN removal.

llvm-svn: 85043
2009-10-25 06:57:41 +00:00

161 lines
5.4 KiB
C++

//===- DeadMachineInstructionElim.cpp - Remove dead machine instructions --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is an extremely simple MachineInstr-level dead-code-elimination pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
namespace {
class DeadMachineInstructionElim : public MachineFunctionPass {
virtual bool runOnMachineFunction(MachineFunction &MF);
const TargetRegisterInfo *TRI;
const MachineRegisterInfo *MRI;
const TargetInstrInfo *TII;
BitVector LivePhysRegs;
public:
static char ID; // Pass identification, replacement for typeid
DeadMachineInstructionElim() : MachineFunctionPass(&ID) {}
private:
bool isDead(const MachineInstr *MI) const;
};
}
char DeadMachineInstructionElim::ID = 0;
static RegisterPass<DeadMachineInstructionElim>
Y("dead-mi-elimination",
"Remove dead machine instructions");
FunctionPass *llvm::createDeadMachineInstructionElimPass() {
return new DeadMachineInstructionElim();
}
bool DeadMachineInstructionElim::isDead(const MachineInstr *MI) const {
// Don't delete instructions with side effects.
bool SawStore = false;
if (!MI->isSafeToMove(TII, SawStore, 0))
return false;
// Examine each operand.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef()) {
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg) ?
LivePhysRegs[Reg] : !MRI->use_empty(Reg)) {
// This def has a use. Don't delete the instruction!
return false;
}
}
}
// If there are no defs with uses, the instruction is dead.
return true;
}
bool DeadMachineInstructionElim::runOnMachineFunction(MachineFunction &MF) {
bool AnyChanges = false;
MRI = &MF.getRegInfo();
TRI = MF.getTarget().getRegisterInfo();
TII = MF.getTarget().getInstrInfo();
// Compute a bitvector to represent all non-allocatable physregs.
BitVector NonAllocatableRegs = TRI->getAllocatableSet(MF);
NonAllocatableRegs.flip();
// Loop over all instructions in all blocks, from bottom to top, so that it's
// more likely that chains of dependent but ultimately dead instructions will
// be cleaned up.
for (MachineFunction::reverse_iterator I = MF.rbegin(), E = MF.rend();
I != E; ++I) {
MachineBasicBlock *MBB = &*I;
// Start out assuming that all non-allocatable registers are live
// out of this block.
LivePhysRegs = NonAllocatableRegs;
// Also add any explicit live-out physregs for this block.
if (!MBB->empty() && MBB->back().getDesc().isReturn())
for (MachineRegisterInfo::liveout_iterator LOI = MRI->liveout_begin(),
LOE = MRI->liveout_end(); LOI != LOE; ++LOI) {
unsigned Reg = *LOI;
if (TargetRegisterInfo::isPhysicalRegister(Reg))
LivePhysRegs.set(Reg);
}
// Now scan the instructions and delete dead ones, tracking physreg
// liveness as we go.
for (MachineBasicBlock::reverse_iterator MII = MBB->rbegin(),
MIE = MBB->rend(); MII != MIE; ) {
MachineInstr *MI = &*MII;
// If the instruction is dead, delete it!
if (isDead(MI)) {
DEBUG(errs() << "DeadMachineInstructionElim: DELETING: " << *MI);
AnyChanges = true;
MI->eraseFromParent();
MIE = MBB->rend();
// MII is now pointing to the next instruction to process,
// so don't increment it.
continue;
}
// Record the physreg defs.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef()) {
unsigned Reg = MO.getReg();
if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
LivePhysRegs.reset(Reg);
// Check the subreg set, not the alias set, because a def
// of a super-register may still be partially live after
// this def.
for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
*SubRegs; ++SubRegs)
LivePhysRegs.reset(*SubRegs);
}
}
}
// Record the physreg uses, after the defs, in case a physreg is
// both defined and used in the same instruction.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isUse()) {
unsigned Reg = MO.getReg();
if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
LivePhysRegs.set(Reg);
for (const unsigned *AliasSet = TRI->getAliasSet(Reg);
*AliasSet; ++AliasSet)
LivePhysRegs.set(*AliasSet);
}
}
}
// We didn't delete the current instruction, so increment MII to
// the next one.
++MII;
}
}
LivePhysRegs.clear();
return AnyChanges;
}