1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/CodeGen/MachineFunction.cpp
Chris Lattner 9ce833945e improve portability to avoid conflicting with std::next in c++'0x.
Patch by Howard Hinnant!

llvm-svn: 90365
2009-12-03 00:50:42 +00:00

706 lines
23 KiB
C++

//===-- MachineFunction.cpp -----------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect native machine code information for a function. This allows
// target-specific information about the generated code to be stored with each
// function.
//
//===----------------------------------------------------------------------===//
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/config.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
struct Printer : public MachineFunctionPass {
static char ID;
raw_ostream &OS;
const std::string Banner;
Printer(raw_ostream &os, const std::string &banner)
: MachineFunctionPass(&ID), OS(os), Banner(banner) {}
const char *getPassName() const { return "MachineFunction Printer"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) {
OS << "# " << Banner << ":\n";
MF.print(OS);
return false;
}
};
char Printer::ID = 0;
}
/// Returns a newly-created MachineFunction Printer pass. The default banner is
/// empty.
///
FunctionPass *llvm::createMachineFunctionPrinterPass(raw_ostream &OS,
const std::string &Banner){
return new Printer(OS, Banner);
}
//===---------------------------------------------------------------------===//
// MachineFunction implementation
//===---------------------------------------------------------------------===//
// Out of line virtual method.
MachineFunctionInfo::~MachineFunctionInfo() {}
void ilist_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
MBB->getParent()->DeleteMachineBasicBlock(MBB);
}
MachineFunction::MachineFunction(Function *F,
const TargetMachine &TM)
: Fn(F), Target(TM) {
if (TM.getRegisterInfo())
RegInfo = new (Allocator.Allocate<MachineRegisterInfo>())
MachineRegisterInfo(*TM.getRegisterInfo());
else
RegInfo = 0;
MFInfo = 0;
FrameInfo = new (Allocator.Allocate<MachineFrameInfo>())
MachineFrameInfo(*TM.getFrameInfo());
ConstantPool = new (Allocator.Allocate<MachineConstantPool>())
MachineConstantPool(TM.getTargetData());
Alignment = TM.getTargetLowering()->getFunctionAlignment(F);
// Set up jump table.
const TargetData &TD = *TM.getTargetData();
bool IsPic = TM.getRelocationModel() == Reloc::PIC_;
unsigned EntrySize = IsPic ? 4 : TD.getPointerSize();
unsigned TyAlignment = IsPic ?
TD.getABITypeAlignment(Type::getInt32Ty(F->getContext()))
: TD.getPointerABIAlignment();
JumpTableInfo = new (Allocator.Allocate<MachineJumpTableInfo>())
MachineJumpTableInfo(EntrySize, TyAlignment);
}
MachineFunction::~MachineFunction() {
BasicBlocks.clear();
InstructionRecycler.clear(Allocator);
BasicBlockRecycler.clear(Allocator);
if (RegInfo) {
RegInfo->~MachineRegisterInfo();
Allocator.Deallocate(RegInfo);
}
if (MFInfo) {
MFInfo->~MachineFunctionInfo();
Allocator.Deallocate(MFInfo);
}
FrameInfo->~MachineFrameInfo(); Allocator.Deallocate(FrameInfo);
ConstantPool->~MachineConstantPool(); Allocator.Deallocate(ConstantPool);
JumpTableInfo->~MachineJumpTableInfo(); Allocator.Deallocate(JumpTableInfo);
}
/// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
/// recomputes them. This guarantees that the MBB numbers are sequential,
/// dense, and match the ordering of the blocks within the function. If a
/// specific MachineBasicBlock is specified, only that block and those after
/// it are renumbered.
void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
if (empty()) { MBBNumbering.clear(); return; }
MachineFunction::iterator MBBI, E = end();
if (MBB == 0)
MBBI = begin();
else
MBBI = MBB;
// Figure out the block number this should have.
unsigned BlockNo = 0;
if (MBBI != begin())
BlockNo = prior(MBBI)->getNumber()+1;
for (; MBBI != E; ++MBBI, ++BlockNo) {
if (MBBI->getNumber() != (int)BlockNo) {
// Remove use of the old number.
if (MBBI->getNumber() != -1) {
assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
"MBB number mismatch!");
MBBNumbering[MBBI->getNumber()] = 0;
}
// If BlockNo is already taken, set that block's number to -1.
if (MBBNumbering[BlockNo])
MBBNumbering[BlockNo]->setNumber(-1);
MBBNumbering[BlockNo] = MBBI;
MBBI->setNumber(BlockNo);
}
}
// Okay, all the blocks are renumbered. If we have compactified the block
// numbering, shrink MBBNumbering now.
assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
MBBNumbering.resize(BlockNo);
}
/// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
/// of `new MachineInstr'.
///
MachineInstr *
MachineFunction::CreateMachineInstr(const TargetInstrDesc &TID,
DebugLoc DL, bool NoImp) {
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
MachineInstr(TID, DL, NoImp);
}
/// CloneMachineInstr - Create a new MachineInstr which is a copy of the
/// 'Orig' instruction, identical in all ways except the the instruction
/// has no parent, prev, or next.
///
MachineInstr *
MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
MachineInstr(*this, *Orig);
}
/// DeleteMachineInstr - Delete the given MachineInstr.
///
void
MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
MI->~MachineInstr();
InstructionRecycler.Deallocate(Allocator, MI);
}
/// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
/// instead of `new MachineBasicBlock'.
///
MachineBasicBlock *
MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
MachineBasicBlock(*this, bb);
}
/// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
///
void
MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
assert(MBB->getParent() == this && "MBB parent mismatch!");
MBB->~MachineBasicBlock();
BasicBlockRecycler.Deallocate(Allocator, MBB);
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(const Value *v, unsigned f,
int64_t o, uint64_t s,
unsigned base_alignment) {
return new (Allocator.Allocate<MachineMemOperand>())
MachineMemOperand(v, f, o, s, base_alignment);
}
MachineMemOperand *
MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
int64_t Offset, uint64_t Size) {
return new (Allocator.Allocate<MachineMemOperand>())
MachineMemOperand(MMO->getValue(), MMO->getFlags(),
int64_t(uint64_t(MMO->getOffset()) +
uint64_t(Offset)),
Size, MMO->getBaseAlignment());
}
MachineInstr::mmo_iterator
MachineFunction::allocateMemRefsArray(unsigned long Num) {
return Allocator.Allocate<MachineMemOperand *>(Num);
}
std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
MachineFunction::extractLoadMemRefs(MachineInstr::mmo_iterator Begin,
MachineInstr::mmo_iterator End) {
// Count the number of load mem refs.
unsigned Num = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
if ((*I)->isLoad())
++Num;
// Allocate a new array and populate it with the load information.
MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
unsigned Index = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
if ((*I)->isLoad()) {
if (!(*I)->isStore())
// Reuse the MMO.
Result[Index] = *I;
else {
// Clone the MMO and unset the store flag.
MachineMemOperand *JustLoad =
getMachineMemOperand((*I)->getValue(),
(*I)->getFlags() & ~MachineMemOperand::MOStore,
(*I)->getOffset(), (*I)->getSize(),
(*I)->getBaseAlignment());
Result[Index] = JustLoad;
}
++Index;
}
}
return std::make_pair(Result, Result + Num);
}
std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator>
MachineFunction::extractStoreMemRefs(MachineInstr::mmo_iterator Begin,
MachineInstr::mmo_iterator End) {
// Count the number of load mem refs.
unsigned Num = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I)
if ((*I)->isStore())
++Num;
// Allocate a new array and populate it with the store information.
MachineInstr::mmo_iterator Result = allocateMemRefsArray(Num);
unsigned Index = 0;
for (MachineInstr::mmo_iterator I = Begin; I != End; ++I) {
if ((*I)->isStore()) {
if (!(*I)->isLoad())
// Reuse the MMO.
Result[Index] = *I;
else {
// Clone the MMO and unset the load flag.
MachineMemOperand *JustStore =
getMachineMemOperand((*I)->getValue(),
(*I)->getFlags() & ~MachineMemOperand::MOLoad,
(*I)->getOffset(), (*I)->getSize(),
(*I)->getBaseAlignment());
Result[Index] = JustStore;
}
++Index;
}
}
return std::make_pair(Result, Result + Num);
}
void MachineFunction::dump() const {
print(errs());
}
void MachineFunction::print(raw_ostream &OS) const {
OS << "# Machine code for function " << Fn->getName() << ":\n";
// Print Frame Information
FrameInfo->print(*this, OS);
// Print JumpTable Information
JumpTableInfo->print(OS);
// Print Constant Pool
ConstantPool->print(OS);
const TargetRegisterInfo *TRI = getTarget().getRegisterInfo();
if (RegInfo && !RegInfo->livein_empty()) {
OS << "Function Live Ins: ";
for (MachineRegisterInfo::livein_iterator
I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
if (TRI)
OS << "%" << TRI->getName(I->first);
else
OS << " %physreg" << I->first;
if (I->second)
OS << " in reg%" << I->second;
if (llvm::next(I) != E)
OS << ", ";
}
OS << '\n';
}
if (RegInfo && !RegInfo->liveout_empty()) {
OS << "Function Live Outs: ";
for (MachineRegisterInfo::liveout_iterator
I = RegInfo->liveout_begin(), E = RegInfo->liveout_end(); I != E; ++I){
if (TRI)
OS << '%' << TRI->getName(*I);
else
OS << "%physreg" << *I;
if (llvm::next(I) != E)
OS << " ";
}
OS << '\n';
}
for (const_iterator BB = begin(), E = end(); BB != E; ++BB) {
OS << '\n';
BB->print(OS);
}
OS << "\n# End machine code for function " << Fn->getName() << ".\n\n";
}
namespace llvm {
template<>
struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
static std::string getGraphName(const MachineFunction *F) {
return "CFG for '" + F->getFunction()->getNameStr() + "' function";
}
std::string getNodeLabel(const MachineBasicBlock *Node,
const MachineFunction *Graph) {
if (isSimple () && Node->getBasicBlock() &&
!Node->getBasicBlock()->getName().empty())
return Node->getBasicBlock()->getNameStr() + ":";
std::string OutStr;
{
raw_string_ostream OSS(OutStr);
if (isSimple())
OSS << Node->getNumber() << ':';
else
Node->print(OSS);
}
if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
// Process string output to make it nicer...
for (unsigned i = 0; i != OutStr.length(); ++i)
if (OutStr[i] == '\n') { // Left justify
OutStr[i] = '\\';
OutStr.insert(OutStr.begin()+i+1, 'l');
}
return OutStr;
}
};
}
void MachineFunction::viewCFG() const
{
#ifndef NDEBUG
ViewGraph(this, "mf" + getFunction()->getNameStr());
#else
errs() << "SelectionDAG::viewGraph is only available in debug builds on "
<< "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
void MachineFunction::viewCFGOnly() const
{
#ifndef NDEBUG
ViewGraph(this, "mf" + getFunction()->getNameStr(), true);
#else
errs() << "SelectionDAG::viewGraph is only available in debug builds on "
<< "systems with Graphviz or gv!\n";
#endif // NDEBUG
}
/// addLiveIn - Add the specified physical register as a live-in value and
/// create a corresponding virtual register for it.
unsigned MachineFunction::addLiveIn(unsigned PReg,
const TargetRegisterClass *RC) {
assert(RC->contains(PReg) && "Not the correct regclass!");
unsigned VReg = getRegInfo().createVirtualRegister(RC);
getRegInfo().addLiveIn(PReg, VReg);
return VReg;
}
/// getDebugLocTuple - Get the DebugLocTuple for a given DebugLoc object.
DebugLocTuple MachineFunction::getDebugLocTuple(DebugLoc DL) const {
unsigned Idx = DL.getIndex();
assert(Idx < DebugLocInfo.DebugLocations.size() &&
"Invalid index into debug locations!");
return DebugLocInfo.DebugLocations[Idx];
}
//===----------------------------------------------------------------------===//
// MachineFrameInfo implementation
//===----------------------------------------------------------------------===//
/// CreateFixedObject - Create a new object at a fixed location on the stack.
/// All fixed objects should be created before other objects are created for
/// efficiency. By default, fixed objects are immutable. This returns an
/// index with a negative value.
///
int MachineFrameInfo::CreateFixedObject(uint64_t Size, int64_t SPOffset,
bool Immutable, bool isSS) {
assert(Size != 0 && "Cannot allocate zero size fixed stack objects!");
Objects.insert(Objects.begin(), StackObject(Size, 1, SPOffset, Immutable,
isSS));
return -++NumFixedObjects;
}
BitVector
MachineFrameInfo::getPristineRegs(const MachineBasicBlock *MBB) const {
assert(MBB && "MBB must be valid");
const MachineFunction *MF = MBB->getParent();
assert(MF && "MBB must be part of a MachineFunction");
const TargetMachine &TM = MF->getTarget();
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
BitVector BV(TRI->getNumRegs());
// Before CSI is calculated, no registers are considered pristine. They can be
// freely used and PEI will make sure they are saved.
if (!isCalleeSavedInfoValid())
return BV;
for (const unsigned *CSR = TRI->getCalleeSavedRegs(MF); CSR && *CSR; ++CSR)
BV.set(*CSR);
// The entry MBB always has all CSRs pristine.
if (MBB == &MF->front())
return BV;
// On other MBBs the saved CSRs are not pristine.
const std::vector<CalleeSavedInfo> &CSI = getCalleeSavedInfo();
for (std::vector<CalleeSavedInfo>::const_iterator I = CSI.begin(),
E = CSI.end(); I != E; ++I)
BV.reset(I->getReg());
return BV;
}
void MachineFrameInfo::print(const MachineFunction &MF, raw_ostream &OS) const{
if (Objects.empty()) return;
const TargetFrameInfo *FI = MF.getTarget().getFrameInfo();
int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
OS << "Frame Objects:\n";
for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
const StackObject &SO = Objects[i];
OS << " fi#" << (int)(i-NumFixedObjects) << ": ";
if (SO.Size == ~0ULL) {
OS << "dead\n";
continue;
}
if (SO.Size == 0)
OS << "variable sized";
else
OS << "size=" << SO.Size;
OS << ", align=" << SO.Alignment;
if (i < NumFixedObjects)
OS << ", fixed";
if (i < NumFixedObjects || SO.SPOffset != -1) {
int64_t Off = SO.SPOffset - ValOffset;
OS << ", at location [SP";
if (Off > 0)
OS << "+" << Off;
else if (Off < 0)
OS << Off;
OS << "]";
}
OS << "\n";
}
}
void MachineFrameInfo::dump(const MachineFunction &MF) const {
print(MF, errs());
}
//===----------------------------------------------------------------------===//
// MachineJumpTableInfo implementation
//===----------------------------------------------------------------------===//
/// getJumpTableIndex - Create a new jump table entry in the jump table info
/// or return an existing one.
///
unsigned MachineJumpTableInfo::getJumpTableIndex(
const std::vector<MachineBasicBlock*> &DestBBs) {
assert(!DestBBs.empty() && "Cannot create an empty jump table!");
JumpTables.push_back(MachineJumpTableEntry(DestBBs));
return JumpTables.size()-1;
}
/// ReplaceMBBInJumpTables - If Old is the target of any jump tables, update
/// the jump tables to branch to New instead.
bool
MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Not making a change?");
bool MadeChange = false;
for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
ReplaceMBBInJumpTable(i, Old, New);
return MadeChange;
}
/// ReplaceMBBInJumpTable - If Old is a target of the jump tables, update
/// the jump table to branch to New instead.
bool
MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
MachineBasicBlock *Old,
MachineBasicBlock *New) {
assert(Old != New && "Not making a change?");
bool MadeChange = false;
MachineJumpTableEntry &JTE = JumpTables[Idx];
for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
if (JTE.MBBs[j] == Old) {
JTE.MBBs[j] = New;
MadeChange = true;
}
return MadeChange;
}
void MachineJumpTableInfo::print(raw_ostream &OS) const {
if (JumpTables.empty()) return;
OS << "Jump Tables:\n";
for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
OS << " jt#" << i << ": ";
for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
OS << " BB#" << JumpTables[i].MBBs[j]->getNumber();
}
OS << '\n';
}
void MachineJumpTableInfo::dump() const { print(errs()); }
//===----------------------------------------------------------------------===//
// MachineConstantPool implementation
//===----------------------------------------------------------------------===//
const Type *MachineConstantPoolEntry::getType() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getType();
return Val.ConstVal->getType();
}
unsigned MachineConstantPoolEntry::getRelocationInfo() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getRelocationInfo();
return Val.ConstVal->getRelocationInfo();
}
MachineConstantPool::~MachineConstantPool() {
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (Constants[i].isMachineConstantPoolEntry())
delete Constants[i].Val.MachineCPVal;
}
/// CanShareConstantPoolEntry - Test whether the given two constants
/// can be allocated the same constant pool entry.
static bool CanShareConstantPoolEntry(Constant *A, Constant *B,
const TargetData *TD) {
// Handle the trivial case quickly.
if (A == B) return true;
// If they have the same type but weren't the same constant, quickly
// reject them.
if (A->getType() == B->getType()) return false;
// For now, only support constants with the same size.
if (TD->getTypeStoreSize(A->getType()) != TD->getTypeStoreSize(B->getType()))
return false;
// If a floating-point value and an integer value have the same encoding,
// they can share a constant-pool entry.
if (ConstantFP *AFP = dyn_cast<ConstantFP>(A))
if (ConstantInt *BI = dyn_cast<ConstantInt>(B))
return AFP->getValueAPF().bitcastToAPInt() == BI->getValue();
if (ConstantFP *BFP = dyn_cast<ConstantFP>(B))
if (ConstantInt *AI = dyn_cast<ConstantInt>(A))
return BFP->getValueAPF().bitcastToAPInt() == AI->getValue();
// Two vectors can share an entry if each pair of corresponding
// elements could.
if (ConstantVector *AV = dyn_cast<ConstantVector>(A))
if (ConstantVector *BV = dyn_cast<ConstantVector>(B)) {
if (AV->getType()->getNumElements() != BV->getType()->getNumElements())
return false;
for (unsigned i = 0, e = AV->getType()->getNumElements(); i != e; ++i)
if (!CanShareConstantPoolEntry(AV->getOperand(i),
BV->getOperand(i), TD))
return false;
return true;
}
// TODO: Handle other cases.
return false;
}
/// getConstantPoolIndex - Create a new entry in the constant pool or return
/// an existing one. User must specify the log2 of the minimum required
/// alignment for the object.
///
unsigned MachineConstantPool::getConstantPoolIndex(Constant *C,
unsigned Alignment) {
assert(Alignment && "Alignment must be specified!");
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
for (unsigned i = 0, e = Constants.size(); i != e; ++i)
if (!Constants[i].isMachineConstantPoolEntry() &&
CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, TD)) {
if ((unsigned)Constants[i].getAlignment() < Alignment)
Constants[i].Alignment = Alignment;
return i;
}
Constants.push_back(MachineConstantPoolEntry(C, Alignment));
return Constants.size()-1;
}
unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
unsigned Alignment) {
assert(Alignment && "Alignment must be specified!");
if (Alignment > PoolAlignment) PoolAlignment = Alignment;
// Check to see if we already have this constant.
//
// FIXME, this could be made much more efficient for large constant pools.
int Idx = V->getExistingMachineCPValue(this, Alignment);
if (Idx != -1)
return (unsigned)Idx;
Constants.push_back(MachineConstantPoolEntry(V, Alignment));
return Constants.size()-1;
}
void MachineConstantPool::print(raw_ostream &OS) const {
if (Constants.empty()) return;
OS << "Constant Pool:\n";
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
OS << " cp#" << i << ": ";
if (Constants[i].isMachineConstantPoolEntry())
Constants[i].Val.MachineCPVal->print(OS);
else
OS << *(Value*)Constants[i].Val.ConstVal;
OS << ", align=" << Constants[i].getAlignment();
OS << "\n";
}
}
void MachineConstantPool::dump() const { print(errs()); }