mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
cea903237c
llvm-svn: 78667
289 lines
8.2 KiB
C++
289 lines
8.2 KiB
C++
//===-- PBQPMath.h - PBQP Vector and Matrix classes ------------*- C++ --*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_PBQP_PBQPMATH_H
|
|
#define LLVM_CODEGEN_PBQP_PBQPMATH_H
|
|
|
|
#include <cassert>
|
|
#include <algorithm>
|
|
#include <functional>
|
|
|
|
namespace PBQP {
|
|
|
|
typedef double PBQPNum;
|
|
|
|
/// \brief PBQP Vector class.
|
|
class Vector {
|
|
public:
|
|
|
|
/// \brief Construct a PBQP vector of the given size.
|
|
explicit Vector(unsigned length) :
|
|
length(length), data(new PBQPNum[length]) {
|
|
}
|
|
|
|
/// \brief Construct a PBQP vector with initializer.
|
|
Vector(unsigned length, PBQPNum initVal) :
|
|
length(length), data(new PBQPNum[length]) {
|
|
std::fill(data, data + length, initVal);
|
|
}
|
|
|
|
/// \brief Copy construct a PBQP vector.
|
|
Vector(const Vector &v) :
|
|
length(v.length), data(new PBQPNum[length]) {
|
|
std::copy(v.data, v.data + length, data);
|
|
}
|
|
|
|
/// \brief Destroy this vector, return its memory.
|
|
~Vector() { delete[] data; }
|
|
|
|
/// \brief Assignment operator.
|
|
Vector& operator=(const Vector &v) {
|
|
delete[] data;
|
|
length = v.length;
|
|
data = new PBQPNum[length];
|
|
std::copy(v.data, v.data + length, data);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Return the length of the vector
|
|
unsigned getLength() const {
|
|
return length;
|
|
}
|
|
|
|
/// \brief Element access.
|
|
PBQPNum& operator[](unsigned index) {
|
|
assert(index < length && "Vector element access out of bounds.");
|
|
return data[index];
|
|
}
|
|
|
|
/// \brief Const element access.
|
|
const PBQPNum& operator[](unsigned index) const {
|
|
assert(index < length && "Vector element access out of bounds.");
|
|
return data[index];
|
|
}
|
|
|
|
/// \brief Add another vector to this one.
|
|
Vector& operator+=(const Vector &v) {
|
|
assert(length == v.length && "Vector length mismatch.");
|
|
std::transform(data, data + length, v.data, data, std::plus<PBQPNum>());
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Subtract another vector from this one.
|
|
Vector& operator-=(const Vector &v) {
|
|
assert(length == v.length && "Vector length mismatch.");
|
|
std::transform(data, data + length, v.data, data, std::minus<PBQPNum>());
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Returns the index of the minimum value in this vector
|
|
unsigned minIndex() const {
|
|
return std::min_element(data, data + length) - data;
|
|
}
|
|
|
|
private:
|
|
unsigned length;
|
|
PBQPNum *data;
|
|
};
|
|
|
|
/// \brief Output a textual representation of the given vector on the given
|
|
/// output stream.
|
|
template <typename OStream>
|
|
OStream& operator<<(OStream &os, const Vector &v) {
|
|
assert((v.getLength() != 0) && "Zero-length vector badness.");
|
|
|
|
os << "[ " << v[0];
|
|
for (unsigned i = 1; i < v.getLength(); ++i) {
|
|
os << ", " << v[i];
|
|
}
|
|
os << " ]";
|
|
|
|
return os;
|
|
}
|
|
|
|
|
|
/// \brief PBQP Matrix class
|
|
class Matrix {
|
|
public:
|
|
|
|
/// \brief Construct a PBQP Matrix with the given dimensions.
|
|
Matrix(unsigned rows, unsigned cols) :
|
|
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
|
|
}
|
|
|
|
/// \brief Construct a PBQP Matrix with the given dimensions and initial
|
|
/// value.
|
|
Matrix(unsigned rows, unsigned cols, PBQPNum initVal) :
|
|
rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
|
|
std::fill(data, data + (rows * cols), initVal);
|
|
}
|
|
|
|
/// \brief Copy construct a PBQP matrix.
|
|
Matrix(const Matrix &m) :
|
|
rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
|
|
std::copy(m.data, m.data + (rows * cols), data);
|
|
}
|
|
|
|
/// \brief Destroy this matrix, return its memory.
|
|
~Matrix() { delete[] data; }
|
|
|
|
/// \brief Assignment operator.
|
|
Matrix& operator=(const Matrix &m) {
|
|
delete[] data;
|
|
rows = m.rows; cols = m.cols;
|
|
data = new PBQPNum[rows * cols];
|
|
std::copy(m.data, m.data + (rows * cols), data);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Return the number of rows in this matrix.
|
|
unsigned getRows() const { return rows; }
|
|
|
|
/// \brief Return the number of cols in this matrix.
|
|
unsigned getCols() const { return cols; }
|
|
|
|
/// \brief Matrix element access.
|
|
PBQPNum* operator[](unsigned r) {
|
|
assert(r < rows && "Row out of bounds.");
|
|
return data + (r * cols);
|
|
}
|
|
|
|
/// \brief Matrix element access.
|
|
const PBQPNum* operator[](unsigned r) const {
|
|
assert(r < rows && "Row out of bounds.");
|
|
return data + (r * cols);
|
|
}
|
|
|
|
/// \brief Returns the given row as a vector.
|
|
Vector getRowAsVector(unsigned r) const {
|
|
Vector v(cols);
|
|
for (unsigned c = 0; c < cols; ++c)
|
|
v[c] = (*this)[r][c];
|
|
return v;
|
|
}
|
|
|
|
/// \brief Returns the given column as a vector.
|
|
Vector getColAsVector(unsigned c) const {
|
|
Vector v(rows);
|
|
for (unsigned r = 0; r < rows; ++r)
|
|
v[r] = (*this)[r][c];
|
|
return v;
|
|
}
|
|
|
|
/// \brief Reset the matrix to the given value.
|
|
Matrix& reset(PBQPNum val = 0) {
|
|
std::fill(data, data + (rows * cols), val);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Set a single row of this matrix to the given value.
|
|
Matrix& setRow(unsigned r, PBQPNum val) {
|
|
assert(r < rows && "Row out of bounds.");
|
|
std::fill(data + (r * cols), data + ((r + 1) * cols), val);
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Set a single column of this matrix to the given value.
|
|
Matrix& setCol(unsigned c, PBQPNum val) {
|
|
assert(c < cols && "Column out of bounds.");
|
|
for (unsigned r = 0; r < rows; ++r)
|
|
(*this)[r][c] = val;
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Matrix transpose.
|
|
Matrix transpose() const {
|
|
Matrix m(cols, rows);
|
|
for (unsigned r = 0; r < rows; ++r)
|
|
for (unsigned c = 0; c < cols; ++c)
|
|
m[c][r] = (*this)[r][c];
|
|
return m;
|
|
}
|
|
|
|
/// \brief Returns the diagonal of the matrix as a vector.
|
|
///
|
|
/// Matrix must be square.
|
|
Vector diagonalize() const {
|
|
assert(rows == cols && "Attempt to diagonalize non-square matrix.");
|
|
|
|
Vector v(rows);
|
|
for (unsigned r = 0; r < rows; ++r)
|
|
v[r] = (*this)[r][r];
|
|
return v;
|
|
}
|
|
|
|
/// \brief Add the given matrix to this one.
|
|
Matrix& operator+=(const Matrix &m) {
|
|
assert(rows == m.rows && cols == m.cols &&
|
|
"Matrix dimensions mismatch.");
|
|
std::transform(data, data + (rows * cols), m.data, data,
|
|
std::plus<PBQPNum>());
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Returns the minimum of the given row
|
|
PBQPNum getRowMin(unsigned r) const {
|
|
assert(r < rows && "Row out of bounds");
|
|
return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
|
|
}
|
|
|
|
/// \brief Returns the minimum of the given column
|
|
PBQPNum getColMin(unsigned c) const {
|
|
PBQPNum minElem = (*this)[0][c];
|
|
for (unsigned r = 1; r < rows; ++r)
|
|
if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
|
|
return minElem;
|
|
}
|
|
|
|
/// \brief Subtracts the given scalar from the elements of the given row.
|
|
Matrix& subFromRow(unsigned r, PBQPNum val) {
|
|
assert(r < rows && "Row out of bounds");
|
|
std::transform(data + (r * cols), data + ((r + 1) * cols),
|
|
data + (r * cols),
|
|
std::bind2nd(std::minus<PBQPNum>(), val));
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Subtracts the given scalar from the elements of the given column.
|
|
Matrix& subFromCol(unsigned c, PBQPNum val) {
|
|
for (unsigned r = 0; r < rows; ++r)
|
|
(*this)[r][c] -= val;
|
|
return *this;
|
|
}
|
|
|
|
/// \brief Returns true if this is a zero matrix.
|
|
bool isZero() const {
|
|
return find_if(data, data + (rows * cols),
|
|
std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
|
|
data + (rows * cols);
|
|
}
|
|
|
|
private:
|
|
unsigned rows, cols;
|
|
PBQPNum *data;
|
|
};
|
|
|
|
/// \brief Output a textual representation of the given matrix on the given
|
|
/// output stream.
|
|
template <typename OStream>
|
|
OStream& operator<<(OStream &os, const Matrix &m) {
|
|
|
|
assert((m.getRows() != 0) && "Zero-row matrix badness.");
|
|
|
|
for (unsigned i = 0; i < m.getRows(); ++i) {
|
|
os << m.getRowAsVector(i);
|
|
}
|
|
|
|
return os;
|
|
}
|
|
|
|
}
|
|
|
|
#endif // LLVM_CODEGEN_PBQP_PBQPMATH_HPP
|